1
|
Hodkinson LJ, Smith C, Comstra HS, Ajani BA, Albanese EH, Arsalan K, Daisson AP, Forrest KB, Fox EH, Guerette MR, Khan S, Koenig MP, Lam S, Lewandowski AS, Mahoney LJ, Manai N, Miglay J, Miller BA, Milloway O, Ngo N, Ngo VD, Oey NF, Punjani TA, SiMa H, Zeng H, Schmidt CA, Rieder LE. A bioinformatics screen reveals hox and chromatin remodeling factors at the Drosophila histone locus. BMC Genom Data 2023; 24:54. [PMID: 37735352 PMCID: PMC10515271 DOI: 10.1186/s12863-023-01147-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/07/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Cells orchestrate histone biogenesis with strict temporal and quantitative control. To efficiently regulate histone biogenesis, the repetitive Drosophila melanogaster replication-dependent histone genes are arrayed and clustered at a single locus. Regulatory factors concentrate in a nuclear body known as the histone locus body (HLB), which forms around the locus. Historically, HLB factors are largely discovered by chance, and few are known to interact directly with DNA. It is therefore unclear how the histone genes are specifically targeted for unique and coordinated regulation. RESULTS To expand the list of known HLB factors, we performed a candidate-based screen by mapping 30 publicly available ChIP datasets of 27 unique factors to the Drosophila histone gene array. We identified novel transcription factor candidates, including the Drosophila Hox proteins Ultrabithorax (Ubx), Abdominal-A (Abd-A), and Abdominal-B (Abd-B), suggesting a new pathway for these factors in influencing body plan morphogenesis. Additionally, we identified six other factors that target the histone gene array: JIL-1, hormone-like receptor 78 (Hr78), the long isoform of female sterile homeotic (1) (fs(1)h) as well as the general transcription factors TBP associated factor 1 (TAF-1), Transcription Factor IIB (TFIIB), and Transcription Factor IIF (TFIIF). CONCLUSIONS Our foundational screen provides several candidates for future studies into factors that may influence histone biogenesis. Further, our study emphasizes the powerful reservoir of publicly available datasets, which can be mined as a primary screening technique.
Collapse
Affiliation(s)
- Lauren J Hodkinson
- Genetics and Molecular Biology graduate program, Emory University, Atlanta, GA, 30322, USA
| | - Connor Smith
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - H Skye Comstra
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Bukola A Ajani
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Eric H Albanese
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Kawsar Arsalan
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Alvaro Perez Daisson
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Katherine B Forrest
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Elijah H Fox
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Matthew R Guerette
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Samia Khan
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Madeleine P Koenig
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Shivani Lam
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Ava S Lewandowski
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Lauren J Mahoney
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Nasserallah Manai
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - JonCarlo Miglay
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Blake A Miller
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Olivia Milloway
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Nhi Ngo
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Vu D Ngo
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Nicole F Oey
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Tanya A Punjani
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - HaoMin SiMa
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Hollis Zeng
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Casey A Schmidt
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| | - Leila E Rieder
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Sachs P, Bergmaier P, Treutwein K, Mermoud JE. The Conserved Chromatin Remodeler SMARCAD1 Interacts with TFIIIC and Architectural Proteins in Human and Mouse. Genes (Basel) 2023; 14:1793. [PMID: 37761933 PMCID: PMC10530723 DOI: 10.3390/genes14091793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In vertebrates, SMARCAD1 participates in transcriptional regulation, heterochromatin maintenance, DNA repair, and replication. The molecular basis underlying its involvement in these processes is not well understood. We identified the RNA polymerase III general transcription factor TFIIIC as an interaction partner of native SMARCAD1 in mouse and human models using endogenous co-immunoprecipitations. TFIIIC has dual functionality, acting as a general transcription factor and as a genome organizer separating chromatin domains. We found that its partnership with SMARCAD1 is conserved across different mammalian cell types, from somatic to pluripotent cells. Using purified proteins, we confirmed that their interaction is direct. A gene expression analysis suggested that SMARCAD1 is dispensable for TFIIIC function as an RNA polymerase III transcription factor in mouse ESCs. The distribution of TFIIIC and SMARCAD1 in the ESC genome is distinct, and unlike in yeast, SMARCAD1 is not enriched at active tRNA genes. Further analysis of SMARCAD1-binding partners in pluripotent and differentiated mammalian cells reveals that SMARCAD1 associates with several factors that have key regulatory roles in chromatin organization, such as cohesin, laminB, and DDX5. Together, our work suggests for the first time that the SMARCAD1 enzyme participates in genome organization in mammalian nuclei through interactions with architectural proteins.
Collapse
Affiliation(s)
- Parysatis Sachs
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
- CMC Development, R&D, Sanofi, 65926 Frankfurt, Germany
| | - Philipp Bergmaier
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
- Global Development Operations, R&D, Merck Healthcare, 64293 Darmstadt, Germany
| | - Katrin Treutwein
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
| | - Jacqueline E. Mermoud
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
3
|
Hodkinson LJ, Smith C, Comstra HS, Albanese EH, Ajani BA, Arsalan K, Daisson AP, Forrest KB, Fox EH, Guerette MR, Khan S, Koenig MP, Lam S, Lewandowski AS, Mahoney LJ, Manai N, Miglay J, Miller BA, Milloway O, Ngo VD, Oey NF, Punjani TA, SiMa H, Zeng H, Schmidt CA, Rieder LE. A bioinformatics screen reveals Hox and chromatin remodeling factors at the Drosophila histone locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523008. [PMID: 36711759 PMCID: PMC9881919 DOI: 10.1101/2023.01.06.523008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cells orchestrate histone biogenesis with strict temporal and quantitative control. To efficiently regulate histone biogenesis, the repetitive Drosophila melanogaster replication-dependent histone genes are arrayed and clustered at a single locus. Regulatory factors concentrate in a nuclear body known as the histone locus body (HLB), which forms around the locus. Historically, HLB factors are largely discovered by chance, and few are known to interact directly with DNA. It is therefore unclear how the histone genes are specifically targeted for unique and coordinated regulation. To expand the list of known HLB factors, we performed a candidate-based screen by mapping 30 publicly available ChIP datasets and 27 factors to the Drosophila histone gene array. We identified novel transcription factor candidates, including the Drosophila Hox proteins Ultrabithorax, Abdominal-A and Abdominal-B, suggesting a new pathway for these factors in influencing body plan morphogenesis. Additionally, we identified six other transcription factors that target the histone gene array: JIL-1, Hr78, the long isoform of fs(1)h as well as the generalized transcription factors TAF-1, TFIIB, and TFIIF. Our foundational screen provides several candidates for future studies into factors that may influence histone biogenesis. Further, our study emphasizes the powerful reservoir of publicly available datasets, which can be mined as a primary screening technique.
Collapse
Affiliation(s)
- Lauren J Hodkinson
- Genetics and Molecular Biology graduate program, Emory University, Atlanta, GA 30322, USA
| | - Connor Smith
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - H Skye Comstra
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Eric H Albanese
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Bukola A Ajani
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Kawsar Arsalan
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | | | - Katherine B Forrest
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Elijah H Fox
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Matthew R Guerette
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Samia Khan
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Madeleine P Koenig
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Shivani Lam
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Ava S Lewandowski
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Lauren J Mahoney
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Nasserallah Manai
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - JonCarlo Miglay
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Blake A Miller
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Olivia Milloway
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Vu D Ngo
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Nicole F Oey
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Tanya A Punjani
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - HaoMin SiMa
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Hollis Zeng
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Casey A Schmidt
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Leila E Rieder
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| |
Collapse
|
4
|
Martínez Corrales G, Li M, Svermova T, Goncalves A, Voicu D, Dobson AJ, Southall TD, Alic N. Transcriptional memory of dFOXO activation in youth curtails later-life mortality through chromatin remodeling and Xbp1. NATURE AGING 2022; 2:1176-1190. [PMID: 37118537 PMCID: PMC7614430 DOI: 10.1038/s43587-022-00312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/19/2022] [Indexed: 12/03/2022]
Abstract
A transient, homeostatic transcriptional response can result in transcriptional memory, programming subsequent transcriptional outputs. Transcriptional memory has great but unappreciated potential to alter animal aging as animals encounter a multitude of diverse stimuli throughout their lifespan. Here we show that activating an evolutionarily conserved, longevity-promoting transcription factor, dFOXO, solely in early adulthood of female fruit flies is sufficient to improve their subsequent health and survival in midlife and late life. This youth-restricted dFOXO activation causes persistent changes to chromatin landscape in the fat body and requires chromatin remodelers such as the SWI/SNF and ISWI complexes to program health and longevity. Chromatin remodeling is accompanied by a long-lasting transcriptional program that is distinct from that observed during acute dFOXO activation and includes induction of Xbp1. We show that this later-life induction of Xbp1 is sufficient to curtail later-life mortality. Our study demonstrates that transcriptional memory can profoundly alter how animals age.
Collapse
Affiliation(s)
- Guillermo Martínez Corrales
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London, UK
| | - Mengjia Li
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London, UK
| | - Tatiana Svermova
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London, UK
| | - Alex Goncalves
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London, UK
| | - Diana Voicu
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London, UK
| | - Adam J Dobson
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, London, UK
| | - Nazif Alic
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London, UK.
| |
Collapse
|
5
|
Kang H, Liu Y, Fan T, Ma J, Wu D, Heitz T, Shen WH, Zhu Y. Arabidopsis CHROMATIN REMODELING 19 acts as a transcriptional repressor and contributes to plant pathogen resistance. THE PLANT CELL 2022; 34:1100-1116. [PMID: 34954802 PMCID: PMC8894922 DOI: 10.1093/plcell/koab318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Chromatin remodelers act in an ATP-dependent manner to modulate chromatin structure and thus genome function. Here, we report that the Arabidopsis (Arabidopsis thaliana) remodeler CHROMATIN REMODELING19 (CHR19) is enriched in gene body regions, and its depletion causes massive changes in nucleosome position and occupancy in the genome. Consistent with these changes, an in vitro assay verified that CHR19 can utilize ATP to slide nucleosomes. A variety of inducible genes, including several important genes in the salicylic acid (SA) and jasmonic acid (JA) pathways, were transcriptionally upregulated in the chr19 mutant under normal growth conditions, indicative of a role of CHR19 in transcriptional repression. In addition, the chr19 mutation triggered higher susceptibility to the JA pathway-defended necrotrophic fungal pathogen Botrytis cinerea, but did not affect the growth of the SA pathway-defended hemibiotrophic bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Expression of CHR19 was tissue-specific and inhibited specifically by SA treatment. Such inhibition significantly decreased the local chromatin enrichment of CHR19 at the associated SA pathway genes, which resulted in their full activation upon SA treatment. Overall, our findings clarify CHR19 to be a novel regulator acting at the chromatin level to impact the transcription of genes underlying plant resistance to different pathogens.
Collapse
Affiliation(s)
- Huijia Kang
- Department of Biochemistry, Institute of Plant Biology, School of Life
Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for
Genetics and Development, Fudan University, Shanghai 200438, China
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de
Strasbourg, Strasbourg Cedex 67084, France
| | - Yuhao Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer
Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China; Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021,
China
| | - Tianyi Fan
- Department of Biochemistry, Institute of Plant Biology, School of Life
Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for
Genetics and Development, Fudan University, Shanghai 200438, China
| | - Jing Ma
- Department of Biochemistry, Institute of Plant Biology, School of Life
Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for
Genetics and Development, Fudan University, Shanghai 200438, China
| | - Di Wu
- Department of Biochemistry, Institute of Plant Biology, School of Life
Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for
Genetics and Development, Fudan University, Shanghai 200438, China
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de
Strasbourg, Strasbourg Cedex 67084, France
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de
Strasbourg, Strasbourg Cedex 67084, France
| | - Yan Zhu
- Department of Biochemistry, Institute of Plant Biology, School of Life
Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for
Genetics and Development, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Han H, Jiang G, Kumari R, Silic MR, Owens JL, Hu C, Mittal SK, Zhang G. Loss of smarcad1a accelerates tumorigenesis of malignant peripheral nerve sheath tumors in zebrafish. Genes Chromosomes Cancer 2021; 60:743-761. [PMID: 34296799 PMCID: PMC9585957 DOI: 10.1002/gcc.22983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are a type of sarcoma that generally originates from Schwann cells. The prognosis for this type of malignancy is relatively poor due to complicated genetic alterations and the lack of specific targeted therapy. Chromosome fragment 4q22-23 is frequently deleted in MPNSTs and other human tumors, suggesting tumor suppressor genes may reside in this region. Here, we provide evidence that SMARCAD1, a known chromatin remodeler, is a novel tumor suppressor gene located in 4q22-23. We identified two human homologous smarcad1 genes (smarcad1a and smarcad1b) in zebrafish, and both genes share overlapping expression patterns during embryonic development. We demonstrated that two smarcad1a loss-of-function mutants, sa1299 and p403, can accelerate MPNST tumorigenesis in the tp53 mutant background, suggesting smarcad1a is a bona fide tumor suppressor gene for MPNSTs. Moreover, we found that DNA double-strand break (DSB) repair might be compromised in both mutants compared to wildtype zebrafish, as indicated by pH2AX, a DNA DSB marker. In addition, both SMARCAD1 gene knockdown and overexpression in human cells were able to inhibit tumor growth and displayed similar DSB repair responses, suggesting proper SMARCAD1 gene expression level or gene dosage is critical for cell growth. Given that mutations of SMARCAD1 sensitize cells to poly ADP ribose polymerase inhibitors in yeast and the human U2OS osteosarcoma cell line, the identification of SMARCAD1 as a novel tumor suppressor gene might contribute to the development of new cancer therapies for MPNSTs.
Collapse
Affiliation(s)
- Han Han
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Guangzhen Jiang
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
- Present address:
College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Rashmi Kumari
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Martin R. Silic
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Jake L. Owens
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteIndianaUSA
| | - Chang‐Deng Hu
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteIndianaUSA
| | - Suresh K. Mittal
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Inflammation, Immunology and Infectious Disease (PI4D)Purdue UniversityWest LafayetteIndianaUSA
| | - GuangJun Zhang
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Inflammation, Immunology and Infectious Disease (PI4D)Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience (PIIN)Purdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
7
|
Markert J, Zhou K, Luger K. SMARCAD1 is an ATP-dependent histone octamer exchange factor with de novo nucleosome assembly activity. SCIENCE ADVANCES 2021; 7:eabk2380. [PMID: 34652950 PMCID: PMC8519567 DOI: 10.1126/sciadv.abk2380] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The adenosine 5′-triphosphate (ATP)–dependent chromatin remodeler SMARCAD1 acts on nucleosomes during DNA replication, repair, and transcription, but despite its implication in disease, information on its function and biochemical activities is scarce. Chromatin remodelers use the energy of ATP hydrolysis to slide nucleosomes, evict histones, or exchange histone variants. Here, we show that SMARCAD1 transfers the entire histone octamer from one DNA segment to another in an ATP-dependent manner but is also capable of de novo nucleosome assembly from histone octamer because of its ability to simultaneously bind all histones. We present a low-resolution cryo–electron microscopy structure of SMARCAD1 in complex with a nucleosome and show that the adenosine triphosphatase domains engage their substrate unlike any other chromatin remodeler. Our biochemical and structural data provide mechanistic insights into SMARCAD1-induced nucleosome disassembly and reassembly.
Collapse
Affiliation(s)
- Jonathan Markert
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Keda Zhou
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Corresponding author.
| |
Collapse
|
8
|
Yoneda M, Yasui K, Nakagawa T, Hattori N, Ito T. Nucleosome assembly protein 1 (NAP-1) is a regulator of histone H1 acetylation. J Biochem 2021; 170:763-773. [PMID: 34551067 DOI: 10.1093/jb/mvab098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Acetylation of histone H1 is generally considered to activate transcription, whereas deacetylation of H1 represses transcription. However, the precise mechanism of the acetylation is unknown. Here, using chromatography, we identified nucleosome assembly protein 1 (NAP-1) as having inhibitory activity against histone H1 acetylation by acetyltransferase p300. We found that native NAP-1 interacts with H1 in a Drosophila crude extract. We also found that it inhibits the deacetylation of histone H1 by histone deacetylase 1 (HDAC1). The core histones in nucleosomes were acetylated in a GAL4-VP16 transcriptional activator-dependent manner in vitro. This acetylation was strongly repressed by hypoacetylated H1 but to a lesser extent by hyperacetylated H1. Consistent with these findings, a micrococcal nuclease assay indicated that hypoacetylated H1, which represses activator-dependent acetylation, was incorporated into chromatin, whereas hyperacetylated H1 was not. To determine the contribution of NAP-1 to transcriptional regulation in vivo, we compared NAP-1 knockdown (KD) with coactivator CREB-binding protein (CBP) KD using RNA sequencing in Drosophila Schneider 2 cells. Most genes were downregulated rather than upregulated by NAP-1 KD, and those downregulated genes were also downregulated by CBP KD. Our results suggest that NAP-1 plays a role in transcriptional regulation by fine-tuning the acetylation of histone H1.
Collapse
Affiliation(s)
- Mitsuhiro Yoneda
- Department of Biochemistry, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Kiyoshi Yasui
- Department of Biochemistry, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Department of Oncology, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takeya Nakagawa
- Department of Biochemistry, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Naoko Hattori
- Department of Biochemistry, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| |
Collapse
|
9
|
Hattori N, Nakagawa T, Yoneda M, Nakagawa K, Hayashida H, Ito T. Cigarette smoke, but not novel tobacco vapor products, causes epigenetic disruption and cell apoptosis. Biochem Biophys Rep 2020; 24:100865. [PMID: 33294641 PMCID: PMC7691555 DOI: 10.1016/j.bbrep.2020.100865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 11/18/2022] Open
Abstract
Heat-Not-Burn (HNB) products, generating vapor without combusting tobacco leaves, have been developed with the expectation that the number and quantity of chemicals in the vapor of these products would be reduced compared with the smoke from conventional combustible cigarettes. However, whether the lower chemical levels correlate with lower toxicity remains to be determined. Here we examined differences in the biological effects of conventional cigarette smoke (CS) and two HNB products, Ploom TECH and Ploom TECH+, using the cultured cancer cell line A549 and the normal bronchial epithelium cell line BEAS-2B. The conventional CS 3R4F extract (0.5%) markedly decreased cell proliferation of both A549 and BEAS-2B cells; however, 0.5% extracts of these commercially available HNB products did not affect cell growth. To determine the cause of decreased cell proliferation, a TUNEL assay was performed, and the results indicated that apoptosis had occurred in both A549 and BEAS-2B cells at 24 h after exposure to 3R4F. To further explore the effect of CS on epigenetics, we performed western blotting to detect histone H2A phosphorylation, which is known to affect transcriptional regulation. Only the 3R4F extract decreased histone H2A phosphorylation in both A549 and BEAS-2B cells. Next, we examined alterations in gene expression after treatment of A549 cells with Ploom TECH, Ploom TECH+, or 3R4F extracts. It was found that 339, 107, and 103 genes were upregulated more than 2 fold in A549 cells treated with 3R4F, Ploom TECH, or Ploom TECH + extracts, respectively. Among the 339 genes that were upregulated in response to 3R4F, we focused on EGR1, FOS, and FOSB, since they were upregulated more than 100 fold, which was confirmed using RT-qPCR. These results suggest that CS, but not HNB products, cause epigenetic disruption and cell apoptosis, possibly by elevating transcription of genes such as EGR1.
Collapse
Affiliation(s)
- Naoko Hattori
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Takeya Nakagawa
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Mitsuhiro Yoneda
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Kaori Nakagawa
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Hiromi Hayashida
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Takashi Ito
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| |
Collapse
|
10
|
Tong ZB, Ai HS, Li JB. The Mechanism of Chromatin Remodeler SMARCAD1/Fun30 in Response to DNA Damage. Front Cell Dev Biol 2020; 8:560098. [PMID: 33102471 PMCID: PMC7545370 DOI: 10.3389/fcell.2020.560098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023] Open
Abstract
DNA packs into highly condensed chromatin to organize the genome in eukaryotes but occludes many regulatory DNA elements. Access to DNA within nucleosomes is therefore required for a variety of biological processes in cells including transcription, replication, and DNA repair. To cope with this problem, cells employ a set of specialized ATP-dependent chromatin-remodeling protein complexes to enable dynamic access to packaged DNA. In the present review, we summarize the recent advances in the functional and mechanistic studies on a particular chromatin remodeler SMARCAD1Fun30 which has been demonstrated to play a key role in distinct cellular processes and gained much attention in recent years. Focus is given to how SMARCAD1Fun30 regulates various cellular processes through its chromatin remodeling activity, and especially the regulatory role of SMARCAD1Fun30 in gene expression control, maintenance and establishment of heterochromatin, and DNA damage repair. Moreover, we review the studies on the molecular mechanism of SMARCAD1Fun30 that promotes the DNA end-resection on double-strand break ends, including the mechanisms of recruitment, activity regulation and chromatin remodeling.
Collapse
Affiliation(s)
- Ze-Bin Tong
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Hua-Song Ai
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Kazakevych J, Denizot J, Liebert A, Portovedo M, Mosavie M, Jain P, Stellato C, Fraser C, Corrêa RO, Célestine M, Mattiuz R, Okkenhaug H, Miller JR, Vinolo MAR, Veldhoen M, Varga-Weisz P. Smarcad1 mediates microbiota-induced inflammation in mouse and coordinates gene expression in the intestinal epithelium. Genome Biol 2020; 21:64. [PMID: 32160911 PMCID: PMC7065452 DOI: 10.1186/s13059-020-01976-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND How intestinal epithelial cells interact with the microbiota and how this is regulated at the gene expression level are critical questions. Smarcad1 is a conserved chromatin remodeling factor with a poorly understood tissue function. As this factor is highly expressed in the stem and proliferative zones of the intestinal epithelium, we explore its role in this tissue. RESULTS Specific deletion of Smarcad1 in the mouse intestinal epithelium leads to colitis resistance and substantial changes in gene expression, including a striking increase of expression of several genes linked to innate immunity. Absence of Smarcad1 leads to changes in chromatin accessibility and significant changes in histone H3K9me3 over many sites, including genes that are differentially regulated upon Smarcad1 deletion. We identify candidate members of the gut microbiome that elicit a Smarcad1-dependent colitis response, including members of the poorly understood TM7 phylum. CONCLUSIONS Our study sheds light onto the role of the chromatin remodeling machinery in intestinal epithelial cells in the colitis response and shows how a highly conserved chromatin remodeling factor has a distinct role in anti-microbial defense. This work highlights the importance of the intestinal epithelium in the colitis response and the potential of microbial species as pharmacological and probiotic targets in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Juri Kazakevych
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Jérémy Denizot
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK.,Present Address: Université Clermont Auvergne, Inserm U1071, INRA USC2018, M2iSH, F-63000, Clermont-Ferrand, France
| | - Anke Liebert
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK.,Present Address: The Francis Crick Institute, London, NW1 1AT, UK
| | - Mariana Portovedo
- Laboratory of Immunoinflammation, Institute of Biology, UNICAMP, Campinas, 13083-862, Brazil
| | - Mia Mosavie
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Payal Jain
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Claire Fraser
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Renan Oliveira Corrêa
- Laboratory of Immunoinflammation, Institute of Biology, UNICAMP, Campinas, 13083-862, Brazil
| | | | - Raphaël Mattiuz
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - J Ross Miller
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Marc Veldhoen
- Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK.,Present Address: Instituto de Medicina Molecular
- Joâo Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Patrick Varga-Weisz
- Nuclear Dynamics, Babraham Institute, Cambridge, CB22 3AT, UK. .,School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK.
| |
Collapse
|
12
|
Audugé N, Padilla-Parra S, Tramier M, Borghi N, Coppey-Moisan M. Chromatin condensation fluctuations rather than steady-state predict chromatin accessibility. Nucleic Acids Res 2020; 47:6184-6194. [PMID: 31081027 PMCID: PMC6614833 DOI: 10.1093/nar/gkz373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 01/16/2023] Open
Abstract
Chromatin accessibility to protein factors is critical for genome activities. However, the dynamic properties of chromatin higher-order structures that regulate its accessibility are poorly understood. Here, we took advantage of the microenvironment sensitivity of the fluorescence lifetime of EGFP-H4 histone incorporated in chromatin to map in the nucleus of live cells the dynamics of chromatin condensation and its direct interaction with a tail acetylation recognition domain (the double bromodomain module of human TAFII250, dBD). We reveal chromatin condensation fluctuations supported by mechanisms fundamentally distinct from that of condensation. Fluctuations are spontaneous, yet their amplitudes are affected by their sub-nuclear localization and by distinct and competing mechanisms dependent on histone acetylation, ATP and both. Moreover, we show that accessibility of acetylated histone H4 to dBD is not restricted by chromatin condensation nor predicted by acetylation, rather, it is predicted by chromatin condensation fluctuations.
Collapse
Affiliation(s)
- Nicolas Audugé
- Institut Jacques Monod UMR 7592, Université de Paris - Centre National de la Recherche Scientifique, Paris, France
| | - Sergi Padilla-Parra
- Institut Jacques Monod UMR 7592, Université de Paris - Centre National de la Recherche Scientifique, Paris, France
| | - Marc Tramier
- Institut Jacques Monod UMR 7592, Université de Paris - Centre National de la Recherche Scientifique, Paris, France
| | - Nicolas Borghi
- Institut Jacques Monod UMR 7592, Université de Paris - Centre National de la Recherche Scientifique, Paris, France
| | - Maïté Coppey-Moisan
- Institut Jacques Monod UMR 7592, Université de Paris - Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
13
|
Biasutto AJ, West PM, Mancini EJ, Redfield C. 1H, 13C and 15N resonance assignments for the tandem CUE domains from chromatin remodeler SMARCAD1. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:261-265. [PMID: 30919308 PMCID: PMC6713675 DOI: 10.1007/s12104-019-09888-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
SMARCAD1 is a non-canonical chromatin remodelling ATPase, unique in its domain organization in that is encodes tandem ubiquitin binding CUE domains along with a classical SNF2 helicase ATP-dependent motor. SMARCAD1 is conserved from yeast to humans and has reported roles in the maintenance of heterochromatin following replication and in double-strand break repair. Here we present the 1H, 13C and 15N assignments for the tandem CUE domains and for the disordered regions that flank them. These assignments provide the starting point for detailed investigations of the structure and interactions of this region of SMARCAD1.
Collapse
Affiliation(s)
- Antonio J Biasutto
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Philip M West
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Erika J Mancini
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
- School of Life Sciences, Biomedicine and Biochemistry Department, University of Sussex, Brighton, BN1 9QG, UK.
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
14
|
Bantele SCS, Pfander B. Nucleosome Remodeling by Fun30 SMARCAD1 in the DNA Damage Response. Front Mol Biosci 2019; 6:78. [PMID: 31555662 PMCID: PMC6737033 DOI: 10.3389/fmolb.2019.00078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Many cellular pathways are dedicated to maintain the integrity of the genome. In eukaryotes, the underlying DNA transactions occur in the context of chromatin. Cells utilize chromatin and its dynamic nature to regulate those genome integrity pathways. Accordingly, chromatin becomes restructured and modified around DNA damage sites. Here, we review the current knowledge of a chromatin remodeler Fun30SMARCAD1, which plays a key role in genome maintenance. Fun30SMARCAD1 promotes DNA end resection and the repair of DNA double-stranded breaks (DSBs). Notably, however, Fun30SMARCAD1 plays additional roles in maintaining heterochromatin and promoting transcription. Overall, Fun30SMARCAD1 is involved in distinct processes and the specific roles of Fun30SMARCAD1 at DSBs, replication forks and sites of transcription appear discordant at first view. Nonetheless, a picture emerges in which commonalities within these context-dependent roles of Fun30SMARCAD1 exist, which may help to gain a more global understanding of chromatin alterations induced by Fun30SMARCAD1.
Collapse
Affiliation(s)
- Susanne C S Bantele
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| | - Boris Pfander
- Max Planck Institute of Biochemistry, DNA Replication and Genome Integrity, Martinsried, Germany
| |
Collapse
|
15
|
Liu F, Xia Z, Zhang M, Ding J, Feng Y, Wu J, Dong Y, Gao W, Han Z, Liu Y, Yao Y, Li D. SMARCAD1 Promotes Pancreatic Cancer Cell Growth and Metastasis through Wnt/β-catenin-Mediated EMT. Int J Biol Sci 2019; 15:636-646. [PMID: 30745850 PMCID: PMC6367592 DOI: 10.7150/ijbs.29562] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal diseases, characterized by early metastasis and high mortality. Subunits of the SWI/SNF complex have been identified in many studies as the regulators of tumor progression, but the role of SMARCAD1, one member of the SWI/SNF family, in pancreatic cancer has not been elucidated. Based on analysis of GEO database and immunohistochemical detection of patient-derived pancreatic cancer tissues, we found that SMARCAD1 is more highly expressed in pancreatic cancer tissues and that its expression level negatively correlates with patients' survival time. With further investigation, it shows that SMARCAD1 promotes the proliferation, migration, invasion of pancreatic cancer cells. Mechanistically, we first demonstrate that SMARCAD1 induces EMT via activating Wnt/β-catenin signaling pathway in pancreatic cancer. Our results provide the role and potential mechanism of SMARCAD1 in pancreatic cancer, which may prove useful marker for diagnostic or therapeutic applications of PC disease.
Collapse
Affiliation(s)
- Furao Liu
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zebin Xia
- Department of General Surgery, DaHua Hospital, Xuhui, Shanghai, China
| | - Meichao Zhang
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiping Ding
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Feng
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianwei Wu
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yun Dong
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Gao
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zengwei Han
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanhua Liu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Yuan Yao
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Sun L, Sun G, Shi C, Sun D. Transcriptome analysis reveals new microRNAs-mediated pathway involved in anther development in male sterile wheat. BMC Genomics 2018; 19:333. [PMID: 29739311 PMCID: PMC5941544 DOI: 10.1186/s12864-018-4727-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/25/2018] [Indexed: 11/16/2022] Open
Abstract
Background 337S is a novel bi-pole-photo-thermo-sensitive genic male sterile line in wheat, and sensitive to both long day length/high temperature and short day length/low temperature condition. Although the regulatory function of MicroRNAs (miRNAs) in reproductive development has been increasingly studied, their roles in pre-meiotic and meiotic cells formation of plants have not been clearly explored. Here, we explored the roles of miRNAs in regulating male sterility of 337S at short day length/low temperature condition. Results Small RNA sequencing and degradome analyses were employed to identify miRNAs and their targets in the 337S whose meiotic cells collapsed rapidly during male meiotic prophase, resulting in failure of meiosis at SL condition. A total of 102 unique miRNAs were detected. Noticeably, the largest miRNA family was MiR1122. The target CCR4-associated factor 1 (CAF1) of miR2275, a subunit of the Carbon Catabolite Repressed 4-Negative on TATA-less (CCR4-NOT) complex, contributes to the process of early meiosis, and was first identified here. Further studies showed that the expression of several pivotal anther-related miRNAs was altered in 337S at SL condition, especially tae-miR1127a, which may be related to male sterility of 337S. Here, we also identified a new member of SWI/SNF factors SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A, member 3-like 3 (SMARCA3L3) targeted by tae-miR1127a, whose function might be involved in faithful progression of meiosis in male reproductive cells. Conclusion The miRNA-target interactions of tae-miR2275-CAF1 and tae-miR1127a-SMARCA3L3 might be involved in regulating male fertility in 337S. Our results also implied that multiple roles for SMARCA3L3 and CAF1 in DNA repair and transcriptional regulation jointly orchestrated a tight and orderly system for maintaining chromatin and genome integrity during meiosis. Electronic supplementary material The online version of this article (10.1186/s12864-018-4727-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Longqing Sun
- College of plant science & technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Chenxia Shi
- College of plant science & technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dongfa Sun
- College of plant science & technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
17
|
Lu W, Chen Z, Ren X, Liu W, Deng R, Yuan J, Huang X, Zhu W, Liu J. SET promotes H2Ak9 acetylation by suppressing HDAC1 in trichloroethylene-induced hepatic cytotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 59:125-131. [PMID: 29579541 DOI: 10.1016/j.etap.2018.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Trichloroethylene (TCE) was widely used as an industrial solvent which could cause severe liver damage. The histone chaperone SET have been identified as an important mediator of TCE-induced hepatic cytotoxicity in our previous study; however, the underlying regulatory mechanisms remain poorly understood. In this study, we found a total of 136 histone acetylation sites involved in TCE-induced hepatic cytotoxicity with the technique of Triton-acid-urea polyacrylamide gel electrophoresis (TAU-PAGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Importantly, 17 histone acetylation sites were revealed to be mediated by SET in TCE-induced cytotoxicity. The acetylation of histone H2AK9 (H2AK9ac) was further validated by Western-blot analysis. The data showed that TCE treatment increased the acetylation of H2AK9 in hepatic L-02 cell and decreased the one in SET-knockdown L-02 cells. Besides, levels of the histone deacetylases (HDACs, including HDAC1, HDAC2, and HDAC3) was also analyzed. Interestingly, the level of HDAC1 was aberrantly suppressed in TCE-treated L-02 cells while enhanced in SET-knockdown L-02 cells. To further explore the potential role of HDAC1 in SET-mediated hepatic cytotoxicity of TCE, we employed RNA interference (RNAi) to knockdown HDAC1 in both wide type L-02 and SET-knockdown cells. The results showed that the siRNA inhibition of HDAC1 increased the acetylation of H2AK9. Taken together, our data suggested that SET promoted the acetylation of H2AK9 via suppressing the level of HDAC1, which was involved in SET-mediated hepatic cytotoxicity of TCE.
Collapse
Affiliation(s)
- Weixue Lu
- School of Chemistry, Xiangtan University, Yuhu District, Xiangtan, 411105, Hunan, China; Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Zhihong Chen
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China; School of Public Health, Southern Medical University, Tonghe District, Guangzhou, 510515, China
| | - Xiaohu Ren
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Wei Liu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Rongxia Deng
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Jianhui Yuan
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Xinfeng Huang
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Weiguo Zhu
- School of Chemistry, Xiangtan University, Yuhu District, Xiangtan, 411105, Hunan, China; School of Materials Science and Engineering, Jiangsu Collaboration Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Wujin District, Changzhou 213164, China.
| | - Jianjun Liu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
18
|
Ding D, Bergmaier P, Sachs P, Klangwart M, Rückert T, Bartels N, Demmers J, Dekker M, Poot RA, Mermoud JE. The CUE1 domain of the SNF2-like chromatin remodeler SMARCAD1 mediates its association with KRAB-associated protein 1 (KAP1) and KAP1 target genes. J Biol Chem 2017; 293:2711-2724. [PMID: 29284678 DOI: 10.1074/jbc.ra117.000959] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
Chromatin in embryonic stem cells (ESCs) differs markedly from that in somatic cells, with ESCs exhibiting a more open chromatin configuration. Accordingly, ATP-dependent chromatin remodeling complexes are important regulators of ESC homeostasis. Depletion of the remodeler SMARCAD1, an ATPase of the SNF2 family, has been shown to affect stem cell state, but the mechanistic explanation for this effect is unknown. Here, we set out to gain further insights into the function of SMARCAD1 in mouse ESCs. We identified KRAB-associated protein 1 (KAP1) as the stoichiometric binding partner of SMARCAD1 in ESCs. We found that this interaction occurs on chromatin and that SMARCAD1 binds to different classes of KAP1 target genes, including zinc finger protein (ZFP) and imprinted genes. We also found that the RING B-box coiled-coil (RBCC) domain in KAP1 and the proximal coupling of ubiquitin conjugation to ER degradation (CUE) domain in SMARCAD1 mediate their direct interaction. Of note, retention of SMARCAD1 in the nucleus depended on KAP1 in both mouse ESCs and human somatic cells. Mutations in the CUE1 domain of SMARCAD1 perturbed the binding to KAP1 in vitro and in vivo Accordingly, an intact CUE1 domain was required for tethering this remodeler to the nucleus. Moreover, mutation of the CUE1 domain compromised SMARCAD1 binding to KAP1 target genes. Taken together, our results reveal a mechanism that localizes SMARCAD1 to genomic sites through the interaction of SMARCAD1's CUE1 motif with KAP1.
Collapse
Affiliation(s)
- Dong Ding
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35043, Germany
| | - Philipp Bergmaier
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35043, Germany
| | - Parysatis Sachs
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35043, Germany
| | - Marius Klangwart
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35043, Germany
| | - Tamina Rückert
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35043, Germany
| | - Nora Bartels
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35043, Germany
| | - Jeroen Demmers
- Center for Proteomics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Mike Dekker
- Department of Cell Biology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Jacqueline E Mermoud
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35043, Germany.
| |
Collapse
|
19
|
Pawłowska E, Szczepanska J, Blasiak J. DNA2-An Important Player in DNA Damage Response or Just Another DNA Maintenance Protein? Int J Mol Sci 2017; 18:ijms18071562. [PMID: 28718810 PMCID: PMC5536050 DOI: 10.3390/ijms18071562] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 02/01/2023] Open
Abstract
The human DNA2 (DNA replication helicase/nuclease 2) protein is expressed in both the nucleus and mitochondria, where it displays ATPase-dependent nuclease and helicase activities. DNA2 plays an important role in the removing of long flaps in DNA replication and long-patch base excision repair (LP-BER), interacting with the replication protein A (RPA) and the flap endonuclease 1 (FEN1). DNA2 can promote the restart of arrested replication fork along with Werner syndrome ATP-dependent helicase (WRN) and Bloom syndrome protein (BLM). In mitochondria, DNA2 can facilitate primer removal during strand-displacement replication. DNA2 is involved in DNA double strand (DSB) repair, in which it is complexed with BLM, RPA and MRN for DNA strand resection required for homologous recombination repair. DNA2 can be a major protein involved in the repair of complex DNA damage containing a DSB and a 5' adduct resulting from a chemical group bound to DNA 5' ends, created by ionizing radiation and several anticancer drugs, including etoposide, mitoxantrone and some anthracyclines. The role of DNA2 in telomere end maintenance and cell cycle regulation suggests its more general role in keeping genomic stability, which is impaired in cancer. Therefore DNA2 can be an attractive target in cancer therapy. This is supported by enhanced expression of DNA2 in many cancer cell lines with oncogene activation and premalignant cells. Therefore, DNA2 can be considered as a potential marker, useful in cancer therapy. DNA2, along with PARP1 inhibition, may be considered as a potential target for inducing synthetic lethality, a concept of killing tumor cells by targeting two essential genes.
Collapse
Affiliation(s)
- Elzbieta Pawłowska
- Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| |
Collapse
|
20
|
Lee J, Choi ES, Seo HD, Kang K, Gilmore JM, Florens L, Washburn MP, Choe J, Workman JL, Lee D. Chromatin remodeller Fun30 Fft3 induces nucleosome disassembly to facilitate RNA polymerase II elongation. Nat Commun 2017; 8:14527. [PMID: 28218250 PMCID: PMC5321744 DOI: 10.1038/ncomms14527] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/09/2017] [Indexed: 01/30/2023] Open
Abstract
Previous studies have revealed that nucleosomes impede elongation of RNA polymerase II (RNAPII). Recent observations suggest a role for ATP-dependent chromatin remodellers in modulating this process, but direct in vivo evidence for this is unknown. Here using fission yeast, we identify Fun30Fft3 as a chromatin remodeller, which localizes at transcribing regions to promote RNAPII transcription. Fun30Fft3 associates with RNAPII and collaborates with the histone chaperone, FACT, which facilitates RNAPII elongation through chromatin, to induce nucleosome disassembly at transcribing regions during RNAPII transcription. Mutants, resulting in reduced nucleosome-barrier, such as deletion mutants of histones H3/H4 themselves and the genes encoding components of histone deacetylase Clr6 complex II suppress the defects in growth and RNAPII occupancy of cells lacking Fun30Fft3. These data suggest that RNAPII utilizes the chromatin remodeller, Fun30Fft3, to overcome the nucleosome barrier to transcription elongation. Nucleosomes have been shown to impede the elongation of RNA polymerase II during transcription. Here, the authors provide evidence that in fission yeast chromatin remodeller Fun30Fft3 localizes to transcribing regions to promote transcription by nucleosome disassembly in vivo.
Collapse
Affiliation(s)
- Junwoo Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Eun Shik Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Hogyu David Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, Chungnam 31116, South Korea
| | - Joshua M Gilmore
- Stowers Institute for Medical Research, Kansas City, Kansas City, Missouri 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Kansas City, Missouri 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, Kansas City, Missouri 64110, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, Kansas City, Missouri 64110, USA
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|