1
|
Boruah A, Deb ML, Thakuria R, Baruah PK. L-Proline catalyzed multi-component synthesis of N-pyridyl-tetrahydroisoquinolines and their α-C(sp 3)-H oxygenation. Org Biomol Chem 2024; 22:8608-8616. [PMID: 39354875 DOI: 10.1039/d4ob01343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Herein, we report an effective multi-component synthesis that starts with readily available starting materials and accesses poly-substituted pyridine derivatives by using L-proline as a benign catalyst. This process uses cyclic amines, aldehydes, and malononitrile in a condensation reaction to produce a variety of pyridine derivatives under mild conditions. Furthermore, depending on the catalysts used, the selective synthesis of an amide and/or an aldehyde functionality is achieved through α-C(sp3)-H oxygenation of the tertiary amine moiety in the resultant pyridine derivatives. The pyridine ring's nitrogen atom plays a crucial role in accelerating C-H oxygenation at the α-position of the tertiary amine, highlighting the synthetic versatility and usefulness of this method.
Collapse
Affiliation(s)
- Aditi Boruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India.
| | - Mohit L Deb
- Advanced Research Centre and Department of Chemistry, University of Science and Technology Meghalaya, Ri-Bhoi, Meghalaya-793101, India.
| | - Ranjit Thakuria
- Department of Chemistry, Gauhati University, Guwahati-781014, Assam, India
| | - Pranjal K Baruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India.
| |
Collapse
|
2
|
Wang X, Xie X, Wo J, Huang T, Deng Z, Lin S. A Bifunctional Methyltransferase in Biosynthesis of Antitumor Antibiotic Streptonigrin. Chembiochem 2024; 25:e202400292. [PMID: 38970452 DOI: 10.1002/cbic.202400292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
Streptonigrin (STN, 1) is a highly functionalized aminoquinone alkaloid antibiotic with broad and potent antitumor activity. STN structurally contains four methyl groups belonging to two types: C-methyl group and O-methyl groups. Here, we report the biochemical characterization of the O-methyltransferase StnQ2 that can catalyze both the methylation of a hydroxyl group and a carboxyl group in the biosynthesis of streptonigrin. This work not only provides a new insight into methyltransferases, but also advances the elucidation of the complete biosynthetic pathway of streptonigrin.
Collapse
Affiliation(s)
- Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xinyue Xie
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jing Wo
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- Haihe Laboratory of Synthetic Biology, 300308, Tianjin, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- Haihe Laboratory of Synthetic Biology, 300308, Tianjin, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- Haihe Laboratory of Synthetic Biology, 300308, Tianjin, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
3
|
Wang X, Kong D, Huang T, Xu F, Tang MC, Deng Z, Lin S. Flavoprotein StnP2 Catalyzes the β-Carboline Formation during the Streptonigrin Biosynthesis. ACS Chem Biol 2022; 17:3499-3506. [PMID: 36409520 DOI: 10.1021/acschembio.2c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
β-Carboline (βC) alkaloids constitute a large family of indole alkaloids that exhibit diverse pharmacological properties, such as antitumor, antiviral, antiparasitic, and antimicrobial activities. Here, we report that a flavoprotein StnP2 catalyzes the dehydrogenation at C1-N2 of a tetrahydro-β-carboline (THβC) generating a 3,4-dihydro-β-carboline (DHβC), and the DHβC subsequently undergoes a spontaneous dehydrogenation to βC formation involved in the biosynthesis of the antitumor agent streptonigrin. Biochemical characterization showed that StnP2 catalyzed the highly regio- and stereo-selective dehydrogenation, and StnP2 exhibits promiscuity toward different THβCs. This study provides an alternative kind of enzyme catalyzing the biosynthesis of βC alkaloids and enhances the importance of flavoproteins.
Collapse
Affiliation(s)
- Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dekun Kong
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fei Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Man-Cheng Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
4
|
Müller M, Germer P, Andexer JN. Biocatalytic One-Carbon Transfer – A Review. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractThis review provides an overview of different C1 building blocks as substrates of enzymes, or part of their cofactors, and the resulting functionalized products. There is an emphasis on the broad range of possibilities of biocatalytic one-carbon extensions with C1 sources of different oxidation states. The identification of uncommon biosynthetic strategies, many of which might serve as templates for synthetic or biotechnological applications, towards one-carbon extensions is supported by recent genomic and metabolomic progress and hence we refer principally to literature spanning from 2014 to 2020.1 Introduction2 Methane, Methanol, and Methylamine3 Glycine4 Nitromethane5 SAM and SAM Ylide6 Other C1 Building Blocks7 Formaldehyde and Glyoxylate as Formaldehyde Equivalents8 Cyanide9 Formic Acid10 Formyl-CoA and Oxalyl-CoA11 Carbon Monoxide12 Carbon Dioxide13 Conclusions
Collapse
|
5
|
Chen MH, Li YS, Hsu NS, Lin KH, Wang YL, Wang ZC, Chang CF, Lin JP, Chang CY, Li TL. Structural and Mechanistic Bases for StnK3 and Its Mutant-Mediated Lewis-Acid-Dependent Epimerization and Retro-Aldol Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mei-Hua Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Shan Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ning-Shian Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuan-Hung Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yung-Lin Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Zhe-Chong Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jin-Ping Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 115, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
6
|
Wang X, Xu F, Huang T, Deng Z, Lin S. A novel streptonigrin type alkaloid from the Streptomyces flocculus CGMCC 4.1223 mutant Δ stnA/Q2. Nat Prod Res 2020; 36:3337-3345. [PMID: 33280413 DOI: 10.1080/14786419.2020.1856840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Streptonigrin (STN) is a highly functionalized aminoquinone alkaloid with broad and potent antitumor activities. Previously, the biosynthetic gene cluster of STN was identified in Streptomyces flocculus CGMCC 4.1223, revealing an α/β-hydrolase (StnA) and a methyltransferase (StnQ2). In this work, a double mutant ΔstnA/Q2 was constructed by genetic manipulation and produced a novel derivative of STN, named as streptonigramide. Structure of streptonigramide was established by spectroscopic analyses. Its biosynthetic pathway has been proposed as well.
Collapse
Affiliation(s)
- Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Xu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Perlatti B, Nichols CB, Lan N, Wiemann P, Harvey CJB, Alspaugh JA, Bills GF. Identification of the Antifungal Metabolite Chaetoglobosin P From Discosia rubi Using a Cryptococcus neoformans Inhibition Assay: Insights Into Mode of Action and Biosynthesis. Front Microbiol 2020; 11:1766. [PMID: 32849391 PMCID: PMC7399079 DOI: 10.3389/fmicb.2020.01766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/06/2020] [Indexed: 01/11/2023] Open
Abstract
Cryptococcus neoformans is an important human pathogen with limited options for treatments. We have interrogated extracts from fungal fermentations to find Cryptococcus-inhibiting natural products using assays for growth inhibition, differential thermosensitivity, and synergy with existing antifungal drugs. Extracts from fermentations of strains of Discosia rubi from eastern Texas showed anticryptococcal bioactivity with preferential activity in agar zone of inhibition assays against C. neoformans at 37°C versus 25°C. Assay-guided fractionation led to the purification and identification of chaetoglobosin P as the active component of these extracts. Genome sequencing of these strains revealed a biosynthetic gene cluster consistent with chaetoglobosin biosynthesis and β-methylation of the tryptophan residue. Proximity of genes of the actin-binding protein twinfilin-1 to the chaetoglobosin P and K gene clusters suggested a possible self-resistance mechanism involving twinfilin-1 which is consistent with the predicted mechanism of action involving interference with the polymerization of the capping process of filamentous actin. A C. neoformans mutant lacking twinfilin-1 was hypersensitive to chaetoglobosin P. Chaetoglobosins also potentiated the effects of amphotericin B and caspofungin on C. neoformans.
Collapse
Affiliation(s)
- Bruno Perlatti
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, Untied States
| | - Connie B Nichols
- Departments of Medicine and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Nan Lan
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, Untied States
| | | | | | - J Andrew Alspaugh
- Departments of Medicine and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, Untied States
| |
Collapse
|
8
|
Yildirim H. Arylthio analogs of 5,8-quinolinedione: Synthesis, characterization, antibacterial, and antifungal evaluations. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1723097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hatice Yildirim
- Chemistry Department, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| |
Collapse
|
9
|
Abstract
Natural nonproteinogenic amino acids vastly outnumber the well-known 22 proteinogenic amino acids. Such amino acids are generated in specialized metabolic pathways. In these pathways, diverse biosynthetic transformations, ranging from isomerizations to the stereospecific functionalization of C-H bonds, are employed to generate structural diversity. The resulting nonproteinogenic amino acids can be integrated into more complex natural products. Here we review recently discovered biosynthetic routes to freestanding nonproteinogenic α-amino acids, with an emphasis on work reported between 2013 and mid-2019.
Collapse
Affiliation(s)
- Jason B Hedges
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
10
|
Liu B, Hou Y, Wang X, Ma X, Fang S, Huang T, Chen Y, Bai Z, Lin S, Zhang R, Hu K. Structural basis of the mechanism of β-methyl epimerization by enzyme MarH. Org Biomol Chem 2019; 17:9605-9614. [PMID: 31681917 DOI: 10.1039/c9ob01996k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Structures of free MarH and MarH in complex with l-Trp, the analogue of substrate, were determined and the mechanism of MarH-catalyzed stereospecific β-methyl epimerization was proposed.
Collapse
|
11
|
Bai L, Ohnishi Y, Kim ES. A3 foresight network on natural products. J Ind Microbiol Biotechnol 2018; 46:313-317. [PMID: 30474768 DOI: 10.1007/s10295-018-2111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/17/2018] [Indexed: 11/25/2022]
Abstract
Discovery and development of natural products (NPs) have played important roles in the fields of human medicine and other biotechnology fields for the past several decades. Recent genome-mining approaches for the isolation of novel and cryptic NP biosynthetic gene clusters (BGCs) have led to the growing interest in NP research communities including Asian NP researchers from China, Japan, and Korea. Recently, a three-nation government-sponsored program named 'A3 Foresight Network on Chemical and Synthetic Biology of NPs' has been launched with a goal of establishing an Asian hub for NP research-&-personnel exchange program. This brief commentary describes introduction, main researchers, and future perspective of A3 NP network program.
Collapse
Affiliation(s)
- Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon, South Korea.
| |
Collapse
|
12
|
Wang X, Kong D, Huang T, Deng Z, Lin S. StnK2 catalysing a Pictet–Spengler reaction involved in the biosynthesis of the antitumor reagent streptonigrin. Org Biomol Chem 2018; 16:9124-9128. [DOI: 10.1039/c8ob02710b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
StnK2 is a new Pictet–Spenglerase specifically catalyzing a (1R,3S,4S)-tetrahydro-β-carboline scaffold as the biosynthetic intermediate of the antitumor reagent streptonigrin.
Collapse
Affiliation(s)
- Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism
- Joint International Laboratory of Metabolic & Developmental Sciences
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Dekun Kong
- State Key Laboratory of Microbial Metabolism
- Joint International Laboratory of Metabolic & Developmental Sciences
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism
- Joint International Laboratory of Metabolic & Developmental Sciences
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism
- Joint International Laboratory of Metabolic & Developmental Sciences
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism
- Joint International Laboratory of Metabolic & Developmental Sciences
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| |
Collapse
|
13
|
Wu S, Huang T, Xie D, Wo J, Wang X, Deng Z, Lin S. Xantholipin B produced by the stnR inactivation mutant Streptomyces flocculus CGMCC 4.1223 WJN-1. J Antibiot (Tokyo) 2017; 70:90-95. [PMID: 27328868 DOI: 10.1038/ja.2016.60] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/20/2016] [Accepted: 04/27/2016] [Indexed: 01/05/2023]
Abstract
Xantholipin is a polycyclic xanthone antibiotic that exhibits potent cytotoxic and antibacterial activity. In this study, a new xanthone-type antibiotic, xantholipin B (1), was isolated for the first time along with its known derivative, xantholipin (2), from strain WJN-1, an aminotransferase inactivation mutant of the streptonigrin-producer Streptomyces flocculus CGMCC 4.1223. The structure of 1 was established based on spectroscopic analysis and supports the previously proposed biosynthetic pathway as a key intermediate of 2. Moreover, 1 showed 3- to 10-fold greater cytotoxicity than 2 against a select panel of human cancer cell lines. In addition, 1 demonstrated powerful antimicrobial activity against both Gram-positive bacteria and fungi. Importantly, both 1 and 2 inhibited the methicillin-resistant strain Staphylococcus aureus Mu50, with the MIC value of 0.025 μg ml-1. The new structural features of 1 enrich the structural diversity of xantholipin family compounds and shed new light on the structure-activity relationship of 1 as a promising antitumor drug candidate.
Collapse
Affiliation(s)
- Sifan Wu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Dan Xie
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jing Wo
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Buller AR, van Roye P, Murciano-Calles J, Arnold FH. Tryptophan Synthase Uses an Atypical Mechanism To Achieve Substrate Specificity. Biochemistry 2016; 55:7043-7046. [PMID: 27935677 PMCID: PMC5207025 DOI: 10.1021/acs.biochem.6b01127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tryptophan synthase (TrpS) catalyzes the final steps in the biosynthesis of l-tryptophan from l-serine (Ser) and indole-3-glycerol phosphate (IGP). We report that native TrpS can also catalyze a productive reaction with l-threonine (Thr), leading to (2S,3S)-β-methyltryptophan. Surprisingly, β-substitution occurs in vitro with a 3.4-fold higher catalytic efficiency for Ser over Thr using saturating indole, despite a >82000-fold preference for Ser in direct competition using IGP. Structural data identify a novel product binding site, and kinetic experiments clarify the atypical mechanism of specificity: Thr binds efficiently but decreases the affinity for indole and disrupts the allosteric signaling that regulates the catalytic cycle.
Collapse
Affiliation(s)
- Andrew R. Buller
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Paul van Roye
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Javier Murciano-Calles
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
15
|
Herger M, van Roye P, Romney DK, Brinkmann-Chen S, Buller AR, Arnold FH. Synthesis of β-Branched Tryptophan Analogues Using an Engineered Subunit of Tryptophan Synthase. J Am Chem Soc 2016; 138:8388-91. [PMID: 27355405 DOI: 10.1021/jacs.6b04836] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report that l-threonine may substitute for l-serine in the β-substitution reaction of an engineered subunit of tryptophan synthase from Pyrococcus furiosus, yielding (2S,3S)-β-methyltryptophan (β-MeTrp) in a single step. The trace activity of the wild-type β-subunit on this substrate was enhanced more than 1000-fold by directed evolution. Structural and spectroscopic data indicate that this increase is correlated with stabilization of the electrophilic aminoacrylate intermediate. The engineered biocatalyst also reacts with a variety of indole analogues and thiophenol for diastereoselective C-C, C-N, and C-S bond-forming reactions. This new activity circumvents the 3-enzyme pathway that produces β-MeTrp in nature and offers a simple and expandable route to preparing derivatives of this valuable building block.
Collapse
Affiliation(s)
- Michael Herger
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Paul van Roye
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - David K Romney
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Sabine Brinkmann-Chen
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Andrew R Buller
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|