1
|
Santiago-Silva L, Cruz-Martínez H, Rojas-Chávez H, López-Sosa L, Calaminici P. Structural transformation in Pd nanoclusters induced by Cu doping: an ADFT study. J Mol Model 2025; 31:79. [PMID: 39928171 PMCID: PMC11811464 DOI: 10.1007/s00894-025-06305-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
CONTEXT Transition metal nanoparticles have gained great importance due to their promising applications in various fields such as energy, electronics, medicine, and agriculture. For these applications, materials with outstanding properties are currently required. Therefore, different strategies have been established to improve the properties of pure nanoparticles such as alloying, doping, and formation of composites. Among these strategies, doping is gaining great importance because it has been demonstrated that doped nanoparticles have better properties than pure nanoparticles. Therefore, it is essential to know the role of doping on the structures and properties of clusters with more than 16 atoms. Consequently, in this study, we propose a theoretical study of structures and properties focusing on pure Pd19, Cu-doped Pd18 (Pd18Cu), and Cu2-doped Pd17 (Pd17Cu2) nanoclusters and thus elucidate the role of Cu atoms on the structures and properties of larger doped Pd nanoclusters than those already presented in the literature. We have selected a nanocluster with 19 atoms since the most stable structure of this system is characterized by defined shapes such as octahedron or double-icosahedron. METHODS Ground state structures and properties of Pd19, Pd18Cu, and Pd17Cu2 nanoclusters were studied using the auxiliary density functional theory (ADFT), as implemented in the deMon2k code. For obtaining the ground state structures of Pd19, Pd18Cu, and Pd17Cu2 nanoclusters, several dozen initial structures were taken along Born-Oppenheimer molecular dynamics (BOMD) trajectories and subsequently optimized without symmetry restrictions. The optimizations were performed with the revised PBE functional in combination with TZVP-GGA for the Cu atoms and using an 18-electron QECP|SD basis set for the Pd atoms. Different energetic and electronic properties were calculated for the most stable structures of Pd19, Pd18Cu, and Pd17Cu2 nanoclusters. Interestingly, when the Pd nanocluster is doped with two Cu atoms (Pd17Cu2), there is a structural transition, because the most stable structures for Pd19 and Pd18Cu are icosahedral. While the Pd17Cu nanocluster is characterized for a double-icosahedral-base structure. The binding energy per atom increases when the Cu concentration in the nanoclusters increases. According to the HOMO-LUMO gap, the chemical reactivity of the nanoclusters tends to increase as the Cu content in the nanoclusters increases.
Collapse
Affiliation(s)
- L Santiago-Silva
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, 68230, Oaxaca, Mexico
| | - H Cruz-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, 68230, Oaxaca, Mexico.
| | - H Rojas-Chávez
- Tecnológico Nacional de México, Instituto Tecnológico de Tláhuac II, Camino Real 625, Jardines del Llano, 13550, San Juan Ixtayopan, Tláhuac, Ciudad de México , Mexico
| | - L López-Sosa
- Departamento de Química, CINVESTAV, Instituto Politécnico Nacional 2508, 07360, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de Mexico, Mexico
| | - P Calaminici
- Departamento de Química, CINVESTAV, Instituto Politécnico Nacional 2508, 07360, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de Mexico, Mexico.
| |
Collapse
|
2
|
Li H, Zhao X, Ren X, Wei D, Zhang S, Wang H, Zuo ZW, Li L, Yu X. Energetic and Kinetic Competition on the Stability of Pd 13 Clusters: Ab Initio Molecular Dynamics Simulations. J Phys Chem A 2024; 128:8856-8864. [PMID: 39159008 DOI: 10.1021/acs.jpca.4c03230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Material stability is the focus on both experiments and calculations, which includes the energetic stability at the static state and the thermodynamic stability at the kinetic state. To show whether energetics or kinetics dominates on material stability, this study focuses on the Pd13 clusters, because of their observable magnetic moment in experiment. Energetically, the CALYPSO searching method and first-principles calculations find that Pd13(C2) is the ground state at 0 K while the static frequency calculations demonstrate that the icosahedron Pd13(Ih) becomes more favorable on free energy as temperature increases. However, their magnetic moments (8 μB) are not in agreement with the experimental value (<5.2 μB). Kinetically, ab initio molecular dynamics simulations reveal that Pd13(C3v) (6 μB) has supreme isomerization temperature and the other 11 low-lying isomers transform to Pd13(C3v) directly or indirectly, demonstrating that Pd13(C3v) has the maximum probability to be observed in experiment. The magnetic moment difference between experiment (<5.2 μB) and this calculation (6 μB) may be due to the spin multiplicities. Our result suggests that the magnetic moment disparity between theory and experiment (in Pd13 clusters) originates from the kinetic stability.
Collapse
Affiliation(s)
- Haisheng Li
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal new Materials and Advanced Processing Technology, Luoyang 471023, China
| | - Xingju Zhao
- International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyan Ren
- International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuai Zhang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal new Materials and Advanced Processing Technology, Luoyang 471023, China
| | - Hui Wang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal new Materials and Advanced Processing Technology, Luoyang 471023, China
| | - Zheng-Wei Zuo
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal new Materials and Advanced Processing Technology, Luoyang 471023, China
| | - Liben Li
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal new Materials and Advanced Processing Technology, Luoyang 471023, China
| | - Xiaohu Yu
- Institute of Theoretical and Computational Chemistry, Shaanxi, Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723000, China
| |
Collapse
|
3
|
Souza TM, Pena LB, Da Silva JLF, Galvão BRL. Data-driven stabilization of Ni mPd n-m nanoalloys: a study using density functional theory and data mining approaches. Phys Chem Chem Phys 2024; 26:15877-15890. [PMID: 38804680 DOI: 10.1039/d4cp00672k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Green hydrogen, generated through the electrolysis of water, is a viable alternative to fossil fuels, although its adoption is hindered by the high costs associated with the catalysts. Among a wide variety of potential materials, binary nickel-palladium (NiPd) systems have garnered significant attention, particularly at the nanoscale, for their efficacious roles in catalyzing hydrogen and oxygen evolution reactions. However, our atom-level understanding of the descriptors that drive their energetic stability at the nanoscale remains largely incomplete. Here, we investigate by density functional theory calculations the descriptors that drives the stability of the NimPdn-m clusters for different sizes (n = 13, 27, 41) and compositions. To achieve our goals, a large number of trial configurations were generated and selected using data mining algorithms (k-means, t-SNE) and genetic algorithms, while the most important physical-chemical descriptors were identified using Spearman correlation analysis. We have found that core-shell formation, with the smaller Ni atoms lying in the center of the particle, plays a major role in the stabilization of the nanoalloys, and this effect causes the alloys to assume a icosahedral-fragment configuration (as the unary nickel cluster) instead of a fcc fragment (as the unary palladium cluster). However, the core-shell formation in this alloy is unique in that Pd poor compositions exhibit scattered Pd atoms on the surface. As the palladium content increases, this gives rise to the complete Pd shell. This stabilization mechanism is quantitatively supported by the different correlations observed in the number of Ni-Ni and Pd-Pd bonds with energy, in which the latter tends to decrease alloy stability. Furthermore, a notable trend is the correlation between the coordination number of Ni atoms with alloy stabilization, while the coordination of Pd atoms shows an inverse correlation.
Collapse
Affiliation(s)
- Tiago M Souza
- Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais, Brazil.
| | - Lucas B Pena
- Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais, Brazil.
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| | - Breno R L Galvão
- Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais, Brazil.
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque 87131, New Mexico, USA
| |
Collapse
|
4
|
Bakhsh S, Khalid M, Aslam S, Sohail M, Iqbal MA, Ikram M, Morsy K. Investigating structural and electronic properties of neutral zinc clusters: a G0W0 and G0W0Г 0(1) benchmark. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:310-316. [PMID: 38505812 PMCID: PMC10949000 DOI: 10.3762/bjnano.15.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
The structural and electronic properties of zinc clusters (Znn) for a size range of n = 2-15 are studied using density functional theory. The particle swarm optimization algorithm is employed to search the structure and to determine the ground-state structure of the neutral Zn clusters. The structural motifs are optimized using the density functional theory approach to ensure that the structures are fully relaxed. Results are compared with the literature to validate the accuracy of the prediction method. The binding energy per cluster is obtained and compared with the reported literature to study the stability of these structures. We further assess the electronic properties, including the ionization potential, using the all-electron FHI-aims code employing G0W0 calculations, and the G0W0Г0(1) correction for a few smaller clusters, which provides a better estimation of the ionization potential compared to other methods.
Collapse
Affiliation(s)
- Sunila Bakhsh
- Department of Physics, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Muhammad Khalid
- Department of Physics, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Sameen Aslam
- Department of Physics, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Muhammad Sohail
- Department of Physics, University of Balochistan, Quetta 87300, Pakistan
| | - Muhammad Aamir Iqbal
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mujtaba Ikram
- Institute of Chemical Engineering & Technology (ICET), University of Punjab, Lahore 54590, Pakistan
| | - Kareem Morsy
- Biology Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
5
|
Jia Y, Xu CQ, Cui C, Geng L, Zhang H, Zhang YY, Lin S, Yao J, Luo Z, Li J. Rh 19-: A high-spin super-octahedron cluster. SCIENCE ADVANCES 2023; 9:eadi0214. [PMID: 37585530 PMCID: PMC10431703 DOI: 10.1126/sciadv.adi0214] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Probing atomic clusters with magic numbers is of supreme importance but challenging in cluster science. Pronounced stability of a metal cluster often arises from coincident geometric and electronic shell closures. However, transition metal clusters do not simply abide by this constraint. Here, we report the finding of a magic-number cluster Rh19- with prominent inertness in the sufficient gas-collision reactions. Photoelectron spectroscopy experiments and global-minimum structure search have determined the geometry of Rh19- to be a regular Oh‑[Rh@Rh12@Rh6]- with unusual high-spin electronic configuration. The distinct stability of such a strongly magnetic cluster Rh19- consisting of a nonmagnetic element is fully unveiled on the basis of its unique bonding nature and superatomic states. The 1-nanometer-sized Oh-Rh19- cluster corresponds to a fragment of the face-centered cubic lattice of bulk rhodium but with altered magnetism and electronic property. This cluster features exceptional electron-spin state isomers confirmed in photoelectron spectra and suggests potential applications in atomically precise manufacturing involving spintronics and quantum computing.
Collapse
Affiliation(s)
- Yuhan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Qiao Xu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chaonan Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijun Geng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hanyu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang-Yang Zhang
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Shiquan Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Gao Y, Dong L, Huang L, Huang Z, Li F, Zhang H, Zhang S. A First-Principles Study on the Hydration Behavior of (MgO)n Clusters and the Effect Mechanism of Anti-Hydration Agents. MATERIALS 2022; 15:ma15103521. [PMID: 35629547 PMCID: PMC9146619 DOI: 10.3390/ma15103521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023]
Abstract
Magnesia-based refractory is widely used in high-temperature industries; its easy hydration is, however, a key concern in refractory processing. Understanding the hydration mechanism of MgO will help in solving its hydration problem. Herein, the hydration behavior of (MgO)n (n = 1–6) at the molecular level and the effect mechanisms of several anti-hydration agents on the hydration of (MgO)4 were investigated with first-principles calculations. The results indicated that the following: (1) The smaller the (MgO)n cluster size, the more favorable the hydration of MgO and the tendency to convert into Mg(OH)2 crystal; (2) Anti-hydration agents can coordinate with the unsaturated Mg atom of (MgO)4 to form a bond, increasing the coordination number of Mg, thus reducing its activity when reacting with H2O; (3) The greater the number of −COOH groups and the longer the chain length in the anti-hydration agents, the better its effect of inhibiting the hydration of MgO. These findings could enhance the understanding of the mechanism of hydration of MgO and provide theoretical guidance for the design of novel anti-hydration agents.
Collapse
Affiliation(s)
- Yu Gao
- The State Key Laboratory of Refractories and Metallurgy, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; (Y.G.); (L.D.); (Z.H.); (F.L.)
| | - Long Dong
- The State Key Laboratory of Refractories and Metallurgy, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; (Y.G.); (L.D.); (Z.H.); (F.L.)
| | - Liang Huang
- The State Key Laboratory of Refractories and Metallurgy, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; (Y.G.); (L.D.); (Z.H.); (F.L.)
- Correspondence: (L.H.); (H.Z.)
| | - Zhong Huang
- The State Key Laboratory of Refractories and Metallurgy, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; (Y.G.); (L.D.); (Z.H.); (F.L.)
| | - Faliang Li
- The State Key Laboratory of Refractories and Metallurgy, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; (Y.G.); (L.D.); (Z.H.); (F.L.)
| | - Haijun Zhang
- The State Key Laboratory of Refractories and Metallurgy, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; (Y.G.); (L.D.); (Z.H.); (F.L.)
- Correspondence: (L.H.); (H.Z.)
| | - Shaowei Zhang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK;
| |
Collapse
|
7
|
Alonso JA, López MJ. Palladium clusters, free and supported on surfaces, and their applications in hydrogen storage. Phys Chem Chem Phys 2022; 24:2729-2751. [PMID: 35077528 DOI: 10.1039/d1cp03524j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Palladium is a late transition metal element in the 4d row of the periodic table. Palladium nanoparticles show efficient catalytic activity and selectivity in a number of chemical reactions. In this paper, we review the structural and electronic properties of palladium nanoclusters, both isolated and deposited on the surface of different substrates. Careful experiments and extensive calculations have been performed for small Pd clusters which provide ample information on their properties. Work on large Pd clusters is less abundant and more difficult to perform and interpret. Cluster deposition is a method to modify material surfaces for different applications, and we report the known results for the deposition of Pd clusters on the surfaces of a number of interesting substrates: carbonaceous substrates like graphene and some layered novel materials related to graphene, metal oxide substrates, silicon and silicon-related substrates and metallic alloy substrates. Emphasis is placed on revealing how the structural, electronic and magnetic properties change when the clusters are deposited on the substrate surfaces. Some examples of chemical reactions catalyzed by supported Pd clusters and nanoparticles are reported. An issue discussed in detail is the influence of Pd on the storage of hydrogen in porous materials. Experimental work shows that the amount of stored hydrogen increases when the absorbing material is doped with Pd atoms, clusters and nanoparticles, and a spillover mechanism from the metal particle to the substrate is usually accepted as the explanation. To shed light on this issue, a critical analysis based on density functional simulations of the mechanisms of hydrogen spillover in perfect and defective graphene doped with palladium clusters is presented.
Collapse
Affiliation(s)
- Julio A Alonso
- Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, 47011, Valladolid, Spain.
| | - María J López
- Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, 47011, Valladolid, Spain.
| |
Collapse
|
8
|
Orlando Morais F, Andriani KF, Da Silva JLF. Investigation of the Stability Mechanisms of Eight-Atom Binary Metal Clusters Using DFT Calculations and k-means Clustering Algorithm. J Chem Inf Model 2021; 61:3411-3420. [PMID: 34161078 DOI: 10.1021/acs.jcim.1c00253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we report density functional theory calculations combined with the k-means clustering algorithm and the Spearman rank correlation analysis to investigate the stability mechanisms of eight-atom binary metal AB clusters, where A and B are Fe, Co, Ni, Cu, Ga, Al, and Zn (7 unary and 21 binary clusters). Based on the excess energy analysis, the six most stable binary clusters are NiAl, NiGa, CoAl, FeNi, NiZn, and FeAl, and except for FeNi, their highest energetic stabilities can be explained by the hybridization of the d- and sp-states, which is maximized at the 50% composition, i.e., A4B4. Based on the Spearman correlation analysis, the energetic stability of the binary clusters increases with an increase in the highest occupied molecule orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy separation, which can be considered as a global descriptor. Furthermore, reducing the total magnetic moment values increases the stability for binary clusters without the Fe, Co, and Ni species, while the binary FeB, CoB, and NiB clusters increase their energetic stability with a decrease in the cluster radius, respectively, i.e., an energetic preference for compact structures.
Collapse
Affiliation(s)
- Felipe Orlando Morais
- São Carlos Institute of Physics, University of São Paulo, P.O. Box 400, 13566-590 São Carlos, SP, Brazil
| | - Karla F Andriani
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
9
|
Decrypting the Structural, Electronic and Spectroscopic Properties of GeMgn+(n = 2–12) Clusters: A DFT Study. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02039-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Liu H, Cao H, Cui X, Duan H, Jing Q, Wang Q. The geometry, electronic and magnetic properties of VLi n ( n = 2–13) clusters using the first-principles and PSO method. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1791990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Haitao Liu
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Haibin Cao
- Department of Physics, College of Sciences, Shihezi University, Shihezi, People’s Republic of China
| | - Xiuhua Cui
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Haiming Duan
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Qun Jing
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Qian Wang
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| |
Collapse
|
11
|
Sun W, Kang D, Chen B, Kuang X, Ding K, Lu C. Tuning of Structure Evolution and Electronic Properties through Palladium-Doped Boron Clusters: PdB 16 as a Motif for Boron-Based Nanotubes. J Phys Chem A 2020; 124:9187-9193. [PMID: 33085487 DOI: 10.1021/acs.jpca.0c05197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transition metal-doped electronic deficiency boron clusters have led to a vast variety of electronic bonding properties in chemistry and materials science. We have determined the ground state structures of PdBn0/- (n = 10-20) clusters by performing CALYPSO search and density functional theory (DFT) optimization. The identified lowest energy structures for both neutral and anionic Pd-doped boron clusters follow the structure evolution from two dimensional (2D) planar configurations to 3D distorted Pd-centered drum-like or tubular structures. Photoelectron spectra are simulated by time-dependent DFT theoretical calculations, which is a powerful method to validate our obtained ground-state structures. More interestingly, two "magic" number clusters, PdB12 and PdB16, are found with enhanced stability in the middle size regime studied. Subsequently, molecular orbital and adaptive natural density partitioning analyses reveal that the high stability of the PdB16 cluster originates from doubly σ π aromatic and bonding interactions of d-type atomic orbitals of the Pd atom with tubular B16 units. The tubular C8v PdB16 cluster, with robust relative stability, is an ideal embryo for forming finite and infinite nanotube nanomaterials.
Collapse
Affiliation(s)
- Weiguo Sun
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.,School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China.,Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, U.K
| | - Dongliang Kang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Bole Chen
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Xiaoyu Kuang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Kewei Ding
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Cheng Lu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
| |
Collapse
|
12
|
Reddy IR, Tarafder K. Theoretical Investigations of Electronic Structure and Magnetic and Optical Properties of Transition-Metal Dinuclear Molecules. ACS OMEGA 2020; 5:24520-24525. [PMID: 33015469 PMCID: PMC7528315 DOI: 10.1021/acsomega.0c02992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
In this work, we have reported the electronic structure, spin state, and optical properties of a new class of transition-metal (TM) dinuclear molecules (TM = Cr, Mn, Fe, Co, and Ni). The stability of these molecules has been analyzed from the vibration spectra obtained by using density functional theory (DFT) calculations. The ground-state spin configuration of the tetra-coordinated TM atom in each molecule has been predicted from the relative total energy differences in different spin states of the molecule. The DFT + U method has been used to investigate the precise ground-state spin configuration of each molecule. We further performed time-dependent DFT calculations to study the optical properties of these molecules. The planar geometric structure remains intact in most of the cases; hence, these molecules are expected to be well adsorbed and self-assembled on metal substrates. In addition, the optical characterization of these molecules indicates that the absorption spectra have a large peak in the blue-light wavelength range; therefore, it could be suitable for advanced optoelectronic device applications. Our work promotes further computational and experimental studies on TM dinuclear molecules in the field of molecular spintronics and optoelectronics.
Collapse
|
13
|
Zeng L, Deng PJ, Bi J, Zhu BC. Searching new structures of beryllium-doped in small-sized magnesium clusters: Be 2 Mg n Q (Q = 0, -1; n = 1-11) clusters DFT study. J Comput Chem 2020; 41:1885-1897. [PMID: 32510641 DOI: 10.1002/jcc.26359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/05/2020] [Accepted: 05/22/2020] [Indexed: 01/05/2023]
Abstract
Using CALYPSO method to search new structures of neutral and anionic beryllium-doped magnesium clusters followed by density functional theory (DFT) calculations, an extensive study of the structures, electronic and spectral properties of Be2 Mgn Q (Q = 0, -1; n = 2-11) clusters is performed. Based on the structural optimization, it is found that the Be2 Mgn Q (Q = 0, -1) clusters are shown by tetrahedral-based geometries at n = 2-6 and tower-like-based geometries at n = 7-11. The calculations of stability indicate that Be2 Mg5 Q=0 , Be2 Mg5 Q=-1 , and Be2 Mg8 Q=-1 clusters are "magic" clusters with high stability. The NCP shows that the charges are transferred from Mg atoms to Be atoms. The s- and p-orbitals interactions of Mg and Be atoms are main responsible for their NEC. In particular, chemical bond analysis including molecular orbitals (MOs) and chemical bonding composition for magic clusters to further study their stability. The results confirmed that the high stability of these clusters is due to the interactions between the Be atom and the Mg5 or Mg8 host. Finally, theoretical calculations of infrared and Raman spectra of the ground state of Be2 Mgn Q (Q = 0, -1; n = 1-11) clusters were performed, which will be absolutely useful for future experiments to identify these clusters.
Collapse
Affiliation(s)
- Lu Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing, China
| | - Ping-Ji Deng
- School of Public Health and Management, Hubei University of Medicine, Shiyan, China
| | - Jie Bi
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, China
| | - Ben-Chao Zhu
- School of Public Health and Management, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
14
|
de Oliveira A, Jorge F. Structural, electronic, electrical, and magnetic properties of Rh (1 ≤ n ≤ 13) clusters. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Zhang F, Zhang H, Xin W, Chen P, Hu Y, Zhang X, Zhao Y. Probing the structural evolution and electronic properties of divalent metal Be 2Mg n clusters from small to medium-size. Sci Rep 2020; 10:6052. [PMID: 32269297 PMCID: PMC7142069 DOI: 10.1038/s41598-020-63237-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/27/2020] [Indexed: 11/09/2022] Open
Abstract
Bimetallic clusters have aroused increased attention because of the ability to tune their own properties by changing size, shape, and doping. In present work, a structural search of the global minimum for divalent bimetal Be2Mgn (n = 1-20) clusters are performed by utilizing CALYPSO structural searching method with subsequent DFT optimization. We investigate the evolution of geometries, electronic properties, and nature of bonding from small to medium-sized clusters. It is found that the structural transition from hollow 3D structures to filled cage-like frameworks emerges at n = 10 for Be2Mgn clusters, which is obviously earlier than that of Mgn clusters. The Be atoms prefer the surface sites in small cluster size, then one Be atom tend to embed itself inside the magnesium motif. At the number of Mg larger than eighteen, two Be atoms have been completely encapsulated by caged magnesium frameworks. In all Be2Mgn clusters, the partial charge transfer from Mg to Be takes place. An increase in the occupations of the Be-2p and Mg-3p orbitals reveals the increasing metallic behavior of Be2Mgn clusters. The analysis of stability shows that the cluster stability can be enhanced by Be atoms doping and the Be2Mg8 cluster possesses robust stability across the cluster size range of n = 1-20. There is s-p hybridization between the Be and Mg atoms leading to stronger Be-Mg bonds in Be2Mg8 cluster. This finding is supported by the multi-center bonds and Mayer bond order analysis.
Collapse
Affiliation(s)
- Feige Zhang
- School of Electrical and Electronic Engineering, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Hairong Zhang
- School of Electrical and Electronic Engineering, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Wang Xin
- College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Peng Chen
- College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Yanfei Hu
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Xiaoyi Zhang
- College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
| | - Yaru Zhao
- College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China.
| |
Collapse
|
16
|
Fernandes GFS, Machado FBC, Ferrão LFA. Identification of Magic Numbers in Homonuclear Clusters: The ε 3 Stability Ranking Function. J Phys Chem A 2020; 124:454-463. [PMID: 31851825 DOI: 10.1021/acs.jpca.9b11264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
With the rise of cluster-assembled materials, an index that is able to rank and identify stable clusters or molecules is of great interest in materials sciences and engineering. In the present work, we applied a stability ranking function (ε3) in nanoclusters formed by simple metals (Na, Mg), main group elements (Al), or transition metals (Ti, Cu). The ε3 function parameters are molecular properties derived from the wave function. These parameters can be divided into kinetic and thermodynamic descriptors, in which the kinetic descriptors are the ionization potential and electronic excitation energy, while the atomization free Gibbs energy is the thermodynamic one. This simple ε3 function was able to identify the possible magic numbers of the studied clusters across the periodic table in a good agreement with previous experimental and theoretical works.
Collapse
Affiliation(s)
- Gabriel F S Fernandes
- Departamento de Química , Instituto Tecnológico de Aeronáutica , São José dos Campos , SP 12228-900 , Brasil
| | - Francisco B C Machado
- Departamento de Química , Instituto Tecnológico de Aeronáutica , São José dos Campos , SP 12228-900 , Brasil
| | - Luiz F A Ferrão
- Departamento de Química , Instituto Tecnológico de Aeronáutica , São José dos Campos , SP 12228-900 , Brasil
| |
Collapse
|
17
|
Jadoon T, Carter-Fenk K, Siddique MBA, Herbert JM, Hussain R, Iqbal S, Iqbal J, Ayub K. Silver clusters tune up electronic properties of graphene nanoflakes: A comprehensive theoretical study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111902] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Wang F, Li T, Shi Y, Jiao H. Molybdenum carbide supported metal catalysts (Mn/MoxC; M = Co, Ni, Cu, Pd, Pt) – metal and surface dependent structure and stability. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00504e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The surface and metal-dependent morphologies and energies of molybdenum carbide supported metal catalysts (Mn/MoxC; M = Co, Ni, Cu, Pd, Pt) have been systematically investigated on the basis of periodic density functional theory computations.
Collapse
Affiliation(s)
- Fan Wang
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rosteock
- Germany
| | - Teng Li
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- China
| | - Yun Shi
- School of Chemistry & Chemical Engineering
- Linyi University
- Linyi 276000
- China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rosteock
- Germany
| |
Collapse
|
19
|
Zhu BC, Deng PJ, Zeng L. Systematic Theoretical Study on Structural, Stability, Electronic, and Spectral Properties of Si 2 Mg n Q ( Q = 0, ±1; n = 1-11) Clusters of Silicon-Magnesium Sensor Material. Front Chem 2019; 7:771. [PMID: 31781548 PMCID: PMC6861164 DOI: 10.3389/fchem.2019.00771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/24/2019] [Indexed: 11/25/2022] Open
Abstract
By using CALYPSO searching method and Density Functional Theory (DFT) method at the B3LYP/6-311G (d) level of cluster method, a systematic study of the structures, stabilities, electronic and spectral properties of Si2MgnQ (n = 1–11; Q = 0, ±1) clusters of silicon-magnesium sensor material, is performed. According to the calculations, it was found that when n > 4, most stable isomers in Si2MgnQ (n = 1–11; Q = 0, ±1) clusters of silicon-magnesium sensor material are three-dimensional structures. Interestingly, although large size Si2MgnQ clusters show cage-like structures, silicon atoms are not in the center of the cage, but tend to the edge. The Si2Mg1,5,6,8-1 and Si2Mg13,4,7,9,10+1 clusters obviously differ to their corresponding neutral structures, which are in good agreement with the calculated values of VIP, AIP, VEA, and AEA. |VIP-VEA| values reveal that the hardness of Si2Mgn clusters decreases with the increase of magnesium atoms. The relative stabilities of neutral and charged Si2MgnQ (n = 1–11; Q = 0, ±1) clusters of silicon-magnesium sensor material is analyzed by calculating the average binding energy, fragmentation energy, second-order energy difference and HOMO-LUMO gaps. The results reveal that the Si2Mg30, Si2Mg3-1, and Si2Mg3+1clusters have stronger stabilities than others. NCP and NEC analysis results show that the charges in Si2MgnQ (n = 1–11; Q = 0, ±1) clusters of silicon-magnesium sensor material transfer from Mg atoms to Si atoms except for Si2Mg1+1, and strong sp hybridizations are presented in Si atoms of Si2MgnQ clusters. Finally, the infrared (IR) and Raman spectra of all ground state of Si2MgnQ (n = 1–11; Q = 0, ±1) clusters of silicon magnesium sensor material are also discussed.
Collapse
Affiliation(s)
- Ben-Chao Zhu
- School of Public Health and Management, Hubei University of Medicine, Shiyan, China.,Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, Shiyan, China
| | - Ping-Ji Deng
- School of Public Health and Management, Hubei University of Medicine, Shiyan, China.,Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, Shiyan, China
| | - Lu Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
20
|
Kohaut S, Rapps T, Fink K, Schooss D. Structural Evolution of Palladium Clusters Pd55––Pd147–: Transition to the Bulk. J Phys Chem A 2019; 123:10940-10946. [DOI: 10.1021/acs.jpca.9b09369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephan Kohaut
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Thomas Rapps
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Karin Fink
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Detlef Schooss
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
21
|
Rana M, Chowdhury P. Studies on Size Dependent Structures and Optical Properties of CdSeS Clusters. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01719-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Sajjad S, Hashmi MA, Mahmood T, Ayub K. Density functional theory study of structural, electronic and CO adsorption properties of anionic Scn− (n = 2–13) clusters. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.112511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Dong C, Han L, Yang J, Cheng L. Study on Structural Evolution, Thermochemistry and Electron Affinity of Neutral, Mono- and Di-Anionic Zirconium-Doped Silicon Clusters ZrSi n0/-/2- ( n = 6-16). Int J Mol Sci 2019; 20:ijms20122933. [PMID: 31208072 PMCID: PMC6627843 DOI: 10.3390/ijms20122933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/27/2019] [Accepted: 06/08/2019] [Indexed: 01/13/2023] Open
Abstract
We have carried out a global search of systematic isomers for the lowest energy of neutral and Zintl anionic Zr-doped Si clusters ZrSin0/-/2- (n = 6–16) by employing the ABCluster global search method combined with the mPW2PLYP double-hybrid density functional. In terms of the evaluated energies, adiabatic electron affinities, vertical detachment energies, and agreement between simulated and experimental photoelectron spectroscopy, the true global minimal structures are confirmed. The results reveal that structural evolution patterns for neutral ZrSin clusters prefer the attaching type (n = 6–9) to the half-cage motif (n = 10–13), and finally to a Zr-encapsulated configuration with a Zr atom centered in a Si cage (n = 14–16). For Zintl mono- and di-anionic ZrSin-/2-, their growth patterns adopt the attaching configuration (n = 6–11) to encapsulated shape (n = 12–16). The further analyses of stability and chemical bonding make it known that two extra electrons not only perfect the structure of ZrSi15 but also improve its chemical and thermodynamic stability, making it the most suitable building block for novel multi-functional nanomaterials.
Collapse
Affiliation(s)
- Caixia Dong
- Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
- School of Mining and Technology, Inner Mongolia University of Technology, Hohhot 010051, China.
| | - Limin Han
- Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
| | - Jucai Yang
- Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
- School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
| | - Lin Cheng
- Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
| |
Collapse
|
24
|
Relative Stability of Small Silver, Platinum, and Palladium Doped Gold Cluster Cations. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The stability patterns of single silver, platinum, and palladium atom doped gold cluster cations, MAuN−1+ (M = Ag, Pt, Pd; N = 3–6), are investigated by a combination of photofragmentation experiments and density functional theory calculations. The mass spectra of the photofragmented clusters reveal an odd-even pattern in the abundances of AgAuN−1+, with local maxima for clusters containing an even number of valence electrons, similarly to pure AuN+. The odd-even pattern, however, disappears upon Pt and Pd doping. Computed dissociation energies agree well with the experimental findings for the different doped clusters. The effect of Ag, Pt, and Pd doping is discussed on the basis of an analysis of the density of states of the N = 3–5 clusters. Whereas Ag delocalizes its 5s valence electron in all sizes, this process is size-specific for Pt and Pd.
Collapse
|
25
|
Sato M, Imazeki Y, Fujii K, Nakano Y, Sugiyama M. First-principles modeling of GaN(0001)/water interface: Effect of surface charging. J Chem Phys 2019; 150:154703. [PMID: 31005088 DOI: 10.1063/1.5086321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The accumulation properties of photogenerated carriers at the semiconductor surface determine the performance of photoelectrodes. However, to the best of our knowledge, there are no computational studies that methodically examine the effect of "surface charging" on photocatalytic activities. In this work, the effect of excess carriers at the semiconductor surface on the geometric and electronic structures of the semiconductor/electrolyte interface is studied systematically with the aid of first-principles calculations. We found that the number of water molecules that can be dissociated follows the "extended" electron counting rule; the dissociation limit is smaller than that predicted by the standard electron counting rule (0.375 ML) by the number of excess holes at the interface. When the geometric structure of the GaN/water interface obeys the extended electron counting rule, the Ga-originated surface states are removed from the bandgap due to the excess holes and adsorbates, and correspondingly, the Fermi level becomes free from pinning. Clearly, the excess charge has a great impact on the interface structure and most likely on the chemical reactions. This study serves as a basis for further studies on the semiconductor/electrolyte interface under working conditions.
Collapse
Affiliation(s)
- Masahiro Sato
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8904, Japan
| | - Yuki Imazeki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| | - Katsushi Fujii
- Photonics Control Technology Team, Advanced Photonics Technology Development Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshiaki Nakano
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masakazu Sugiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
26
|
Theoretical Study on the Growth Behavior and Photoelectron Spectroscopy of Lanthanum-Doped Silicon Clusters LaSi
n
0/−
(n = 6–20). J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01541-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Shimamoto K, Sunada Y. Dimensionality Expansion of a Butterfly Shaped Pd 4 Framework: Constructing Edge-Sharing Pd 6 Tetrahedra. Chemistry 2019; 25:3761-3765. [PMID: 30762905 DOI: 10.1002/chem.201805678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/22/2019] [Indexed: 11/09/2022]
Abstract
The construction of well-defined transition-metal clusters has attracted substantial attention due to their unique chemical and/or physical properties. Metal clusters with 1D or 2D structures are now accessible by template-synthesis methods, in which multiple metal atoms are arranged with the aid of template molecules and their 1D or 2D structures. However, the rational synthesis of 3D clusters remains challenging, mostly due to a lack of appropriate template molecules. Herein, we report the rational synthesis of a 2D butterfly shaped Pd4 framework (2) and 3D edge-sharing Pd6 tetrahedra (5) by treatment of easily available organosilicon compounds with Pd(CNtBu)2 . The diphenylsilylene moiety thereby serves as the key component to generate the butterfly structure of the Pd4 clusters in 2. A dimensionality expansion, induced by two Cl atoms, of two butterfly shaped Pd4 subunits supported by two diphenylsilylene moieties afforded the edge-sharing tetrahedral architecture of the Pd6 cluster in 5.
Collapse
Affiliation(s)
- Kento Shimamoto
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yusuke Sunada
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Meguro-ku, Komaba, Tokyo, Japan.,Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Fernandes GFS, Pinheiro Júnior M, Machado FBC, Ferrão LFA. Stability and Reactivity of Silicon Magic Numbers Doped with Aluminum and Phosphorus Atoms. J Phys Chem A 2019; 123:247-256. [PMID: 30514087 DOI: 10.1021/acs.jpca.8b10214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The progressive scaling down of the silicon-based electronics has allowed to develop devices at nanometer scale, requiring new engineering techniques guided by fundamental chemical and physical concepts. Particularly, the nanostructured cluster systems are promising materials since their physical-chemical properties are sensitive to its shape, size, and chemical components, such that completely different materials can be produced by the simple addition or removal of a single atom. These size-tunable properties can open a new area in materials science and engineering. In the present work, quantum chemical methods were used to study the chemical substitution effects caused by subvalent (aluminum) and supervalent (phosphorus) atoms in the physical-chemical properties of some small silicon clusters, which demonstrate high stability, called magic numbers. The changes in the electronic structure and chemical acceptance to the dopants were evaluated with respect to ionization potential, electronic excitation energy, stability, and reactivity parameters. Taken together, these results enable to identify the most stable silicon-doped clusters. Regarding electrophilic reactions, Si10P is the most favorable system, while for nucleophilic reactions, none of the doped clusters resulted in higher stability.
Collapse
Affiliation(s)
- Gabriel F S Fernandes
- Departamento de Química , Instituto Tecnológico de Aeronáutica , São José dos Campos , SP 12228-900 , Brasil
| | - Max Pinheiro Júnior
- Departamento de Química , Instituto Tecnológico de Aeronáutica , São José dos Campos , SP 12228-900 , Brasil
| | - Francisco B C Machado
- Departamento de Química , Instituto Tecnológico de Aeronáutica , São José dos Campos , SP 12228-900 , Brasil
| | - Luiz F A Ferrão
- Departamento de Química , Instituto Tecnológico de Aeronáutica , São José dos Campos , SP 12228-900 , Brasil
| |
Collapse
|
29
|
Zhang S, Zhang Y, Yang XQ, Li GQ, Lu ZW. Probing the structures and electronic properties of anionic and neutral BiAu n−1,0 ( n = 2–20) clusters: a pyramid-like BiAu 13 cluster. NEW J CHEM 2019. [DOI: 10.1039/c9nj01821b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The geometric structures and electronic properties of bismuth-doped gold clusters, BiAun−1,0 (n = 2–20), are studied via a combination of the Crystal structure AnaLYsis by Particle Swarm Optimization structure prediction software and the density functional theory approach.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Physics
- Nanyang Normal University
- Nanyang 473061
- China
| | - Yu Zhang
- Department of Mechanical and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| | - Xing Qiang Yang
- Department of Physics
- Nanyang Normal University
- Nanyang 473061
- China
| | - Gen Quan Li
- Department of Mechanical and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| | - Zhi Wen Lu
- Department of Physics
- Nanyang Normal University
- Nanyang 473061
- China
| |
Collapse
|
30
|
Mollar-Cuni A, Ventura-Espinosa D, Martín S, Mayoral Á, Borja P, Mata JA. Stabilization of Nanoparticles Produced by Hydrogenation of Palladium-N-Heterocyclic Carbene Complexes on the Surface of Graphene and Implications in Catalysis. ACS OMEGA 2018; 3:15217-15228. [PMID: 31458184 PMCID: PMC6643925 DOI: 10.1021/acsomega.8b02193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/25/2018] [Indexed: 06/10/2023]
Abstract
Palladium nanoparticles (NPs) have been obtained by decomposition of well-defined palladium complexes noncovalently anchored onto the surface of reduced graphene oxide. Morphological analysis by microscopy showed the presence of small palladium NPs homogeneously distributed on the support. Characterization by X-ray photoelectron spectroscopy confirmed that palladium NPs contain Pd(2+) and Pd(0) oxidation states and the presence of N-heterocyclic carbene and bromo ligands. The catalytic properties of the NPs with and without the support have been evaluated in the hydrogenation of alkynes. Supported palladium NPs showed increased activity versus the nonsupported ones and could be recycled up to 10 times without the loss of catalytic activity. The composition of the palladium NPs is different for each catalytic cycle indicating a dynamic process and the formation of different catalytic active species. On the contrary, the unsupported palladium NPs showed limited activity caused by decomposition and could not be recycled. The role of the support has been investigated. The results indicate that the support influences the stability of palladium NPs.
Collapse
Affiliation(s)
- Andrés Mollar-Cuni
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain
| | - David Ventura-Espinosa
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain
| | - Santiago Martín
- Departamento
de Química Física, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Instituto
de Ciencias de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Álvaro Mayoral
- Instituto
de Nanociencia de Aragón (INA) and Laboratorio de Microscopias
Avanzadas (LMA), edificio i+d Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50009 Zaragoza, Spain
| | - Pilar Borja
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain
| | - Jose A. Mata
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain
| |
Collapse
|
31
|
Probing the Structural and Electronic Properties of Dirhenium Halide Clusters: A Density Functional Theory Study. Sci Rep 2018; 8:6702. [PMID: 29713044 PMCID: PMC5928166 DOI: 10.1038/s41598-018-25027-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/13/2018] [Indexed: 11/08/2022] Open
Abstract
Dirhenium halide dianions received considerable attention in past decades due to the unusual metal-metal quadruple bond. The systematic structural evolution of dirhenium halide clusters has not been sufficiently studied and hence is not well-understood. In this work, we report an in-depth investigation on the structures and electronic properties of doubly charged dirhenium halide clusters Re2X82- (X = F, Cl, Br, I). Our computational efforts rely on the well-tested unbiased CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization) method combined with density functional theory calculations. We find that all ground-state Re2X82- clusters have cube-like structures of D4h symmetry with two Re atoms encapsulated in halogen framework. The reasonable agreement between the simulated and experimental photoelectron spectrum of the Re2Cl82- cluster supports strongly the reliability of our computational strategy. The chemical bonding analysis reveals that the δ bond is the pivotal factor for the ground-state Re2X82- (X = F, Cl, Br, I) clusters to maintain D4h symmetric cube-like structures, and the enhanced stability of Re2Cl82- is mainly attributed to the chemical bonding of 5d orbital of Re atoms and 3p orbital of Cl atoms.
Collapse
|
32
|
Geometrical Structures and Electronic Properties of Ga₆ and Ga₅X (X = B, C, N, O, F, Al, Si, P, S, Cl) Clusters. MATERIALS 2018; 11:ma11040552. [PMID: 29617277 PMCID: PMC5951436 DOI: 10.3390/ma11040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/25/2018] [Accepted: 03/30/2018] [Indexed: 11/21/2022]
Abstract
Based on the unbiased CALYPSO (Crystal structure Analysis by Particle Swarm Optimization) structure searching method in combination with density functional theory (DFT), the geometrical structures and electronic properties are investigated theoretically for Ga6 and Ga5X (X = B, C, N, O, F, Al, Si, P, S, Cl) clusters. The PBE0 exchange-correlation functional and the 6-311G(d) basis set is carried out to determine global minima on potential energy surfaces. The relative stabilities of the clusters are examined by the binding energies and substitution reaction. Following the predictions of the Jellium model, the Ga5B cluster with the 18 valence electrons is the most stable structure. At last, with the obtained lowest energy structures, some physical properties such as electrons transfer, molecular orbitals, and total and partial densities of states are discussed, respectively.
Collapse
|
33
|
Li CG, Zhou JC, Hu YF, Ren BZ, Bai JT, Hu XK, Yang W. Computational Studies on the ScnNm (n + m=10) Clusters: Structure, Electronic and Vibrational Properties. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1352-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Tsunoyama H, Ito H, Komori M, Kobayashi R, Shibuta M, Eguchi T, Nakajima A. Liquid-phase catalysis by single-size palladium nanoclusters supported on strontium titanate: size-specific catalysts for Suzuki–Miyaura coupling. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01645c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Size-specific catalysis by single-size palladium nanoclusters.
Collapse
Affiliation(s)
- Hironori Tsunoyama
- Department of Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Haruchika Ito
- Department of Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Masafumi Komori
- Department of Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Ryota Kobayashi
- Department of Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Masahiro Shibuta
- Keio Institute of Pure and Applied Science (KiPAS)
- Keio University
- Yokohama 223-8522
- Japan
| | - Toyoaki Eguchi
- Nakajima Designer Nanocluster Assembly Project
- Exploratory Research for Advanced Technology (ERATO)
- Japan Science and Technology Agency
- Kawasaki 213-0012
- Japan
| | - Atsushi Nakajima
- Department of Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| |
Collapse
|
35
|
Xiong R, Die D, Xiao L, Xu YG, Shen XY. Probing the Structural, Electronic, and Magnetic Properties of Ag n V (n = 1-12) Clusters. NANOSCALE RESEARCH LETTERS 2017; 12:625. [PMID: 29247393 PMCID: PMC5732125 DOI: 10.1186/s11671-017-2394-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/30/2017] [Indexed: 05/12/2023]
Abstract
The structural, electronic, and magnetic properties of Ag n V (n = 1-12) clusters have been studied using density functional theory and CALYPSO structure searching method. Geometry optimizations manifest that a vanadium atom in low-energy AgnV clusters favors the most highly coordinated location. The substitution of one V atom for an Ag atom in Ag n + 1 (n ≥ 5) cluster modifies the lowest energy structure of the host cluster. The infrared spectra, Raman spectra, and photoelectron spectra of Ag n V (n = 1-12) clusters are simulated and can be used to determine the most stable structure in the future. The relative stability, dissociation channel, and chemical activity of the ground states are analyzed through atomic averaged binding energy, dissociation energy, and energy gap. It is found that V atom can improve the stability of the host cluster, Ag2 excepted. The most possible dissociation channels are Ag n V = Ag + Ag n - 1V for n = 1 and 4-12 and Ag n V = Ag2 + Ag n - 2V for n = 2 and 3. The energy gap of Ag n V cluster with odd n is much smaller than that of Ag n + 1 cluster. Analyses of magnetic property indicate that the total magnetic moment of Ag n V cluster mostly comes from V atom and varies from 1 to 5 μ B. The charge transfer between V and Ag atoms should be responsible for the change of magnetic moment.
Collapse
Affiliation(s)
- Ran Xiong
- School of Science, Xihua University, Chengdu, 610039 China
| | - Dong Die
- School of Science, Xihua University, Chengdu, 610039 China
| | - Lu Xiao
- School of Science, Xihua University, Chengdu, 610039 China
| | - Yong-Gen Xu
- School of Science, Xihua University, Chengdu, 610039 China
| | - Xu-Ying Shen
- School of Science, Xihua University, Chengdu, 610039 China
| |
Collapse
|
36
|
First-principle study of structural, electronic and magnetic properties of (FeC) n (n = 1-8) and (FeC) 8TM (TM = V, Cr, Mn and Co) clusters. Sci Rep 2017; 7:17516. [PMID: 29235539 PMCID: PMC5727526 DOI: 10.1038/s41598-017-17834-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/27/2017] [Indexed: 11/08/2022] Open
Abstract
The structural, electronic and magnetic properties of the (FeC)n (n = 1–8) clusters are studied using the unbiased CALYPSO structure search method and density functional theory. A combination of the PBE functional and 6–311 + G* basis set is used for determining global minima on potential energy surfaces of (FeC)n clusters. Relatively stabilities are analyzed via computing their binding energies, second order difference and HOMO-LUMO gaps. In addition, the origin of magnetic properties, spin density and density of states are discussed in detail, respectively. At last, based on the same computational method, the structures, magnetic properties and density of states are systemically investigated for the 3d (V, Cr, Mn and Co) atom doped (FeC)8 cluster.
Collapse
|
37
|
Topolski JE, Kafader JO, Jarrold CC. Ce in the +4 oxidation state: Anion photoelectron spectroscopy and photodissociation of small CexOyHz− molecules. J Chem Phys 2017; 147:104303. [DOI: 10.1063/1.4996133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Josey E. Topolski
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Jared O. Kafader
- Proteomic Center of Excellence, Northwestern University, 2170 Campus Dr., Evanston, Illinois 60208-2850, USA
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| |
Collapse
|
38
|
Structural, Relative Stable, and Electronic Properties of PbnSnn (n = 2–12) Clusters were Investigated Using Density Functional Theory. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1242-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Insights into the structures and electronic properties of Cu n+1μ and Cu nS μ (n = 1-12; μ = 0, ±1) clusters. Sci Rep 2017; 7:1345. [PMID: 28465510 PMCID: PMC5430952 DOI: 10.1038/s41598-017-01444-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/30/2017] [Indexed: 11/08/2022] Open
Abstract
ABSTARCT The stability and reactivity of clusters are closely related to their valence electronic configuration. Doping is a most efficient method to modify the electronic configuration and properties of a cluster. Considering that Cu and S posses one and six valence electrons, respectively, the S doped Cu clusters with even number of valence electrons are expected to be more stable than those with odd number of electrons. By using the swarm intelligence based CALYPSO method on crystal structural prediction, we have explored the structures of neutral and charged Cun+1 and CunS (n = 1-12) clusters. The electronic properties of the lowest energy structures have been investigated systemically by first-principles calculations with density functional theory. The results showed that the clusters with a valence count of 2, 8 and 12 appear to be magic numbers with enhanced stability. In addition, several geometry-related-properties have been discussed and compared with those results available in the literature.
Collapse
|
40
|
Lu C, Wang J, Wang P, Xia X, Jin Y, Li P, Bao G. New insight into the structural evolution of PbTiO 3: an unbiased structure search. Phys Chem Chem Phys 2017; 19:1420-1424. [PMID: 27981319 DOI: 10.1039/c6cp07624f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the structural evolution of materials is a challenging problem of condensed matter physics. Solving this problem would open new ways for understanding the behaviors of materials. In this context, we here report unbiased structure searches for a prototypical perovskite oxide, PbTiO3, based on the CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization) method in conjunction with first-principles calculations. For the first time, we decipher the structure evolution of PbTiO3 from a zero dimensional (0D) cluster to a two dimensional (2D) layered structure and in the end to a three dimensional (3D) bulk solid. Our unbiased structure search is successful in reproducing the cubic Pm3[combining macron]m and tetragonal P4mm phases of PbTiO3 at ambient pressure. We also predict a new quasi-planar kite shape structure of the PbTiO3 cluster, with Cs symmetry and a surprisingly large HOMO-LUMO gap. Furthermore, by using this method, we predict that the 2D planar PbTiO3 monolayer is unstable in the perpendicular direction and the 2D PbTiO3 double layer is dynamically stable, with a hope that it can provide guidance to future synthesis of low dimensional perovskite oxides.
Collapse
Affiliation(s)
- Cheng Lu
- Department of Physics, Nanyang Normal University, Nanyang 473061, China. and Department of Physics and High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154, USA and Computational Astrophysics Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jingjing Wang
- Department of Physics, Nanyang Normal University, Nanyang 473061, China. and Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Ping Wang
- Department of Physics, Nanyang Normal University, Nanyang 473061, China.
| | - Xinxin Xia
- Department of Physics, Nanyang Normal University, Nanyang 473061, China. and Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Yuanyuan Jin
- Department of Physics, Nanyang Normal University, Nanyang 473061, China. and Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Peifang Li
- College of Physics and Electronic Information, Inner Mongolia University for the Nationalities, Tongliao 028043, China
| | - Gang Bao
- College of Physics and Electronic Information, Inner Mongolia University for the Nationalities, Tongliao 028043, China
| |
Collapse
|
41
|
Zhang HR, Zhao YR, Gao R, Hu YF. Insights into the structures, stabilities, electronic and magnetic properties of X2Aun (X = La, Y, and Sc; n = 1–9) clusters: comparison with pure gold clusters. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1259666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hai-Rong Zhang
- School of Electrical and Electronic Engineering, Baoji University of Arts and Sciences, Baoji, China
| | - Ya-Ru Zhao
- Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Rui Gao
- School of Electrical and Electronic Engineering, Baoji University of Arts and Sciences, Baoji, China
| | - Yan-Fei Hu
- Institute of Science, Sichuan University of Science & Engineering, Zigong, China
| |
Collapse
|
42
|
Extraction of palladium (II) by a silicone ionic liquid-based microemulsion system from chloride medium. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Lv P, Lu Z, Li S, Ma D, Zhang W, Zhang Y, Yang Z. Tuning metal cluster catalytic activity with morphology and composition: a DFT study of O2 dissociation at the global minimum of PtmPdn (m + n = 5) clusters. RSC Adv 2016. [DOI: 10.1039/c6ra23266c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The catalytic property for O2 dissociation of the pure Pt5 cluster can be further improved by introducing the Pd atoms based on the morphology and composition.
Collapse
Affiliation(s)
- Peng Lv
- College of Physics and Materials Science
- Henan Normal University
- Xinxiang 453007
- China
| | - Zhansheng Lu
- College of Physics and Materials Science
- Henan Normal University
- Xinxiang 453007
- China
- Department of Physics and Astronomy
| | - Shuo Li
- College of Physics and Materials Science
- Henan Normal University
- Xinxiang 453007
- China
| | - Dongwei Ma
- School of Physics
- Anyang Normal University
- Anyang 455000
- China
| | - Wenjin Zhang
- College of Physics and Materials Science
- Henan Normal University
- Xinxiang 453007
- China
| | - Yi Zhang
- College of Physics and Materials Science
- Henan Normal University
- Xinxiang 453007
- China
| | - Zongxian Yang
- College of Physics and Materials Science
- Henan Normal University
- Xinxiang 453007
- China
- Collaborative Innovation Center of Nano Functional Materials and Applications
| |
Collapse
|