1
|
Rivera-Peña B, Folawiyo O, Turaga N, Rodríguez-Benítez RJ, Felici ME, Aponte-Ortiz JA, Pirini F, Rodríguez-Torres S, Vázquez R, López R, Sidransky D, Guerrero-Preston R, Báez A. Promoter DNA methylation patterns in oral, laryngeal and oropharyngeal anatomical regions are associated with tumor differentiation, nodal involvement and survival. Oncol Lett 2024; 27:89. [PMID: 38268779 PMCID: PMC10804364 DOI: 10.3892/ol.2024.14223] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/23/2023] [Indexed: 01/26/2024] Open
Abstract
Differentially methylated regions (DMRs) can be used as head and neck squamous cell carcinoma (HNSCC) diagnostic, prognostic and therapeutic targets in precision medicine workflows. DNA from 21 HNSCC and 10 healthy oral tissue samples was hybridized to a genome-wide tiling array to identify DMRs in a discovery cohort. Downstream analyses identified differences in promoter DNA methylation patterns in oral, laryngeal and oropharyngeal anatomical regions associated with tumor differentiation, nodal involvement and survival. Genome-wide DMR analysis showed 2,565 DMRs common to the three subsites. A total of 738 DMRs were unique to laryngeal cancer (n=7), 889 DMRs were unique to oral cavity cancer (n=10) and 363 DMRs were unique to pharyngeal cancer (n=6). Based on the genome-wide analysis and a Gene Ontology analysis, 10 candidate genes were selected to test for prognostic value and association with clinicopathological features. TIMP3 was associated with tumor differentiation in oral cavity cancer (P=0.039), DAPK1 was associated with nodal involvement in pharyngeal cancer (P=0.017) and PAX1 was associated with tumor differentiation in laryngeal cancer (P=0.040). A total of five candidate genes were selected, DAPK1, CDH1, PAX1, CALCA and TIMP3, for a prevalence study in a larger validation cohort: Oral cavity cancer samples (n=42), pharyngeal cancer tissues (n=25) and laryngeal cancer samples (n=52). PAX1 hypermethylation differed across HNSCC anatomic subsites (P=0.029), and was predominantly detected in laryngeal cancer. Kaplan-Meier survival analysis (P=0.043) and Cox regression analysis of overall survival (P=0.001) showed that DAPK1 methylation is associated with better prognosis in HNSCC. The findings of the present study showed that the HNSCC subsites oral cavity, pharynx and larynx display substantial differences in aberrant DNA methylation patterns, which may serve as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Bianca Rivera-Peña
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
- Department of Pharmacology, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
- Department of Otolaryngology-Head and Neck Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| | - Oluwasina Folawiyo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nitesh Turaga
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rosa J. Rodríguez-Benítez
- Department of General Social Sciences, Faculty of Social Sciences, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Marcos E. Felici
- Oral Health Division, Puerto Rico Department of Health, San Juan 00927, Puerto Rico
| | - Jaime A. Aponte-Ortiz
- Department of General Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| | - Francesca Pirini
- Biosciences Laboratory, IRCCS Instituto Romagnolo per lo Studio dei Tumori ‘Dino Amadori’, Meldola I-47014, Italy
| | | | - Roger Vázquez
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Ricardo López
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rafael Guerrero-Preston
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Research and Development, LifeGene-Biomarks, San Juan 00909, Puerto Rico
| | - Adriana Báez
- Department of Pharmacology, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
- Department of Otolaryngology-Head and Neck Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| |
Collapse
|
2
|
Vatsa PP, Jindal Y, Bhadwalkar J, Chamoli A, Upadhyay V, Mandoli A. Role of epigenetics in OSCC: an understanding above genetics. Med Oncol 2023; 40:122. [PMID: 36941511 DOI: 10.1007/s12032-023-01992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023]
Abstract
Oral cavity cancer is categorized under head and neck cancer that frequently develops from squamous cells hence also known as oral squamous cell carcinoma (OSCC). Although molecular markers for oral cavity cancer are already known, epigenetic signatures for the same haven't been explored much. Epigenetic and genetic alterations were initially thought to be discrete mechanisms driving the tumour but the whole exome sequencing of various cancers has revealed the interdependency of epigenetics and genetic alterations. The reversible nature of these epigenetic changes makes them an alluring target for cancer therapeutics. The primary epigenetic alterations in cancer include DNA methylation and histone modifications. These alterations are useful for patient early detection and prognostication. This review summarizes the epigenetic perspective to understand the etiology, epigenetic biomarkers, and epi-drugs for better predictive diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Priyanka P Vatsa
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Yogita Jindal
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Janhavi Bhadwalkar
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Ambika Chamoli
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Vinal Upadhyay
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Amit Mandoli
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
3
|
Birknerova N, Mancikova V, Paul ED, Matyasovsky J, Cekan P, Palicka V, Parova H. Circulating Cell-Free DNA-Based Methylation Pattern in Saliva for Early Diagnosis of Head and Neck Cancer. Cancers (Basel) 2022; 14:4882. [PMID: 36230805 PMCID: PMC9563959 DOI: 10.3390/cancers14194882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Head and neck cancer (HNC) remains one of the leading causes of mortality worldwide due to tumor diagnosis at a late stage, loco-regional aggression, and distant metastases. A standardized diagnostic procedure for HNC is a tissue biopsy that cannot faithfully portray the in-depth tumor dynamics. Therefore, there is an urgent need to develop simple, accurate, and non-invasive methods for cancer detection and follow-up. A saliva-based liquid biopsy allows convenient, non-invasive, and painless collection of high volumes of this biofluid, with the possibility of repetitive sampling, all enabling real-time monitoring of the disease. No approved clinical test for HNC has yet been established. However, epigenetic changes in saliva circulating cell-free DNA (cfDNA) have the potential for a wide range of clinical applications. Therefore, the aim of this review is to present an overview of cfDNA-based methylation patterns in saliva for early detection of HNC, with particular attention to circulating tumor DNA (ctDNA). Due to advancements in isolation and detection technologies, as well as next- and third-generation sequencing, recent data suggest that salivary biomarkers may be successfully applied for early detection of HNC in the future, but large prospective clinical trials are still warranted.
Collapse
Affiliation(s)
- Natalia Birknerova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Veronika Mancikova
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Evan David Paul
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Jan Matyasovsky
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Pavol Cekan
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Vladimir Palicka
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Head and Neck Cancers Are Not Alike When Tarred with the Same Brush: An Epigenetic Perspective from the Cancerization Field to Prognosis. Cancers (Basel) 2021; 13:cancers13225630. [PMID: 34830785 PMCID: PMC8616074 DOI: 10.3390/cancers13225630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Squamous cell carcinomas affect different head and neck subsites and, although these tumors arise from the same epithelial lining and share risk factors, they differ in terms of clinical behavior and molecular carcinogenesis mechanisms. Differences between HPV-negative and HPV-positive tumors are those most frequently explored, but further data suggest that the molecular heterogeneity observed among head and neck subsites may go beyond HPV infection. In this review, we explore how alterations of DNA methylation and microRNA expression contribute to head and neck squamous cell carcinoma (HNSCC) development and progression. The association of these epigenetic alterations with risk factor exposure, early carcinogenesis steps, transformation risk, and prognosis are described. Finally, we discuss the potential application of the use of epigenetic biomarkers in HNSCC. Abstract Head and neck squamous cell carcinomas (HNSCC) are among the ten most frequent types of cancer worldwide and, despite all efforts, are still diagnosed at late stages and show poor overall survival. Furthermore, HNSCC patients often experience relapses and the development of second primary tumors, as a consequence of the field cancerization process. Therefore, a better comprehension of the molecular mechanisms involved in HNSCC development and progression may enable diagnosis anticipation and provide valuable tools for prediction of prognosis and response to therapy. However, the different biological behavior of these tumors depending on the affected anatomical site and risk factor exposure, as well as the high genetic heterogeneity observed in HNSCC are major obstacles in this pursue. In this context, epigenetic alterations have been shown to be common in HNSCC, to discriminate the tumor anatomical subsites, to be responsive to risk factor exposure, and show promising results in biomarker development. Based on this, this review brings together the current knowledge on alterations of DNA methylation and microRNA expression in HNSCC natural history, focusing on how they contribute to each step of the process and on their applicability as biomarkers of exposure, HNSCC development, progression, and response to therapy.
Collapse
|
5
|
Salivary DNA Methylation as an Epigenetic Biomarker for Head and Neck Cancer. Part II: A Cancer Risk Meta-Analysis. J Pers Med 2021; 11:jpm11070606. [PMID: 34206840 PMCID: PMC8304899 DOI: 10.3390/jpm11070606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Aberrant methylation of tumor suppressor genes has been reported as an important epigenetic silencer in head and neck cancer (HNC) pathogenesis. Here, we performed a comprehensive meta-analysis to evaluate the overall and specific impact of salivary gene promoter methylation on HNC risk. The methodological quality was assessed using the Newcastle–Ottawa scale (NOS). Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association and Egger’s and Begg’s tests were applied to detect publication bias. The frequency of salivary DNA promoter methylation was significantly higher in HNC patients than in healthy controls (OR: 8.34 (95% CI = 6.10–11.39; p < 0.01). The pooled ORs showed a significant association between specific tumor-related genes and HNC risk: p16 (3.75; 95% CI = 2.51–5.60), MGMT (5.72; 95% CI = 3.00–10.91), DAPK (5.34; 95% CI = 2.18–13.10), TIMP3 (3.42; 95% CI = 1.99–5.88), and RASSF1A (7.69; 95% CI = 3.88–15.23). Overall, our meta-analysis provides precise evidence on the association between salivary DNA promoter hypermethylation and HNC risk. Thus, detection of promoter DNA methylation in saliva is a potential biomarker for predicting HNC risk.
Collapse
|
6
|
Jia J, Wang N, Zheng Y, Mo X, Zhang Y, Ye S, Liu J, Yan F, Li H, Chen D. RAS-association domain family 1A regulates the abnormal cell proliferation in psoriasis via inhibition of Yes-associated protein. J Cell Mol Med 2021; 25:5070-5081. [PMID: 33960627 PMCID: PMC8178269 DOI: 10.1111/jcmm.16489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a chronic, inflammatory skin disease with a high incidence and recurrence; however, its exact pathogenesis and aetiology remain unclear. This study aimed to analyse the effect of the upstream negative regulator RAS-association domain family 1A (RASSF1A) on Yes-associated protein (YAP) in psoriasis. Skin lesions of 22 patients with psoriasis and 19 healthy controls were used. Human epidermal keratinocytes stimulated by M5 (IL-1α, IL-17, IL-22, TNF-α and oncostatin M) were used to establish a psoriatic cell model. BALB/c mice treated with topical imiquimod were used to establish a psoriatic mouse model. As the methylation level of RASSF1A increased, its expression in psoriatic patients and mice model decreased. Addition of the methylation inhibitor 5-Aza-CdR or RASSF1A-overexpressing lentivirus vector increased RASSF1A and reduced YAP expression; meanwhile improved skin lesions, reduced cell proliferation, induced cell cycle arrest in the G0/G1 phase, increased apoptosis, reduced inflammatory cytokines and activities of ERK, STAT3 and NF-κB signalling pathways. The results indicated that RASSF1A could play a role in the treatment of psoriasis by inhibiting YAP expression. Based on these findings, targeted drugs that can inhibit the methylation or increase the expression of RASSF1A may be useful for treating psoriasis.
Collapse
Affiliation(s)
- Jinjing Jia
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of DermatologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic DiseaseGuangzhouChina
| | - Ning Wang
- Department of DermatologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yan Zheng
- Department of DermatologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiumei Mo
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of DermatologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic DiseaseGuangzhouChina
| | - Yu Zhang
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of DermatologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic DiseaseGuangzhouChina
| | - Siqi Ye
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of DermatologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic DiseaseGuangzhouChina
| | - Junfeng Liu
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of DermatologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic DiseaseGuangzhouChina
| | - Fenggen Yan
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of DermatologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic DiseaseGuangzhouChina
| | - Hongyi Li
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of DermatologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic DiseaseGuangzhouChina
| | - Dacan Chen
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Department of DermatologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic DiseaseGuangzhouChina
| |
Collapse
|
7
|
Direct comparison of size-dependent versus EpCAM-dependent CTC enrichment at the gene expression and DNA methylation level in head and neck squamous cell carcinoma. Sci Rep 2020; 10:6551. [PMID: 32300118 PMCID: PMC7162906 DOI: 10.1038/s41598-020-63055-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/29/2020] [Indexed: 11/15/2022] Open
Abstract
We directly compared two different approaches used for Circulating Tumor Cell (CTC) isolation, a size-dependent microfluidic system versus an EpCAM-dependent positive selection for downstream molecular characterization of CTC both at the gene expression and DNA methylation level in Head and Neck Squamous Cell Carcinoma (HNSCC). A size-dependent microfluidic device (Parsortix, ANGLE) and an EpCAM-dependent positive immune-magnetic isolation procedure were applied in parallel, using 10 mL PB from 50 HNSCC patients and 18 healthy donors. Total RNA was isolated from enriched CTCs and RT-qPCR was used to study the expression levels of CK-19, PD-L1, EGFR, TWIST1, CDH2 and B2M (reference gene). Real time methylation specific PCR (MSP) was used to study the methylation status of RASSF1A and MLL3 genes. In identical blood draws, the label-free size-dependent CTC-isolation system was superior in terms of sensitivity when compared to the EpCAM-dependent CTC enrichment, since a significantly higher percentage of identical PB samples was found positive at the gene expression and DNA methylation level, while the specificity was not affected. Our results indicate that future studies focused on the evaluation of clinical utility of CTC molecular characterization in HNSCC should be based on size-dependent enrichment approaches.
Collapse
|
8
|
Gaździcka J, Gołąbek K, Strzelczyk JK, Ostrowska Z. Epigenetic Modifications in Head and Neck Cancer. Biochem Genet 2019; 58:213-244. [PMID: 31712935 PMCID: PMC7113219 DOI: 10.1007/s10528-019-09941-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common human malignancy in the world, with high mortality and poor prognosis for patients. Among the risk factors are tobacco and alcohol intake, human papilloma virus, and also genetic and epigenetic modifications. Many studies show that epigenetic events play an important role in HNSCC development and progression, including DNA methylation, chromatin remodeling, histone posttranslational covalent modifications, and effects of non-coding RNA. Epigenetic modifications may influence silencing of tumor suppressor genes by promoter hypermethylation, regulate transcription by microRNAs and changes in chromatin structure, or induce genome instability through hypomethylation. Moreover, getting to better understand aberrant patterns of methylation may provide biomarkers for early detection and diagnosis, while knowledge about target genes of microRNAs may improve the therapy of HNSCC and extend overall survival. The aim of this review is to present recent studies which demonstrate the role of epigenetic regulation in the development of HNSCC.
Collapse
Affiliation(s)
- Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland.
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| | - Zofia Ostrowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| |
Collapse
|
9
|
Qadir F, Lalli A, Dar HH, Hwang S, Aldehlawi H, Ma H, Dai H, Waseem A, Teh MT. Clinical correlation of opposing molecular signatures in head and neck squamous cell carcinoma. BMC Cancer 2019; 19:830. [PMID: 31443700 PMCID: PMC6708230 DOI: 10.1186/s12885-019-6059-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background The concept of head and neck cancers (HNSCC) having unique molecular signatures is well accepted but relating this to clinical presentation and disease behaviour is essential for patient benefit. Currently the clinical significance of HNSCC molecular subtypes is uncertain therefore personalisation of HNSCC treatment is not yet possible. Methods We performed meta-analysis on 8 microarray studies and identified six significantly up- (PLAU, FN1, CDCA5) and down-regulated (CRNN, CLEC3B and DUOX1) genes which were subsequently quantified by RT-qPCR in 100 HNSCC patient margin and core tumour samples. Results Retrospective correlation with sociodemographic and clinicopathological patient details identified two subgroups of opposing molecular signature (+q6 and -q6) that correlated to two recognised high-risk HNSCC populations in the UK. The +q6 group were older, male, and excessive alcohol users whilst the –q6 group were younger, female, paan-chewers and predominantly Bangladeshi. Additionally, all patients with tumour recurrence were in the latter subgroup. Conclusions We provide the first evidence linking distinct molecular signatures in HNSCC with clinical presentations. Prospective trials are required to determine the correlation between these distinct genotypes and disease progression or treatment response. This is an important step towards the ultimate goal of improving outcomes by utilising personalised molecular-signature-guided treatments for HNSCC patients.
Collapse
Affiliation(s)
- Fatima Qadir
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, England, E1 2AT, UK
| | - Anand Lalli
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, England, E1 2AT, UK
| | - Huma Habib Dar
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, England, E1 2AT, UK
| | - Sungjae Hwang
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, England, E1 2AT, UK
| | - Hebah Aldehlawi
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, England, E1 2AT, UK
| | - Hong Ma
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Affiliated Stomatological Hospital of Guizhou Medical University, Guizhou, China
| | - Haiyan Dai
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Affiliated Stomatological Hospital of Guizhou Medical University, Guizhou, China
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, England, E1 2AT, UK
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, England, E1 2AT, UK. .,China-British Joint Molecular Head and Neck Cancer Research Laboratory, Affiliated Stomatological Hospital of Guizhou Medical University, Guizhou, China. .,Cancer Research Institute, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Zhou Y, Wang XB, Qiu XP, Shuai Zhang, Wang C, Zheng F. CDKN2A promoter methylation and hepatocellular carcinoma risk: A meta-analysis. Clin Res Hepatol Gastroenterol 2018; 42:529-541. [PMID: 30143452 DOI: 10.1016/j.clinre.2017.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/17/2017] [Accepted: 07/28/2017] [Indexed: 02/04/2023]
Abstract
AIM Lots of studies have explored cyclin-dependent kinase inhibitor 2A (CDKN2A) promoter methylation in hepatocellular carcinoma (HCC), but the established results were controversial. Hence, we conducted the meta-analysis to comprehensively investigate the association between CDKN2A promoter methylation and HCC risk. METHODS A comprehensive search was implemented through searching PubMed, Web of Science and Embase. Associations of CDKN2A promoter methylation with HCC risk, clinicopathological features, and CDKN2A expression were assessed by the pooled odds ratios (ORs) with corresponding 95% confidence intervals (CIs). Subgroup analyses and meta-regression were served for exploring the potential sources of heterogeneity. RESULTS A total of 59 articles including 3067 cases and 2951 controls were incorporated in this meta-analysis. Overall, we observed a high CDKN2A promoter methylation rate (58.18%) in HCC and a significant association between the methylation and HCC risk (OR, 7.07; 95% CI, 5.67-8.80). Furthermore, CDKN2A promoter methylation was robustly associated with decreased mRNA (OR, 13.89; 95% CI, 5.44-35.45) and protein (OR, 48.19; 95% CI, 5.56-417.29). In addition, we found the methylation was related with HBV infection (OR, 3.31; 95% CI, 1.47-7.47), HCV infection (OR, 2.76; 95% CI, 1.80-4.23), cirrhosis status (OR, 1.57; 95% CI, 1.01-2.44) and older age (OR, 1.83; 95% CI, 1.14-2.94). CONCLUSIONS Our results indicated that CDKN2A promoter methylation was associated with an enhancive HCC risk and played a crucial role in the process of HCC with a potential value to being a triage marker for HCC.
Collapse
Affiliation(s)
- Ye Zhou
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei, China
| | - Xue-Bin Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei, China
| | - Xue-Ping Qiu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei, China
| | - Shuai Zhang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei, China
| | - Chen Wang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei, China
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei, China.
| |
Collapse
|
11
|
Markulin D, Vojta A, Samaržija I, Gamulin M, Bečeheli I, Jukić I, Maglov Č, Zoldoš V, Fučić A. Association Between RASSF1A Promoter Methylation and Testicular Germ Cell Tumor: A Meta-analysis and a Cohort Study. Cancer Genomics Proteomics 2018; 14:363-372. [PMID: 28871003 DOI: 10.21873/cgp.20046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/05/2017] [Accepted: 08/08/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The RAS association domain family protein 1a (RASSF1A) is a prominent tumor suppressor gene showing altered promoter methylation in testicular germ cell tumors (TGCT). RASSF1A promoter hypermethylation might represent an early event in TGCT tumorigenesis. We investigated whether the RASSF1A promoter methylation in peripheral blood of TGCT patients can be associated with testicular cancer risk. MATERIALS AND METHODS Following a meta-analysis, we performed a cohort study including 32 testicular cancer patients and 32 healthy controls. Promoter methylation of the RASSF1A and O6-methylguanine-DNA-methyltransferase (MGMT) genes was analyzed using bisulfite pyrosequencing of DNA from peripheral blood. RESULTS Meta-analysis showed an odds ratio (OR) of 7.69 for RASSF1A promoter methylation as a risk factor for TGCT. Cohort study found altered methylation of the RASSF1A promoter in blood of TGCT patients. Methylation was higher in TGCT patients before BEP chemotherapy. CONCLUSION The meta-analysis indicates a role of the RASSF1A promoter hypermethylation from peripheral blood in TCGT. We confirmed that finding in our cohort study, which represents the first report of changed RASSF1A promoter methylation in peripheral blood TGCT.
Collapse
Affiliation(s)
- Dora Markulin
- University of Zagreb, Faculty of Science, Department of Biology, Division of Molecular Biology, Zagreb, Croatia
| | - Aleksandar Vojta
- University of Zagreb, Faculty of Science, Department of Biology, Division of Molecular Biology, Zagreb, Croatia
| | - Ivana Samaržija
- University of Zagreb, Faculty of Science, Department of Biology, Division of Molecular Biology, Zagreb, Croatia
| | - Marija Gamulin
- University Hospital Centre Zagreb, Department of Oncology, Zagreb, Croatia
| | | | - Irena Jukić
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Čedomir Maglov
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Vlatka Zoldoš
- University of Zagreb, Faculty of Science, Department of Biology, Division of Molecular Biology, Zagreb, Croatia
| | - Aleksandra Fučić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
12
|
Wen G, Wang H, Zhong Z. Associations of RASSF1A, RARβ, and CDH1 promoter hypermethylation with oral cancer risk: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2018; 97:e9971. [PMID: 29538221 PMCID: PMC5882397 DOI: 10.1097/md.0000000000009971] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Oral tumor is a heterogeneous group of tumors, in which it has several different histopathological and molecular features. Recently, genetic and epigenetic alterations are often detected in the development of oral cancer. Gene promoter hypermethylation leads to the silencing of cancer related genes without changes of genes sequence. To clarify the effect of RAS association domain family protein 1a (RASSF1A), retinoic acid receptor beta (RARβ), and E-cadherin (CDH1) promoter hypermethylation on the risk of oral cancer, we performed this meta-analysis. METHODS PubMed, Web of Science, Embase, and Chinese National Knowledge Infrastructure (CNKI) databases were retrieved to identify eligible articles. Stata 12.0 software was used to analyze extracted data of the included articles. Odds ratios (ORs) with the corresponding 95% confidence interval (95% CI) were calculated to evaluate the associations of RASSF1A, RARβ, and CDH1 promoter hypermethylation with oral cancer risk. RESULTS Around 23 literatures with 29 studies were included in the final meta-analysis, in which 12 studies were about RASSF1A promoter methylation, 4 studies were about RARβ promoter methylation, and 13 studies were about CDH1 promoter methylation. Overall, the results of this meta-analysis showed that there were significant associations between RASSF1A, RARβ, and CDH1 promoter hypermethylation and oral cancer risk (RASSF1A, OR = 11.8, 95% CI = 6.14-22.66; RARβ, OR = 20.35, 95% CI = 5.64-73.39; CDH1, OR = 13.46, 95% CI = 5.31-34.17). In addition, we found that RASSF1A promoter hypermethylation exerted higher frequency in the tongue tumor than other site tumor in mouth (RASSF1A, tongue tumor vs other site tumor in mouth, unmethylation vs methylation, OR = 0.65, 95%CI = 0.44-0.98). CONCLUSION RASSF1A, RARβ, and CDH1 promoter hypermethylation might significantly increase the risk of oral cancer.
Collapse
Affiliation(s)
- Guohong Wen
- School of Public Health and Management, Chongqing Medical University, Chongqing
- Medical Records and Statistics Room of Nanchong Central Hospital
| | - Huadong Wang
- School of Public Health and Management, Chongqing Medical University, Chongqing
- Oral and Maxillofacial Surgery of Nanchong Central Hospital, NanChong City, SiChuan Province, China
| | - Zhaohui Zhong
- School of Public Health and Management, Chongqing Medical University, Chongqing
| |
Collapse
|
13
|
Prognostic potential of KLOTHO and SFRP1 promoter methylation in head and neck squamous cell carcinoma. J Appl Genet 2017; 58:459-465. [PMID: 28812223 DOI: 10.1007/s13353-017-0404-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/10/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022]
Abstract
Hypermethylation in the CpG island promoter regions of tumor suppressors is known to play a significant role in the development of HNSCC and the detection of which can aid the classification and prognosis of HNSCC. This study aims to profile the methylation patterns in a panel of key genes including CDKN2A, CDKN2B, KLOTHO (KL), RASSF1A, RARB, SLIT2, and SFRP1, in a group of HNSCC samples from Saudi Arabia. The extent of methylation in these genes is determined using the MethyLight assay and correlated with known clinicopathological parameters in our samples of 156 formalin-fixed and paraffin-embedded HNSCC tissues. SLIT2 methylation had the highest frequency (64.6%), followed by RASSF1A (41.3%), RARB (40.7%), SFRP1 (34.9), KL (30.7%), CKDN2B (29.6%), and CKDN2A (29.1%). KL and SFRP1 methylation were more predominant in nasopharyngeal tumors (P = 0.001 and P = 0.031 respectively). Kaplan Meier analysis showed that patients with moderately differentiated tumors who display SFRP1 methylation have significantly worse overall survival in comparison with other samples. In contrast, better clinical outcomes were seen in patients with KL methylation. In conclusion, our findings suggest that the detection of frequent methylation in SFRP1 and KL genes' promoters could serve as prognostic biomarkers for HNSCC.
Collapse
|
14
|
Genes encoding neuropeptide receptors are epigenetic markers in patients with head and neck cancer: a site-specific analysis. Oncotarget 2017; 8:76318-76328. [PMID: 29100314 PMCID: PMC5652708 DOI: 10.18632/oncotarget.19356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023] Open
Abstract
Staging and pathological grading systems are useful but imperfect predictors of recurrence in head and neck squamous cell carcinoma (HNSCC). To identify potential prognostic markers, we examined the methylation status of eight neuropeptide receptor gene promoters in 231 head and neck squamous cell carcinomas. The NPFFR1, NPFFR2, HCRTR1, HCRTR2, NPY1R, NPY2R, NPY4R, and NPY5R promoters were methylated in 80.5%, 79.2%, 67.1%, 73.2%, 35.1%, 36.4%, 38.5%, and 35.9% of the samples, respectively. In a multivariate Cox proportional hazards analysis, the odds ratio for recurrence was 2.044 (95% confidence interval [CI], 1.323–3.156; P = 0.001) when the NPY2R promoter was methylated. In patients without lymph node metastasis (n = 100), methylation of NPY2R (compared with methylation of the other seven genes) best correlated with poor disease-free survival (DFS) (odds ratio, 2.492; 95% CI, 1.190–5.215; P = 0.015). In patients with oral cancer (n = 69), methylated NPY1R and NPY2R were independent prognostic factors for poor DFS, both individually and, even more so, in combination (odds ratio, 3.90; 95% CI, 1.523–9.991; P = 0.005). Similar findings were observed for NPY2R and NPY4R in patients with oropharyngeal cancer (n = 162) (odds ratio, 5.663; 95% CI, 1.507–21.28; P = 0.010).
Collapse
|