1
|
Vermeulen BB, Sorée B, Couet S, Temst K, Nguyen VD. Progress in Spin Logic Devices Based on Domain-Wall Motion. MICROMACHINES 2024; 15:696. [PMID: 38930666 PMCID: PMC11205657 DOI: 10.3390/mi15060696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Spintronics, utilizing both the charge and spin of electrons, benefits from the nonvolatility, low switching energy, and collective behavior of magnetization. These properties allow the development of magnetoresistive random access memories, with magnetic tunnel junctions (MTJs) playing a central role. Various spin logic concepts are also extensively explored. Among these, spin logic devices based on the motion of magnetic domain walls (DWs) enable the implementation of compact and energy-efficient logic circuits. In these devices, DW motion within a magnetic track enables spin information processing, while MTJs at the input and output serve as electrical writing and reading elements. DW logic holds promise for simplifying logic circuit complexity by performing multiple functions within a single device. Nevertheless, the demonstration of DW logic circuits with electrical writing and reading at the nanoscale is still needed to unveil their practical application potential. In this review, we discuss material advancements for high-speed DW motion, progress in DW logic devices, groundbreaking demonstrations of current-driven DW logic, and its potential for practical applications. Additionally, we discuss alternative approaches for current-free information propagation, along with challenges and prospects for the development of DW logic.
Collapse
Affiliation(s)
- Bob Bert Vermeulen
- Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, 3001 Leuven, Belgium; (B.S.); (S.C.); (K.T.)
- Department of Physics and Astronomy, Quantum Solid-State Physics (QSP) Division, Katholieke Universiteit Leuven, Celestijnenlaan 200D Box 2414, 3001 Leuven, Belgium
| | - Bart Sorée
- Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, 3001 Leuven, Belgium; (B.S.); (S.C.); (K.T.)
- Department of Electrical Engineering, ESAT-INSYS Division, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
- Department of Physics, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sebastien Couet
- Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, 3001 Leuven, Belgium; (B.S.); (S.C.); (K.T.)
| | - Kristiaan Temst
- Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, 3001 Leuven, Belgium; (B.S.); (S.C.); (K.T.)
- Department of Physics and Astronomy, Quantum Solid-State Physics (QSP) Division, Katholieke Universiteit Leuven, Celestijnenlaan 200D Box 2414, 3001 Leuven, Belgium
| | - Van Dai Nguyen
- Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, 3001 Leuven, Belgium; (B.S.); (S.C.); (K.T.)
| |
Collapse
|
2
|
Liu Q, Liu L, Xing G, Zhu L. Asymmetric magnetization switching and programmable complete Boolean logic enabled by long-range intralayer Dzyaloshinskii-Moriya interaction. Nat Commun 2024; 15:2978. [PMID: 38582790 PMCID: PMC10998899 DOI: 10.1038/s41467-024-47375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
After decades of efforts, some fundamental physics for electrical switching of magnetization is still missing. Here, we report the discovery of the long-range intralayer Dzyaloshinskii-Moriya interaction (DMI) effect, which is the chiral coupling of orthogonal magnetic domains within the same magnetic layer via the mediation of an adjacent heavy metal layer. The effective magnetic field of the long-range intralayer DMI on the perpendicular magnetization is out-of-plane and varies with the interfacial DMI constant, the applied in-plane magnetic fields, and the magnetic anisotropy distribution. Striking consequences of the effect include asymmetric current/field switching of perpendicular magnetization, hysteresis loop shift of perpendicular magnetization in the absence of in-plane direct current, and sharp in-plane magnetic field switching of perpendicular magnetization. Utilizing the intralayer DMI, we demonstrate programable, complete Boolean logic operations within a single spin-orbit torque device. These results will stimulate investigation of the long-range intralayer DMI effect in a variety of spintronic devices.
Collapse
Affiliation(s)
- Qianbiao Liu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Liu
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guozhong Xing
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijun Zhu
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Sivasubramani S, Paikaray B, Kuchibhotla M, Haldar A, Murapaka C, Acharyya A. Skyrmion based 3D low complex runtime reconfigurable architecture design methodology of universal logic gate. NANOTECHNOLOGY 2023; 34:13LT01. [PMID: 36584387 DOI: 10.1088/1361-6528/acaf32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
In this study, we introduce the area efficient low complex runtime reconfigurable architecture design methodology based on Skyrmion logic for universal logic gate (ULG) i.e. NOR/NAND implementation using micromagnetic simulations. We have modelled the two input 3D device structure using bilayer ferromagnet/heavy metal where the magnetic tunnel junctions inject and detect the input and output skyrmions by exploiting the input reversal mechanism. The implementation of NOR and NAND is performed using this same device where it is reconfigured runtime with enhanced tunability by the ON and OFF state of current passing through a non magnetic metallic gate respectively. This gate acts as a barrier for skyrmion motion (additional control mechanism) to realize the required Skyrmion logic output states. To the best of authors's knowledge the boolean optimizations and the mapping logic have been presented for the first time to demonstrate the functionalities of the NOR/NAND implementation. This proposed architecture design methodology of ULG leads to reduced device footprint with regard to the number of thin film structures proposed, low complexity in terms of fabrication and also providing runtime reconfigurability to reduce the number of physical designs to achieve all truth table entries (∼75% device footprint reduction). The proposed 3D ULG architecture design benefits from the miniaturization resulting in opening up a new perspective for magneto-logic devices.
Collapse
Affiliation(s)
- Santhosh Sivasubramani
- Advanced Embedded Systems and IC Design Laboratory, Department of Electrical Engineering, Indian Institute of Technology (IIT) Hyderabad, 502284, India
| | - Bibekananda Paikaray
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology (IIT) Hyderabad, 502284, India
| | - Mahathi Kuchibhotla
- Department of Physics, Indian Institute of Technology (IIT) Hyderabad, 502284, India
| | - Arabinda Haldar
- Department of Physics, Indian Institute of Technology (IIT) Hyderabad, 502284, India
| | - Chandrasekhar Murapaka
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology (IIT) Hyderabad, 502284, India
| | - Amit Acharyya
- Advanced Embedded Systems and IC Design Laboratory, Department of Electrical Engineering, Indian Institute of Technology (IIT) Hyderabad, 502284, India
| |
Collapse
|
4
|
Ruiz-Clavijo A, Caballero-Calero O, Martín-González M. Revisiting anodic alumina templates: from fabrication to applications. NANOSCALE 2021; 13:2227-2265. [PMID: 33480949 DOI: 10.1039/d0nr07582e] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Anodic porous alumina, -AAO- (also known as nanoporous alumina, nanohole alumina arrays, -NAA- or nanoporous anodized alumina platforms, -NAAP-) has opened new opportunities in a wide range of fields, and is used as an advanced photonic structure for applications in structural coloration and advanced optical biosensing based on the ordered nanoporous structure obtained and as a template to grow nanowires or nanotubes of different materials giving rise to metamaterials with tailored properties. Therefore, understanding the structure of nanoporous anodic alumina templates and knowing how they are fabricated provide a tool for the further design of structures based on them, such as 3D nanoporous structures developed recently. In this work, we review the latest developments related to nanoporous alumina, which is currently a very active field, to provide a solid and thorough reference for all interested experts, both in academia and industry, on these nanostructured and highly useful structures. We present an overview of theories on the formation of pores and self-ordering in alumina, paying special attention to those presented in recent years, and different nanostructures that have been developed recently. Therefore, a wide variety of architectures, ranging from ordered nanoporous structures to diameter changing pores, branched pores, and 3D nanostructures will be discussed. Next, some of the most relevant results using different nanostructured morphologies as templates for the growth of different materials with novel properties and reduced dimensionality in magnetism, thermoelectricity, etc. will be summarised, showing how these structures have influenced the state of the art in a wide variety of fields. Finally, a review on how these anodic aluminium membranes are used as platforms for different applications combined with optical techniques, together with principles behind these applications will be presented, in addition to a hint on the future applications of these versatile nanomaterials. In summary, this review is focused on the most recent developments, without neglecting the basis and older studies that have led the way to these findings. Thus, it gives an updated state-of-the-art review that should be useful not only for experts in the field, but also for non-specialists, helping them to gain a broad understanding of the importance of anodic porous alumina, and most probably, endow them with new ideas for its use in fields of interest or even developing the anodization technique.
Collapse
Affiliation(s)
- Alejandra Ruiz-Clavijo
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC) Isaac Newton, 8, E-28760, Tres Cantos, Madrid, Spain.
| | - Olga Caballero-Calero
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC) Isaac Newton, 8, E-28760, Tres Cantos, Madrid, Spain.
| | - Marisol Martín-González
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC) Isaac Newton, 8, E-28760, Tres Cantos, Madrid, Spain.
| |
Collapse
|
5
|
Observation of a topologically protected state in a magnetic domain wall stabilized by a ferromagnetic chemical barrier. Sci Rep 2018; 8:16695. [PMID: 30420675 PMCID: PMC6232112 DOI: 10.1038/s41598-018-35039-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022] Open
Abstract
The precise control and stabilization of magnetic domain walls is key for the development of the next generation magnetic nano-devices. Among the multitude of magnetic configurations of a magnetic domain wall, topologically protected states are of particular interest due to their intrinsic stability. In this work, using XMCD-PEEM, we have observed a topologically protected magnetic domain wall in a ferromagnetic cylindrical nanowire. Its structure is stabilized by periodic sharp alterations of the chemical composition in the nanowire. The large stability of this topologically protected domain wall contrasts with the mobility of other non-protected and non-chiral states also present in the same nanowire. The micromagnetic simulations show the structure and the conditions required to find the topologically protected state. These results are relevant for the design of future spintronic devices such as domain wall based RF oscillators or magnetic memories.
Collapse
|
6
|
A Micromagnetic Protocol for Qualitatively Predicting Stochastic Domain Wall Pinning. Sci Rep 2017; 7:17862. [PMID: 29259185 PMCID: PMC5736692 DOI: 10.1038/s41598-017-17512-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/27/2017] [Indexed: 11/22/2022] Open
Abstract
Understanding dynamically-induced stochastic switching effects in soft ferromagnetic nanowires is a critical challenge for realising spintronic devices with deterministic switching behaviour. Here, we present a micromagnetic simulation protocol for qualitatively predicting dynamic stochastic domain wall (DW) pinning/depinning at artificial defect sites in Ni80Fe20 nanowires, and demonstrate its abilities by correlating its predictions with the results of focused magneto-optic Kerr effect measurements. We analyse DW pinning configurations in both thin nanowires (t = 10 nm) and thick nanowires (t = 40 nm) with both single (asymmetric) and double (symmetric) notches, showing how our approach provides understanding of the complex DW-defect interactions at the heart of stochastic pinning behaviours. Key results explained by our model include the total suppression of stochastic pinning at single notches in thick nanowires and the intrinsic stochasticity of pinning at double notches, despite their apparent insensitivity to DW chirality.
Collapse
|
7
|
Role of RKKY torque on domain wall motion in synthetic antiferromagnetic nanowires with opposite spin Hall angles. Sci Rep 2017; 7:11715. [PMID: 28916827 PMCID: PMC5601456 DOI: 10.1038/s41598-017-11733-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 08/30/2017] [Indexed: 11/20/2022] Open
Abstract
We experimentally show the effect of enhanced spin-orbit and RKKY induced torques on the current-induced motion of a pair of domain walls (DWs), which are coupled antiferromagnetically in synthetic antiferromagnetic (SAF) nanowires. The torque from the spin Hall effect (SHE) rotates the Néel DWs pair into the transverse direction, which is due to the fact that heavy metals of opposite spin Hall angles are deposited at the top and the bottom ferromagnetic interfaces. The rotation of both DWs in non-collinear fashion largely perturbs the antiferromagnetic coupling, which in turn stimulates an enhanced interlayer RKKY exchange torque that improved the DW velocity. The interplay between the SHE-induced torque and the RKKY exchange torque is validated via micromagnetic simulations. In addition, the DW velocity can be further improved by increasing the RKKY exchange strength.
Collapse
|
8
|
Bi-directional high speed domain wall motion in perpendicular magnetic anisotropy Co/Pt double stack structures. Sci Rep 2017; 7:4964. [PMID: 28694511 PMCID: PMC5504067 DOI: 10.1038/s41598-017-05409-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/02/2017] [Indexed: 11/08/2022] Open
Abstract
We report bi-directional domain wall (DW) motion along and against current flow direction in Co/Pt double stack wires with Ta capping. The bi-directionality is achieved by application of hard-axis magnetic field favoring and opposing the Dzyloshinskii-Moriya interaction (DMI), respectively. The speed obtained is enhanced when the hard-axis field favors the DMI and is along the current flow direction. Co/Pt double stack is a modification proposed for the high spin-orbit torque strength Pt/Co/Ta stack, to improve its thermal stability and perpendicular magnetic anisotropy (PMA). The velocity obtained reduces with increase in Pt spacer thickness due to reduction in DMI and enhances on increasing the Ta capping thickness due to higher SOT strength. The velocity obtained is as high as 530 m/s at a reasonable current density of 1 × 1012 A/m2 for device applications. The low anisotropy of the device coupled with the application of hard-axis field aids the velocity enhancement by preventing Walker breakdown.
Collapse
|
9
|
Demonstration of Complementary Ternary Graphene Field-Effect Transistors. Sci Rep 2016; 6:39353. [PMID: 27991594 PMCID: PMC5172371 DOI: 10.1038/srep39353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/22/2016] [Indexed: 11/09/2022] Open
Abstract
Strong demand for power reduction in state-of-the-art semiconductor devices calls for novel devices and architectures. Since ternary logic architecture can perform the same function as binary logic architecture with a much lower device density and higher information density, a switch device suitable for the ternary logic has been pursued for several decades. However, a single device that satisfies all the requirements for ternary logic architecture has not been demonstrated. We demonstrated a ternary graphene field-effect transistor (TGFET), showing three discrete current states in one device. The ternary function was achieved by introducing a metal strip to the middle of graphene channel, which created an N-P-N or P-N-P doping pattern depending on the work function of the metal. In addition, a standard ternary inverter working at room temperature has been achieved by modulating the work function of the metal in a graphene channel. The feasibility of a ternary inverter indicates that a general ternary logic architecture can be realized using complementary TGFETs. This breakthrough will provide a key stepping-stone for an extreme-low-power computing technology.
Collapse
|