1
|
Fettig R, Gonda Z, Walter N, Sallmann P, Thanisch C, Winter M, Bauer S, Zhang L, Linden G, Litfin M, Khamanaeva M, Storm S, Münzing C, Etard C, Armant O, Vázquez O, Kassel O. Short internal open reading frames repress the translation of N-terminally truncated proteoforms. EMBO Rep 2025; 26:1566-1589. [PMID: 39962229 PMCID: PMC11933307 DOI: 10.1038/s44319-025-00390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Internal translation initiation sites, as revealed by ribosome profiling experiments can potentially drive the translation of many N-terminally truncated proteoforms. We report that internal short open reading frame (sORF) within coding sequences regulate their translation. nTRIP6 represents a short nuclear proteoform of the cytoplasmic protein TRIP6. We have previously reported that nTRIP6 regulates the dynamics of skeletal muscle progenitor differentiation. Here we show that nTRIP6 is generated by translation initiation at an internal AUG after leaky scanning at the canonical TRIP6 AUG. The translation of nTRIP6 is repressed by an internal sORF immediately upstream of the nTRIP6 AUG. Consistent with this representing a more general regulatory feature, we have identified other internal sORFs which repress the translation of N-terminally truncated proteoforms. In an in vitro model of myogenic differentiation, the expression of nTRIP6 is transiently upregulated through a mechanistic Target of Rapamycin Complex 1-dependent increase in translation initiation at the internal AUG. Thus, the translation of N-terminally truncated proteoforms can be regulated independently of the canonical ORF.
Collapse
Affiliation(s)
- Raphael Fettig
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Zita Gonda
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Niklas Walter
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Paul Sallmann
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Christiane Thanisch
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Markus Winter
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Susanne Bauer
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Lei Zhang
- Philipps-Universität Marburg, Faculty of Chemistry, Marburg, Germany
| | - Greta Linden
- Philipps-Universität Marburg, Faculty of Chemistry, Marburg, Germany
| | - Margarethe Litfin
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Marina Khamanaeva
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Sarah Storm
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Christina Münzing
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Christelle Etard
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, France
| | - Olalla Vázquez
- Philipps-Universität Marburg, Faculty of Chemistry, Marburg, Germany
- Philipps-Universität Marburg, Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Olivier Kassel
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany.
| |
Collapse
|
2
|
Butler E, Xu L, Rakheja D, Schwettmann B, Toubbeh S, Guo L, Kim J, Skapek SX, Zheng Y. Exon skipping in genes encoding lineage-defining myogenic transcription factors in rhabdomyosarcoma. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006190. [PMID: 35933111 PMCID: PMC9528969 DOI: 10.1101/mcs.a006190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a childhood sarcoma composed of myoblast-like cells, which suggests a defect in terminal skeletal muscle differentiation. To explore potential defects in the differentiation program, we searched for mRNA splicing variants in genes encoding transcription factors driving skeletal muscle lineage commitment and differentiation. We studied two RMS cases and identified altered splicing resulting in "skipping" the second of three exons in MYOD1. RNA-Seq data from 42 tumors and additional RMS cell lines revealed exon 2 skipping in both MYOD1 and MYF5 but not in MYF6 or MYOG. Complementary molecular analysis of MYOD1 mRNA found evidence for exon skipping in 5 additional RMS cases. Functional studies showed that so-called MYODΔEx2 protein failed to robustly induce muscle-specific genes, and its ectopic expression conferred a selective advantage in cultured fibroblasts and an RMS xenograft. In summary, we present previously unrecognized exon skipping within MYOD1 and MYF5 in RMS, and we propose that alternative splicing can represent a mechanism to alter the function of these two transcription factors in RMS.
Collapse
Affiliation(s)
- Erin Butler
- University of Texas Southwestern Medical Center;
| | - Lin Xu
- University of Texas Southwestern Medical Center
| | | | | | | | - Lei Guo
- University of Texas Southwestern Medical Center
| | - Jiwoon Kim
- University of Texas Southwestern Medical Center
| | | | | |
Collapse
|
3
|
Dasgupta A, Sierra L, Tsang SV, Kurenbekova L, Patel T, Rajapakse K, Shuck RL, Rainusso N, Landesman Y, Unger T, Coarfa C, Yustein JT. Targeting PAK4 Inhibits Ras-Mediated Signaling and Multiple Oncogenic Pathways in High-Risk Rhabdomyosarcoma. Cancer Res 2021; 81:199-212. [PMID: 33168646 PMCID: PMC7878415 DOI: 10.1158/0008-5472.can-20-0854] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most prevalent pediatric soft-tissue sarcoma. Multimodal treatment, including surgery and traditional chemotherapy with radiotherapy, has contributed to improvements in overall survival rates. However, patients with recurrent or metastatic disease have 5-year survival rates of less than 30%. One reason for the lack of therapeutic advancement is identification and targeting of critical signaling nodes. p21-activated kinases (PAK) are a family of serine/threonine kinases downstream of multiple critical tumorigenic receptor tyrosine kinase receptors and oncogenic regulators, including IGFR and RAS signaling, that significantly contribute to aggressive malignant phenotypes. Here, we report that RMS cell lines and tumors exhibit enhanced PAK4 expression levels and activity, which are further activated by growth factors involved in RMS development. Molecular perturbation of PAK4 in multiple RMS models in vitro and in vivo resulted in inhibition of RMS development and progression. Fusion-positive and -negative RMS models were sensitive to two PAK4 small-molecule inhibitors, PF-3758309 and KPT-9274, which elicited significant antitumor and antimetastatic potential in several primary and metastatic in vivo models, including a relapsed RMS patient-derived xenograft model. Transcriptomic analysis of PAK4-targeted tumors revealed inhibition of the RAS-GTPase, Hedgehog, and Notch pathways, along with evidence of activation of antitumor immune response signatures. This PAK4-targeting gene signature showed prognostic significance for patients with sarcoma. Overall, our results show for the first time that PAK4 is a novel and viable therapeutic target for the treatment of high-risk RMS. SIGNIFICANCE: These data demonstrate a novel oncogenic role for PAK4 in rhabdomyosarcoma and show that targeting PAK4 activity is a promising viable therapeutic option for advanced rhabdomyosarcoma.
Collapse
Affiliation(s)
- Atreyi Dasgupta
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Laura Sierra
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Susan V Tsang
- Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, Texas
| | - Lyazat Kurenbekova
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Tajhal Patel
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Kimal Rajapakse
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas
| | - Ryan L Shuck
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Nino Rainusso
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | | | | | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas
| | - Jason T Yustein
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas.
- Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
4
|
Integrative Bayesian Analysis Identifies Rhabdomyosarcoma Disease Genes. Cell Rep 2019; 24:238-251. [PMID: 29972784 DOI: 10.1016/j.celrep.2018.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/29/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Identifying oncogenic drivers and tumor suppressors remains a challenge in many forms of cancer, including rhabdomyosarcoma. Anticipating gene expression alterations resulting from DNA copy-number variants to be particularly important, we developed a computational and experimental strategy incorporating a Bayesian algorithm and CRISPR/Cas9 "mini-pool" screen that enables both genome-scale assessment of disease genes and functional validation. The algorithm, called iExCN, identified 29 rhabdomyosarcoma drivers and suppressors enriched for cell-cycle and nucleic-acid-binding activities. Functional studies showed that many iExCN genes represent rhabdomyosarcoma line-specific or shared vulnerabilities. Complementary experiments addressed modes of action and demonstrated coordinated repression of multiple iExCN genes during skeletal muscle differentiation. Analysis of two separate cohorts revealed that the number of iExCN genes harboring copy-number alterations correlates with survival. Our findings highlight rhabdomyosarcoma as a cancer in which multiple drivers influence disease biology and demonstrate a generalizable capacity for iExCN to unmask disease genes in cancer.
Collapse
|
5
|
Deel MD, Slemmons KK, Hinson AR, Genadry KC, Burgess BA, Crose LES, Kuprasertkul N, Oristian KM, Bentley RC, Linardic CM. The Transcriptional Coactivator TAZ Is a Potent Mediator of Alveolar Rhabdomyosarcoma Tumorigenesis. Clin Cancer Res 2018. [PMID: 29514840 DOI: 10.1158/1078-0432.ccr-17-1207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Alveolar rhabdomyosarcoma (aRMS) is a childhood soft tissue sarcoma driven by the signature PAX3-FOXO1 (P3F) fusion gene. Five-year survival for aRMS is <50%, with no improvement in over 4 decades. Although the transcriptional coactivator TAZ is oncogenic in carcinomas, the role of TAZ in sarcomas is poorly understood. The aim of this study was to investigate the role of TAZ in P3F-aRMS tumorigenesis.Experimental Design: After determining from publicly available datasets that TAZ is upregulated in human aRMS transcriptomes, we evaluated whether TAZ is also upregulated in our myoblast-based model of P3F-initiated tumorigenesis, and performed IHC staining of 63 human aRMS samples from tissue microarrays. Using constitutive and inducible RNAi, we examined the impact of TAZ loss of function on aRMS oncogenic phenotypes in vitro and tumorigenesis in vivo Finally, we performed pharmacologic studies in aRMS cell lines using porphyrin compounds, which interfere with TAZ-TEAD transcriptional activity.Results: TAZ is upregulated in our P3F-initiated aRMS model, and aRMS cells and tumors have high nuclear TAZ expression. In vitro, TAZ suppression inhibits aRMS cell proliferation, induces apoptosis, supports myogenic differentiation, and reduces aRMS cell stemness. TAZ-deficient aRMS cells are enriched in G2-M phase of the cell cycle. In vivo, TAZ suppression attenuates aRMS xenograft tumor growth. Preclinical studies show decreased aRMS xenograft tumor growth with porphyrin compounds alone and in combination with vincristine.Conclusions: TAZ is oncogenic in aRMS sarcomagenesis. While P3F is currently not therapeutically tractable, targeting TAZ could be a promising novel approach in aRMS. Clin Cancer Res; 24(11); 2616-30. ©2018 AACR.
Collapse
Affiliation(s)
- Michael D Deel
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Katherine K Slemmons
- Department of Pharmacology & Cancer Biology, School of Medicine, Duke University, Durham, North Carolina
| | - Ashley R Hinson
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Katia C Genadry
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Breanne A Burgess
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Lisa E S Crose
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | | | - Kristianne M Oristian
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Rex C Bentley
- Department of Pathology, School of Medicine, Duke University, Durham, North Carolina
| | - Corinne M Linardic
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina. .,Department of Pharmacology & Cancer Biology, School of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|