1
|
Macarrón-Palacios V, Hubrich J, do Rego Barros Fernandes Lima MA, Metzendorf NG, Kneilmann S, Trapp M, Acuna C, Patrizi A, D’Este E, Kilimann MW. Paralemmin-1 controls the nanoarchitecture of the neuronal submembrane cytoskeleton. SCIENCE ADVANCES 2025; 11:eadt3724. [PMID: 40053592 PMCID: PMC11887803 DOI: 10.1126/sciadv.adt3724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
The submembrane cytoskeleton of neurons displays a highly ordered 190-nanometer periodic actin-spectrin lattice, the membrane-associated periodic skeleton (MPS). It is involved in mechanical resilience, signaling, and action potential transmission. Here, we identify paralemmin-1 (Palm1) as a component and regulator of the MPS. Palm1 binds to the amino-terminal region of βII-spectrin, and MINFLUX microscopy localizes it in close proximity (<20 nanometers) to the actin-capping protein and MPS component adducin. Combining overexpression, knockout, and rescue experiments, we observe that the expression level of Palm1 controls the degree of periodicity of the MPS and also affects the electrophysiological properties of neurons. A single amino acid mutation (W54A) in Palm1 abolishes the MPS binding and remodeling activities of Palm1. Our findings identify Palm1 as a protein specifically dedicated to organizing the MPS and will advance the understanding of the assembly and plasticity of the actin-spectrin submembrane skeleton in general.
Collapse
Affiliation(s)
- Victor Macarrón-Palacios
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Jasmine Hubrich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | | | | | - Simon Kneilmann
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Marleen Trapp
- Schaller Research Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Claudio Acuna
- Laboratory of Neural Circuits and Behavior, Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Elisa D’Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Manfred W. Kilimann
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| |
Collapse
|
2
|
Denha SA, DeLaet NR, Abukamil AW, Alexopoulos AN, Keller AR, Atang AE, Avery AW. Molecular consequences of SCA5 mutations in the spectrin-repeat domains of β-III-spectrin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613313. [PMID: 39345584 PMCID: PMC11429872 DOI: 10.1101/2024.09.17.613313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Spinocerebellar ataxia type 5 (SCA5) mutations in the protein β-III-spectrin cluster to the N-terminal actin-binding domain (ABD) and the central spectrin-repeat domains (SRDs). We previously reported that a common molecular consequence of ABD-localized SCA5 mutations is increased actin binding. However, little is known about the molecular consequences of the SRD-localized mutations. It is known that the SRDs of β-spectrin proteins interact with α-spectrin to form an α/β-spectrin dimer. In addition, it is known that SRDs neighbouring the β-spectrin ABD enhance actin binding. Here, we tested the impact of the SRD-localized R480W and the E532_M544del mutations on the binding of β-III-spectrin to α-II-spectrin and actin. Using multiple experimental approaches, we show that both the R480W and E532_M544del mutants can bind α-II-spectrin. However, E532_M544del causes partial uncoupling of complementary SRDs in the α/β-spectrin dimer. Further, the R480W mutant forms large intracellular inclusions when co-expressed with α-II-spectrin in cells, supporting that R480W mutation grossly disrupts the α-II/β-III-spectrin physical complex. Moreover, actin-binding assays show that E532_M544del, but not R480W, increases β-III-spectrin actin binding. Altogether, these data support that SRD-localized mutations alter key interactions of β-III-spectrin with α-II-spectrin and actin.
Collapse
Affiliation(s)
- Sarah A. Denha
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| | - Naomi R. DeLaet
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| | - Abeer W. Abukamil
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| | | | - Amanda R. Keller
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| | - Alexandra E. Atang
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| | - Adam W. Avery
- Department of Chemistry, Oakland University, Rochester, MI 48309-4479, USA
| |
Collapse
|
3
|
Chang H, Chen H, Ma T, Ma K, Li Y, Suo L, Liang X, Jia K, Ma J, Li J, Sun D. Multi-omics pan-cancer study of SPTBN2 and its value as a potential therapeutic target in pancreatic cancer. Sci Rep 2024; 14:9764. [PMID: 38684762 PMCID: PMC11059406 DOI: 10.1038/s41598-024-60780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
SPTBN2 is a protein-coding gene that is closely related to the development of malignant tumors. However, its prognostic value and biological function in pan-cancer, especially pancreatic cancer (PAAD), have not been reported. In the present study, a novel exploration of the value and potential mechanism of SPTBN2 in PAAD was conducted using multi-omics in the background of pan-cancer. Via various database analysis, up-regulated expression of SPTBN2 was detected in most of the tumor tissues examined. Overexpression of SPTBN2 in PAAD and kidney renal clear cell cancer patients potentially affected overall survival, disease-specific survival, and progression-free interval. In PAAD, SPTBN2 can be used as an independent factor affecting prognosis. Mutations and amplification of SPTBN2 were detected, with abnormal methylation of SPTBN2 affecting its expression and the survival outcome of PAAD patients. Immunoassay results demonstrate that SPTBN2 was a potential biomarker for predicting therapeutic response in PAAD, and may influence the immunotherapy efficacy of PAAD by regulating levels of CD8 + T cells and neutrophil infiltration. Results from an enrichment analysis indicated that SPTBN2 may regulate the development of PAAD via immune pathways. Thus, SPTBN2 is a potential prognostic biomarker and immunotherapy target based on its crucial role in the development of PAAD.
Collapse
Affiliation(s)
- Hongliang Chang
- Division of Cholelithiasis Minimally Invasive Surgery, Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Hong Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116021, China
| | - Taiheng Ma
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116021, China
| | - Kexin Ma
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116021, China
| | - Yi Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116021, China
| | - Lida Suo
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116021, China
| | - Xiangnan Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116021, China
| | - Kunyu Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116021, China
| | - Jiahong Ma
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116021, China
| | - Jing Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116021, China
| | - Deguang Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116021, China.
| |
Collapse
|
4
|
Roopnarine O, Thomas DD. Structural Dynamics of Protein Interactions Using Site-Directed Spin Labeling of Cysteines to Measure Distances and Rotational Dynamics with EPR Spectroscopy. APPLIED MAGNETIC RESONANCE 2024; 55:79-100. [PMID: 38371230 PMCID: PMC10868710 DOI: 10.1007/s00723-023-01623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 02/20/2024]
Abstract
Here we review applications of site-directed spin labeling (SDSL) with engineered cysteines in proteins, to study the structural dynamics of muscle and non-muscle proteins, using and developing the electron paramagnetic resonance (EPR) spectroscopic techniques of dipolar EPR, double electron electron resonance (DEER), saturation transfer EPR (STEPR), and orientation measured by EPR. The SDSL technology pioneered by Wayne Hubbell and collaborators has greatly expanded the use of EPR, including the measurement of distances between spin labels covalently attached to proteins and peptides. The Thomas lab and collaborators have applied these techniques to elucidate dynamic interactions in the myosin-actin complex, myosin-binding protein C, calmodulin, ryanodine receptor, phospholamban, utrophin, dystrophin, β-III-spectrin, and Aurora kinase. The ability to design and engineer cysteines in proteins for site-directed covalent labeling has enabled the use of these powerful EPR techniques to measure distances, while showing that they are complementary with optical spectroscopy measurements.
Collapse
Affiliation(s)
- Osha Roopnarine
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Atang AE, Keller AR, Denha SA, Avery AW. Increased Actin Binding Is a Shared Molecular Consequence of Numerous SCA5 Mutations in β-III-Spectrin. Cells 2023; 12:2100. [PMID: 37626910 PMCID: PMC10453832 DOI: 10.3390/cells12162100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Spinocerebellar ataxia type 5 (SCA5) is a neurodegenerative disease caused by mutations in the SPTBN2 gene encoding the cytoskeletal protein β-III-spectrin. Previously, we demonstrated that a L253P missense mutation, localizing to the β-III-spectrin actin-binding domain (ABD), causes increased actin-binding affinity. Here we investigate the molecular consequences of nine additional ABD-localized, SCA5 missense mutations: V58M, K61E, T62I, K65E, F160C, D255G, T271I, Y272H, and H278R. We show that all of the mutations, similar to L253P, are positioned at or near the interface of the two calponin homology subdomains (CH1 and CH2) comprising the ABD. Using biochemical and biophysical approaches, we demonstrate that the mutant ABD proteins can attain a well-folded state. However, thermal denaturation studies show that all nine mutations are destabilizing, suggesting a structural disruption at the CH1-CH2 interface. Importantly, all nine mutations cause increased actin binding. The mutant actin-binding affinities vary greatly, and none of the nine mutations increase actin-binding affinity as much as L253P. ABD mutations causing high-affinity actin binding, with the notable exception of L253P, appear to be associated with an early age of symptom onset. Altogether, the data indicate that increased actin-binding affinity is a shared molecular consequence of numerous SCA5 mutations, which has important therapeutic implications.
Collapse
Affiliation(s)
| | | | | | - Adam W. Avery
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
6
|
Ibar C, Chinthalapudi K, Heissler SM, Irvine KD. Competition between myosin II and β H-spectrin regulates cytoskeletal tension. eLife 2023; 12:RP84918. [PMID: 37367948 DOI: 10.7554/elife.84918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Spectrins are membrane cytoskeletal proteins generally thought to function as heterotetramers comprising two α-spectrins and two β-spectrins. They influence cell shape and Hippo signaling, but the mechanism by which they influence Hippo signaling has remained unclear. We have investigated the role and regulation of the Drosophila β-heavy spectrin (βH-spectrin, encoded by the karst gene) in wing imaginal discs. Our results establish that βH-spectrin regulates Hippo signaling through the Jub biomechanical pathway due to its influence on cytoskeletal tension. While we find that α-spectrin also regulates Hippo signaling through Jub, unexpectedly, we find that βH-spectrin localizes and functions independently of α-spectrin. Instead, βH-spectrin co-localizes with and reciprocally regulates and is regulated by myosin. In vivo and in vitro experiments support a model in which βH-spectrin and myosin directly compete for binding to apical F-actin. This competition can explain the influence of βH-spectrin on cytoskeletal tension and myosin accumulation. It also provides new insight into how βH-spectrin participates in ratcheting mechanisms associated with cell shape change.
Collapse
Affiliation(s)
- Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, United States
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, United States
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| |
Collapse
|
7
|
Atang AE, Rebbeck RT, Thomas DD, Avery AW. Cardiomyopathy-associated variants alter the structure and function of the α-actinin-2 actin-binding domain. Biochem Biophys Res Commun 2023; 670:12-18. [PMID: 37271035 DOI: 10.1016/j.bbrc.2023.05.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023]
Abstract
Hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM) are characterized by thickening, thinning, or stiffening, respectively, of the ventricular myocardium, resulting in diastolic or systolic dysfunction that can lead to heart failure and sudden cardiac death. Recently, variants in the ACTN2 gene, encoding the protein α-actinin-2, have been reported in HCM, DCM, and RCM patients. However, functional data supporting the pathogenicity of these variants is limited, and potential mechanisms by which these variants cause disease are largely unexplored. Currently, NIH ClinVar lists 34 ACTN2 missense variants, identified in cardiomyopathy patients, which we predict are likely to disrupt actin binding, based on their localization to specific substructures in the α-actinin-2 actin binding domain (ABD). We investigated the molecular consequences of three ABD localized, HCM-associated variants: A119T, M228T and T247 M. Using circular dichroism, we demonstrate that the mutant ABD proteins can attain a well-folded state. However, thermal denaturation studies show that all three mutations are destabilizing, suggesting a structural disruption. Importantly, A119T decreased actin binding, and M228T and T247M cause increased actin binding. We suggest that altered actin binding underlies pathogenesis for cardiomyopathy mutations localizing to the ABD of α-actinin-2.
Collapse
Affiliation(s)
- Alexandra E Atang
- Department of Chemistry, Oakland University, Rochester, MI, 48309-4479, USA
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, 55455, USA
| | - Adam W Avery
- Department of Chemistry, Oakland University, Rochester, MI, 48309-4479, USA.
| |
Collapse
|
8
|
Atang AE, Keller AR, Denha SA, Avery AW. Increased actin binding is a shared molecular consequence of numerous spinocerebellar ataxia mutations in β-III-spectrin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529285. [PMID: 36865188 PMCID: PMC9980045 DOI: 10.1101/2023.02.20.529285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Spinocerebellar ataxia type 5 (SCA5) is a neurodegenerative disease caused by mutations in the SPTBN2 gene encoding the cytoskeletal protein β-III-spectrin. Previously, we demonstrated that a L253P missense mutation, localizing to the β-III-spectrin actin-binding domain (ABD), causes increased actin-binding affinity. Here we investigate the molecular consequences of nine additional ABD-localized, SCA5 missense mutations: V58M, K61E, T62I, K65E, F160C, D255G, T271I, Y272H, and H278R. We show that all of the mutations, similar to L253P, are positioned at or near the interface of the two calponin homology subdomains (CH1 and CH2) comprising the ABD. Using biochemical and biophysical approaches, we demonstrate that the mutant ABD proteins can attain a well-folded state. However, thermal denaturation studies show that all nine mutations are destabilizing, suggesting a structural disruption at the CH1-CH2 interface. Importantly, all nine mutations cause increased actin binding. The mutant actin-binding affinities vary greatly, and none of the nine mutations increase actin-binding affinity as much as L253P. ABD mutations causing high-affinity actin binding, with the notable exception of L253P, appear to be associated with early age of symptom onset. Altogether, the data indicate increased actin-binding affinity is a shared molecular consequence of numerous SCA5 mutations, which has important therapeutic implications.
Collapse
Affiliation(s)
| | - Amanda R. Keller
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Sarah A. Denha
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Adam W. Avery
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
9
|
Lorenzo DN, Edwards RJ, Slavutsky AL. Spectrins: molecular organizers and targets of neurological disorders. Nat Rev Neurosci 2023; 24:195-212. [PMID: 36697767 PMCID: PMC10598481 DOI: 10.1038/s41583-022-00674-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/26/2023]
Abstract
Spectrins are cytoskeletal proteins that are expressed ubiquitously in the mammalian nervous system. Pathogenic variants in SPTAN1, SPTBN1, SPTBN2 and SPTBN4, four of the six genes encoding neuronal spectrins, cause neurological disorders. Despite their structural similarity and shared role as molecular organizers at the cell membrane, spectrins vary in expression, subcellular localization and specialization in neurons, and this variation partly underlies non-overlapping disease presentations across spectrinopathies. Here, we summarize recent progress in discerning the local and long-range organization and diverse functions of neuronal spectrins. We provide an overview of functional studies using mouse models, which, together with growing human genetic and clinical data, are helping to illuminate the aetiology of neurological spectrinopathies. These approaches are all critical on the path to plausible therapeutic solutions.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Reginald J Edwards
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anastasia L Slavutsky
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Guhathakurta P, Rebbeck RT, Denha SA, Keller AR, Carter AL, Atang AE, Svensson B, Thomas DD, Hays TS, Avery AW. Early-phase drug discovery of β-III-spectrin actin-binding modulators for treatment of spinocerebellar ataxia type 5. J Biol Chem 2023; 299:102956. [PMID: 36731793 PMCID: PMC9978034 DOI: 10.1016/j.jbc.2023.102956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
β-III-Spectrin is a key cytoskeletal protein that localizes to the soma and dendrites of cerebellar Purkinje cells and is required for dendritic arborization and signaling. A spinocerebellar ataxia type 5 L253P mutation in the cytoskeletal protein β-III-spectrin causes high-affinity actin binding. Previously we reported a cell-based fluorescence assay for identification of small-molecule actin-binding modulators of the L253P mutant β-III-spectrin. Here we describe a complementary, in vitro, fluorescence resonance energy transfer (FRET) assay that uses purified L253P β-III-spectrin actin-binding domain (ABD) and F-actin. To validate the assay for high-throughput compatibility, we first confirmed that our 50% FRET signal was responsive to swinholide A, an actin-severing compound, and that this yielded excellent assay quality with a Z' value > 0.77. Second, we screened a 2684-compound library of US Food and Drug Administration-approved drugs. Importantly, the screening identified numerous compounds that decreased FRET between fluorescently labeled L253P ABD and F-actin. The activity and target of multiple Hit compounds were confirmed in orthologous cosedimentation actin-binding assays. Through future medicinal chemistry, the Hit compounds can potentially be developed into a spinocerebellar ataxia type 5-specific therapeutic. Furthermore, our validated FRET-based in vitro high-throughput screening platform is poised for screening large compound libraries for β-III-spectrin ABD modulators.
Collapse
Affiliation(s)
- Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah A Denha
- Department of Chemistry, Oakland University, Rochester, Michigan, USA
| | - Amanda R Keller
- Department of Chemistry, Oakland University, Rochester, Michigan, USA
| | - Anna L Carter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alexandra E Atang
- Department of Chemistry, Oakland University, Rochester, Michigan, USA
| | - Bengt Svensson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas S Hays
- Department of Genetics, Cellular Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Adam W Avery
- Department of Chemistry, Oakland University, Rochester, Michigan, USA.
| |
Collapse
|
11
|
Guhathakurta P, Carter AL, Thompson AR, Kurila D, LaFrence J, Zhang L, Trask JR, Vanderheyden B, Muretta JM, Ervasti JM, Thomas DD. Enhancing interaction of actin and actin-binding domain 1 of dystrophin with modulators: Toward improved gene therapy for Duchenne muscular dystrophy. J Biol Chem 2022; 298:102675. [PMID: 36372234 PMCID: PMC9731851 DOI: 10.1016/j.jbc.2022.102675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy is a lethal muscle disease, caused by mutations in the gene encoding dystrophin, an actin-binding cytoskeletal protein. Absence of functional dystrophin results in muscle weakness and degeneration, eventually leading to cardiac and respiratory failure. Strategies to replace the missing dystrophin via gene therapy have been intensively pursued. However, the dystrophin gene is too large for current gene therapy approaches. Currently available micro-dystrophin constructs lack the actin-binding domain 2 and show decreased actin-binding affinity in vitro compared to full-length dystrophin. Thus, increasing the actin-binding affinity of micro-dystrophin, using small molecules, could be a beneficial therapeutic approach. Here, we have developed and validated a novel high-throughput screening (HTS) assay to discover small molecules that increase the binding affinity of dystrophin's actin-binding domain 1 (ABD1). We engineered a novel FRET biosensor, consisting of the mClover3, fluorescent protein (donor) attached to the C-terminus of dystrophin ABD1, and Alexa Fluor 568 (acceptor) attached to the C-terminal cysteine of actin. We used this biosensor in small-molecule screening, using a unique high-precision, HTS fluorescence lifetime assay, identifying several compounds from an FDA-approved library that significantly increase the binding between actin and ABD1. This HTS assay establishes feasibility for the discovery of small-molecule modulators of the actin-dystrophin interaction, with the ultimate goal of developing therapies for muscular dystrophy.
Collapse
|
12
|
Denha SA, Atang AE, Hays TS, Avery AW. β-III-spectrin N-terminus is required for high-affinity actin binding and SCA5 neurotoxicity. Sci Rep 2022; 12:1726. [PMID: 35110634 PMCID: PMC8810934 DOI: 10.1038/s41598-022-05762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
Recent structural studies of β-III-spectrin and related cytoskeletal proteins revealed N-terminal sequences that directly bind actin. These sequences are variable in structure, and immediately precede a conserved actin-binding domain composed of tandem calponin homology domains (CH1 and CH2). Here we investigated in Drosophila the significance of the β-spectrin N-terminus, and explored its functional interaction with a CH2-localized L253P mutation that underlies the neurodegenerative disease spinocerebellar ataxia type 5 (SCA5). We report that pan-neuronal expression of an N-terminally truncated β-spectrin fails to rescue lethality resulting from a β-spectrin loss-of-function allele, indicating that the N-terminus is essential to β-spectrin function in vivo. Significantly, N-terminal truncation rescues neurotoxicity and defects in dendritic arborization caused by L253P. In vitro studies show that N-terminal truncation eliminates L253P-induced high-affinity actin binding, providing a mechanistic basis for rescue. These data suggest that N-terminal sequences may be useful therapeutic targets for small molecule modulation of the aberrant actin binding associated with SCA5 β-spectrin and spectrin-related disease proteins.
Collapse
Affiliation(s)
- Sarah A Denha
- Department of Chemistry, Oakland University, Rochester, MI, USA
| | | | - Thomas S Hays
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Adam W Avery
- Department of Chemistry, Oakland University, Rochester, MI, USA. .,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
13
|
Wu C, Dong B, Huang L, Liu Y, Ye G, Li S, Qi Y. SPTBN2, a New Biomarker of Lung Adenocarcinoma. Front Oncol 2021; 11:754290. [PMID: 34745988 PMCID: PMC8563792 DOI: 10.3389/fonc.2021.754290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Objectives The roles played by β-III-spectrin, also known as spectrin beta, non-erythrocytic 2 (SPTBN2), in the occurrence and development of lung adenocarcinoma (LUAD) have not been previously examined. Our study aimed to reveal the relationship between the SPTBN2 expression and LUAD. Materials and Methods Twenty pairs of LUAD tissues and adjacent tissues were collected from patients diagnosed and treated at the Thoracic Surgery Department of The First Affiliated Hospital of Zhengzhou University from July 2019 to September 2020. RNA sequencing (RNA-seq) analysis determined that the expression of SPTBN2 was higher in LUAD samples than in adjacent normal tissues. The expression levels of SPTBN2 were examined in various databases, including the Cancer Cell Line Encyclopedia (CCLE), Gene Expression Omnibus (GEO), and Human Protein Atlas (HPA). The Search Tool for the Retrieval of Interacting Genes (STRING) online website was used to examine protein–protein interactions involving SPTBN2, and the results were visualized by Cytoscape software. The Molecular Complex Detection (MCODE) plug-in for Cytoscape software was used to identify functional modules of the obtained protein–protein interaction (PPI) network. Gene enrichment analysis was performed, and survival analysis was conducted using the Kaplan–Meier plotter. The online prediction website TargetScan was used to predict SPTBN2-targeted miRNA sequences by searching for SPTBN2 sequences. Finally, we verified the expression of SPTBN2 in the obtained tissue samples using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). The human lung cancer cell lines A549 and H1299 were selected for the transfection of small interfering RNA (siRNA) targeting SPTBN2 (si-SPTBN2), and the knockdown efficiency was evaluated by RT-qPCR. The cellular proliferation, migration, and invasion capacities of A549 and H1299 cells were determined using the cell counting kit-8 (CCK-8) proliferation assay; the wound-healing assay and the Transwell migration assay; and the Matrigel invasion assay, respectively. Results The expression of SPTBN2 in non–small cell lung cancer (NSCLC) ranked 13th among cancer cell lines based on the CCLE database. At the mRNA and protein levels, the expression levels of SPTBN2 were higher in LUAD tissues than in normal lung tissues. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that proteins related to SPTBN2 were enriched in apoptotic and phagosomal pathways. Kaplan–Meier survival analysis revealed that SPTBN2 expression was significantly related to the prognosis of patients with LUAD. The TargetScan database verified that miR-16 was a negative regulator of SPTBN2 mRNA expression. The results of the CCK-8 cell proliferation assay revealed that SPTBN2 knockdown significantly inhibited the cell proliferation abilities of A549 and H1299 cells. The wound-healing assay indicated that SPTBN2 knockdown resulted in reduced migration after 48 h compared with the control group. The Transwell migration and invasion test revealed that the migration and invasion abilities were greatly decreased by SPTBN2 knockdown compared with control conditions. Conclusion We uncovered a novel gene, SPTBN2, that was significantly upregulated in LUAD tissues relative to normal tissue expression. SPTBN2 is highly expressed in LUAD, positively correlated with poor prognosis, and can promote the proliferation, migration, and invasion of LUAD cells.
Collapse
Affiliation(s)
- Chunli Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Bo Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Yafei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Guanchao Ye
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Shihao Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| |
Collapse
|
14
|
Sancho P, Andrés-Bordería A, Gorría-Redondo N, Llano K, Martínez-Rubio D, Yoldi-Petri ME, Blumkin L, Rodríguez de la Fuente P, Gil-Ortiz F, Fernández-Murga L, Sánchez-Monteagudo A, Lupo V, Pérez-Dueñas B, Espinós C, Aguilera-Albesa S. Expanding the β-III Spectrin-Associated Phenotypes toward Non-Progressive Congenital Ataxias with Neurodegeneration. Int J Mol Sci 2021; 22:ijms22052505. [PMID: 33801522 PMCID: PMC7958857 DOI: 10.3390/ijms22052505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/06/2023] Open
Abstract
(1) Background: A non-progressive congenital ataxia (NPCA) phenotype caused by β-III spectrin (SPTBN2) mutations has emerged, mimicking spinocerebellar ataxia, autosomal recessive type 14 (SCAR14). The pattern of inheritance, however, resembles that of autosomal dominant classical spinocerebellar ataxia type 5 (SCA5). (2) Methods: In-depth phenotyping of two boys studied by a customized gene panel. Candidate variants were sought by structural modeling and protein expression. An extensive review of the literature was conducted in order to better characterize the SPTBN2-associated NPCA. (3) Results: Patients exhibited an NPCA with hypotonia, developmental delay, cerebellar syndrome, and cognitive deficits. Both probands presented with progressive global cerebellar volume loss in consecutive cerebral magnetic resonance imaging studies, characterized by decreasing midsagittal vermis relative diameter measurements. Cortical hyperintensities were observed on fluid-attenuated inversion recovery (FLAIR) images, suggesting a neurodegenerative process. Each patient carried a novel de novo SPTBN2 substitution: c.193A > G (p.K65E) or c.764A > G (p.D255G). Modeling and protein expression revealed that both mutations might be deleterious. (4) Conclusions: The reported findings contribute to a better understanding of the SPTBN2-associated phenotype. The mutations may preclude proper structural organization of the actin spectrin-based membrane skeleton, which, in turn, is responsible for the underlying disease mechanism.
Collapse
Affiliation(s)
- Paula Sancho
- Unit of Rare Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (P.S.); (A.A.-B.); (D.M.-R.); (A.S.-M.); (V.L.)
| | - Amparo Andrés-Bordería
- Unit of Rare Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (P.S.); (A.A.-B.); (D.M.-R.); (A.S.-M.); (V.L.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Nerea Gorría-Redondo
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain; (N.G.-R.); (M.E.Y.-P.)
| | - Katia Llano
- Clinical Psychology, Department of Psychiatry, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain;
| | - Dolores Martínez-Rubio
- Unit of Rare Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (P.S.); (A.A.-B.); (D.M.-R.); (A.S.-M.); (V.L.)
| | - María Eugenia Yoldi-Petri
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain; (N.G.-R.); (M.E.Y.-P.)
| | - Luba Blumkin
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Sackler School of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel;
| | | | | | | | - Ana Sánchez-Monteagudo
- Unit of Rare Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (P.S.); (A.A.-B.); (D.M.-R.); (A.S.-M.); (V.L.)
| | - Vincenzo Lupo
- Unit of Rare Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (P.S.); (A.A.-B.); (D.M.-R.); (A.S.-M.); (V.L.)
| | - Belén Pérez-Dueñas
- Pediatric Neurology Research Group, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Carmen Espinós
- Unit of Rare Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (P.S.); (A.A.-B.); (D.M.-R.); (A.S.-M.); (V.L.)
- Correspondence: (C.E.); (S.A.-A.); Tel.: +34-963-289-680 (C.E.); +34-848-422-563 (S.A.-A.)
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain; (N.G.-R.); (M.E.Y.-P.)
- Navarrabiomed-Fundación Miguel Servet, 31008 Pamplona, Spain
- Correspondence: (C.E.); (S.A.-A.); Tel.: +34-963-289-680 (C.E.); +34-848-422-563 (S.A.-A.)
| |
Collapse
|
15
|
Rebbeck RT, Andrick AK, Denha SA, Svensson B, Guhathakurta P, Thomas DD, Hays TS, Avery AW. Novel drug discovery platform for spinocerebellar ataxia, using fluorescence technology targeting β-III-spectrin. J Biol Chem 2021; 296:100215. [PMID: 33839680 PMCID: PMC7948455 DOI: 10.1074/jbc.ra120.015417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 02/02/2023] Open
Abstract
Numerous diseases are linked to mutations in the actin-binding domains (ABDs) of conserved cytoskeletal proteins, including β-III-spectrin, α-actinin, filamin, and dystrophin. A β-III-spectrin ABD mutation (L253P) linked to spinocerebellar ataxia type 5 (SCA5) causes a dramatic increase in actin binding. Reducing actin binding of L253P is thus a potential therapeutic approach for SCA5 pathogenesis. Here, we validate a high-throughput screening (HTS) assay to discover potential disrupters of the interaction between the mutant β-III-spectrin ABD and actin in live cells. This assay monitors FRET between fluorescent proteins fused to the mutant ABD and the actin-binding peptide Lifeact, in HEK293-6E cells. Using a specific and high-affinity actin-binding tool compound, swinholide A, we demonstrate HTS compatibility with an excellent Z'-factor of 0.67 ± 0.03. Screening a library of 1280 pharmacologically active compounds in 1536-well plates to determine assay robustness, we demonstrate high reproducibility across plates and across days. We identified nine Hits that reduced FRET between Lifeact and ABD. Four of those Hits were found to reduce Lifeact cosedimentation with actin, thus establishing the potential of our assay for detection of actin-binding modulators. Concurrent to our primary FRET assay, we also developed a high-throughput compatible counter screen to remove undesirable FRET Hits. Using the FRET Hits, we show that our counter screen is sensitive to undesirable compounds that cause cell toxicity or ABD aggregation. Overall, our FRET-based HTS platform sets the stage to screen large compound libraries for modulators of β-III-spectrin, or disease-linked spectrin-related proteins, for therapeutic development.
Collapse
Affiliation(s)
- Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna K Andrick
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah A Denha
- Department of Chemistry, Oakland University, Rochester, Michigan, USA
| | - Bengt Svensson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas S Hays
- Department of Genetics, Cellular Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Adam W Avery
- Department of Chemistry, Oakland University, Rochester, Michigan, USA; Department of Genetics, Cellular Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
16
|
Readhead B, Haure-Mirande JV, Mastroeni D, Audrain M, Fanutza T, Kim SH, Blitzer RD, Gandy S, Dudley JT, Ehrlich ME. miR155 regulation of behavior, neuropathology, and cortical transcriptomics in Alzheimer's disease. Acta Neuropathol 2020; 140:295-315. [PMID: 32666270 PMCID: PMC8414561 DOI: 10.1007/s00401-020-02185-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs are recognized as important regulators of many facets of physiological brain function while also being implicated in the pathogenesis of several neurological disorders. Dysregulation of miR155 is widely reported across a variety of neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, and traumatic brain injury. In previous work, we observed that experimentally validated miR155 gene targets were consistently enriched among genes identified as differentially expressed across multiple brain tissue and disease contexts. In particular, we found that human herpesvirus-6A (HHV-6A) suppressed miR155, recapitulating reports of miR155 inhibition by HHV-6A in infected T-cells, thyrocytes, and natural killer cells. In earlier studies, we also reported the effects of constitutive deletion of miR155 on accelerating the accumulation of Aβ deposits in 4-month-old APP/PSEN1 mice. Herein, we complete the cumulative characterization of transcriptomic, electrophysiological, neuropathological, and learning behavior profiles from 4-, 8- and 10-month-old WT and APP/PSEN1 mice in the absence or presence of miR155. We also integrated human post-mortem brain RNA-sequences from four independent AD consortium studies, together comprising 928 samples collected from six brain regions. We report that gene expression perturbations associated with miR155 deletion in mouse cortex are in aggregate observed to be concordant with AD-associated changes across these independent human late-onset AD (LOAD) data sets, supporting the relevance of our findings to human disease. LOAD has recently been formulated as the clinicopathological manifestation of a multiplex of genetic underpinnings and pathophysiological mechanisms. Our accumulated data are consistent with such a formulation, indicating that miR155 may be uniquely positioned at the intersection of at least four components of this LOAD "multiplex": (1) innate immune response pathways; (2) viral response gene networks; (3) synaptic pathology; and (4) proamyloidogenic pathways involving the amyloid β peptide (Aβ).
Collapse
Affiliation(s)
- Ben Readhead
- Arizona State University-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Diego Mastroeni
- Arizona State University-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tomas Fanutza
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Soong H Kim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert D Blitzer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alzheimer's Disease Research Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Cognitive Health and NFL Neurological Care, Department of Neurology, New York, NY, 10029, USA
- James J. Peters VA Medical Center, 130 West Kingsbridge Road, New York, NY, 10468, USA
| | - Joel T Dudley
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Michelle E Ehrlich
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
17
|
Upadhyay V, Bandi S, Panja S, Saba L, Mallela KMG. Tissue-Specificity of Dystrophin-Actin Interactions: Isoform-Specific Thermodynamic Stability and Actin-Binding Function of Tandem Calponin-Homology Domains. ACS OMEGA 2020; 5:2159-2168. [PMID: 32064376 PMCID: PMC7016916 DOI: 10.1021/acsomega.9b02911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Genetic mutations in Duchenne muscular dystrophy (DMD) gene affecting the expression of dystrophin protein lead to a number of muscle disorders collectively called dystrophinopathies. In addition to muscle dystrophin, mutations in brain-specific dystrophin isoforms, in particular those that are expressed in the brain cortex and Purkinje neurons, result in cognitive impairment associated with DMD. These isoforms carry minor variations in the flanking region of the N-terminal actin-binding domain (ABD1) of dystrophin, which is composed of two calponin-homology (CH) domains in tandem. Determining the effect of these sequence variations is critical for understanding the mechanisms that govern varied symptoms of the disease. We studied the impact of differences in the N-terminal flanking region on the structure and function of dystrophin tandem CH domain isoforms. The amino acid changes did not affect the global structure of the protein but drastically affected the thermodynamic stability, with the muscle isoform more stable than the brain and Purkinje isoforms. Actin binding investigated with actin from different sources (skeletal muscle, smooth muscle, cardiac muscle, and platelets) revealed that the muscle isoform binds to filamentous actin (F-actin) with a lower affinity compared to the brain and Purkinje isoforms, and a similar trend was observed with actin from different sources. In addition, all isoforms showed a higher affinity to smooth muscle actin in comparison to actin from other sources. In conclusion, tandem CH domain isoforms might be using minor sequence variations in the N-terminal flanking regions to modulate their thermodynamic stability and actin-binding function, thus leading to specificity in dystrophin-actin interactions in various tissues.
Collapse
|
18
|
Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders. Cells 2020; 9:cells9020358. [PMID: 32033020 PMCID: PMC7072452 DOI: 10.3390/cells9020358] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023] Open
Abstract
Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures within neurons (cell bodies and axons), which allow their proper development and function through life. Here, we will provide an overview of both the basic and novel concepts related to those cytoskeletal proteins, which are emerging as potential targets in the study of the pathophysiological mechanisms underlying neurological disorders.
Collapse
|
19
|
Fealey ME, Horn B, Coffman C, Miller R, Lin AY, Thompson AR, Schramel J, Groth E, Hinderliter A, Cembran A, Thomas DD. Dynamics of Dystrophin's Actin-Binding Domain. Biophys J 2018; 115:445-454. [PMID: 30007583 DOI: 10.1016/j.bpj.2018.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 01/30/2023] Open
Abstract
We have used pulsed electron paramagnetic resonance, calorimetry, and molecular dynamics simulations to examine the structural mechanism of binding for dystrophin's N-terminal actin-binding domain (ABD1) and compare it to utrophin's ABD1. Like other members of the spectrin superfamily, dystrophin's ABD1 consists of two calponin-homology (CH) domains, CH1 and CH2. Several mutations within dystrophin's ABD1 are associated with the development of severe degenerative muscle disorders Duchenne and Becker muscular dystrophies, highlighting the importance of understanding its structural biology. To investigate structural changes within dystrophin ABD1 upon binding to actin, we labeled the protein with spin probes and measured changes in inter-CH domain distance using double-electron electron resonance. Previous studies on the homologous protein utrophin showed that actin binding induces a complete structural opening of the CH domains, resulting in a highly ordered ABD1-actin complex. In this study, double-electron electron resonance shows that dystrophin ABD1 also undergoes a conformational opening upon binding F-actin, but this change is less complete and significantly more structurally disordered than observed for utrophin. Using molecular dynamics simulations, we identified a hinge in the linker region between the two CH domains that grants conformational flexibility to ABD1. The conformational dynamics of both dystrophin's and utrophin's ABD1 showed that compact conformations driven by hydrophobic interactions are preferred and that extended conformations are energetically accessible through a flat free-energy surface. Considering that the binding free energy of ABD1 to actin is on the order of 6-7 kcal/mole, our data are compatible with a mechanism in which binding to actin is largely dictated by specific interactions with CH1, but fine tuning of the binding affinity is achieved by the overlap between conformational ensembles of ABD1 free and bound to actin.
Collapse
Affiliation(s)
- Michael E Fealey
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Benjamin Horn
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Christian Coffman
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Robert Miller
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Ava Y Lin
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Justine Schramel
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Erin Groth
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Anne Hinderliter
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
20
|
Structural basis for high-affinity actin binding revealed by a β-III-spectrin SCA5 missense mutation. Nat Commun 2017; 8:1350. [PMID: 29116080 PMCID: PMC5676748 DOI: 10.1038/s41467-017-01367-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/08/2017] [Indexed: 12/24/2022] Open
Abstract
Spinocerebellar ataxia type 5 (SCA5) is a neurodegenerative disease caused by mutations in the cytoskeletal protein β-III-spectrin. Previously, a SCA5 mutation resulting in a leucine-to-proline substitution (L253P) in the actin-binding domain (ABD) was shown to cause a 1000-fold increase in actin-binding affinity. However, the structural basis for this increase is unknown. Here, we report a 6.9 Å cryo-EM structure of F-actin complexed with the L253P ABD. This structure, along with co-sedimentation and pulsed-EPR measurements, demonstrates that high-affinity binding caused by the CH2-localized mutation is due to opening of the two CH domains. This enables CH1 to bind actin aided by an unstructured N-terminal region that becomes α-helical upon binding. This helix is required for association with actin as truncation eliminates binding. Collectively, these results shed light on the mechanism by which β-III-spectrin, and likely similar actin-binding proteins, interact with actin, and how this mechanism can be perturbed to cause disease.
Collapse
|
21
|
β-III-spectrin spinocerebellar ataxia type 5 mutation reveals a dominant cytoskeletal mechanism that underlies dendritic arborization. Proc Natl Acad Sci U S A 2017; 114:E9376-E9385. [PMID: 29078305 DOI: 10.1073/pnas.1707108114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A spinocerebellar ataxia type 5 (SCA5) L253P mutation in the actin-binding domain (ABD) of β-III-spectrin causes high-affinity actin binding and decreased thermal stability in vitro. Here we show in mammalian cells, at physiological temperature, that the mutant ABD retains high-affinity actin binding. Significantly, we provide evidence that the mutation alters the mobility and recruitment of β-III-spectrin in mammalian cells, pointing to a potential disease mechanism. To explore this mechanism, we developed a Drosophila SCA5 model in which an equivalent mutant Drosophila β-spectrin is expressed in neurons that extend complex dendritic arbors, such as Purkinje cells, targeted in SCA5 pathogenesis. The mutation causes a proximal shift in arborization coincident with decreased β-spectrin localization in distal dendrites. We show that SCA5 β-spectrin dominantly mislocalizes α-spectrin and ankyrin-2, components of the endogenous spectrin cytoskeleton. Our data suggest that high-affinity actin binding by SCA5 β-spectrin interferes with spectrin-actin cytoskeleton dynamics, leading to a loss of a cytoskeletal mechanism in distal dendrites required for dendrite stabilization and arbor outgrowth.
Collapse
|
22
|
Singh SM, Bandi S, Mallela KMG. The N-Terminal Flanking Region Modulates the Actin Binding Affinity of the Utrophin Tandem Calponin-Homology Domain. Biochemistry 2017; 56:2627-2636. [PMID: 28443334 DOI: 10.1021/acs.biochem.6b01117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite sharing a high degree of sequence similarity, the tandem calponin-homology (CH) domain of utrophin binds to actin 30 times stronger than that of dystrophin. We have previously shown that this difference in actin binding affinity could not be ascribed to the differences in inter-CH-domain linkers [Bandi, S., et al. (2015) Biochemistry 54, 5480-5488]. Here, we examined the role of the N-terminal flanking region. The utrophin tandem CH domain contains a 27-residue flanking region before its CH1 domain. We examined its effect by comparing the structure and function of full-length utrophin tandem CH domain Utr(1-261) and its truncated Utr(28-261) construct. Both full-length and truncated constructs are monomers in solution, with no significant differences in their secondary or tertiary structures. Truncated construct Utr(28-261) binds to actin 30 times weaker than that of the full-length Utr(1-261), similar to that of the dystrophin tandem CH domain with a much shorter flanking region. Deletion of the N-terminal flanking region stabilizes the CH1 domain. The magnitude of the change in binding free energy upon truncation is similar to that of the change in thermodynamic stability. The isolated N-terminal peptide by itself is significantly random coil and does not bind to F-actin in the affinity range of Utr(1-261) and Utr(28-261). These results indicate that the N-terminal flanking region significantly affects the actin binding affinity of tandem CH domains. This observation further stresses that protein regions other than the three actin-binding surfaces identified earlier, irrespective of whether they directly bind to actin, also contribute to the actin binding affinity of tandem CH domains.
Collapse
Affiliation(s)
- Surinder M Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, and ‡Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus , 12850 East Montview Boulevard, MS C238, Aurora, Colorado 80045, United States
| | - Swati Bandi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, and ‡Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus , 12850 East Montview Boulevard, MS C238, Aurora, Colorado 80045, United States
| | - Krishna M G Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, and ‡Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus , 12850 East Montview Boulevard, MS C238, Aurora, Colorado 80045, United States
| |
Collapse
|