1
|
Tabish TA, Hussain MZ, Zervou S, Myers WK, Tu W, Xu J, Beer I, Huang WE, Chandrawati R, Crabtree MJ, Winyard PG, Lygate CA. S-nitrosocysteamine-functionalised porous graphene oxide nanosheets as nitric oxide delivery vehicles for cardiovascular applications. Redox Biol 2024; 72:103144. [PMID: 38613920 PMCID: PMC11026843 DOI: 10.1016/j.redox.2024.103144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024] Open
Abstract
Nitric oxide (NO) is a key signalling molecule released by vascular endothelial cells that is essential for vascular health. Low NO bioactivity is associated with cardiovascular diseases, such as hypertension, atherosclerosis, and heart failure and NO donors are a mainstay of drug treatment. However, many NO donors are associated with the development of tolerance and adverse effects, so new formulations for controlled and targeted release of NO would be advantageous. Herein, we describe the design and characterisation of a novel NO delivery system via the reaction of acidified sodium nitrite with thiol groups that had been introduced by cysteamine conjugation to porous graphene oxide nanosheets, thereby generating S-nitrosated nanosheets. An NO electrode, ozone-based chemiluminescence and electron paramagnetic resonance spectroscopy were used to measure NO released from various graphene formulations, which was sustained at >5 × 10-10 mol cm-2 min-1 for at least 3 h, compared with healthy endothelium (cf. 0.5-4 × 10-10 mol cm-2 min-1). Single cell Raman micro-spectroscopy showed that vascular endothelial and smooth muscle cells (SMCs) took up graphene nanostructures, with intracellular NO release detected via a fluorescent NO-specific probe. Functionalised graphene had a dose-dependent effect to promote proliferation in endothelial cells and to inhibit growth in SMCs, which was associated with cGMP release indicating intracellular activation of canonical NO signalling. Chemiluminescence detected negligible production of toxic N-nitrosamines. Our findings demonstrate the utility of porous graphene oxide as a NO delivery vehicle to release physiologically relevant amounts of NO in vitro, thereby highlighting the potential of these formulations as a strategy for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Headington, Oxford, OX3 7BN, United Kingdom.
| | - Mian Zahid Hussain
- School of Natural Sciences and Catalysis Research Centre, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich (TUM), Lichtenbergstraße 4, 85748, Garching, Germany
| | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Headington, Oxford, OX3 7BN, United Kingdom
| | - William K Myers
- Centre for Advanced Electron Spin Resonance (CAESR), Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, United Kingdom
| | - Weiming Tu
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, United Kingdom
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, United Kingdom; James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Irina Beer
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, United Kingdom
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Mark J Crabtree
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Headington, Oxford, OX3 7BN, United Kingdom; Department of Biochemical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Paul G Winyard
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Headington, Oxford, OX3 7BN, United Kingdom
| |
Collapse
|
2
|
Jha RK, Bhunia H, Basu S. Enhancing CO 2 capture through innovating monolithic graphene oxide frameworks. ENVIRONMENTAL RESEARCH 2024; 249:118426. [PMID: 38342202 DOI: 10.1016/j.envres.2024.118426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
The advancement and engineering of novel crystalline materials is facilitated through the utilization of innovative porous crystalline structures, established via KOH-treated monolithic graphene oxide frameworks. These materials exhibit remarkable and versatile characteristics for both functional exploration and applications within the realm of CO2 capture. In this comprehensive study, we have synthesized monolithic reduced graphene oxide-based adsorbents through a meticulous self-assembly process involving different mass ratios of GO/malic acid (MaA) (1:0.250, 1:0.500, and 1:1 by weight). Building upon this foundation, we further modified MGO 0.250 through KOH-treatment by chloroacetic acid method, leading to the creation of MGO 0.250_KOH, which was subjected to CO2 capture assessments. The comprehensive investigation encompassed an array of parameters including morphology, specific surface area, crystal defects, functional group identification, and CO2 capture efficiency. Employing a combination of FT-IR, XRD, Raman, BET, SEM, HR-TEM, and XPS techniques, the study revealed profound insights. Particularly notable was the observation that the MGO 0.250_KOH adsorbent exhibited an exceptional CO2 capture performance, leading to a significant enhancement of the CO2 capture capacity from 1.69 mmol g-1 to 2.35 mmol g-1 at standard conditions of 25 °C and 1 bar pressure. This performance enhancement was concomitant with an augmentation in surface area, elevating from 287.93 to 419.75 m2 g-1 (a nearly 1.5-fold increase compared to MGO 1.000 with a surface area of 287.93 m2 g-1). The monolithic adsorbent demonstrated a commendable production yield of 82.92%, along with an impressive regenerability of 98.80% at 100 °C. Additionally, adsorbent's proficiency in CO2 adsorption, rendering it a promising candidate for post-combustion CO2 capture applications. These findings collectively underscore the capacity adsorbents to significantly amplify CO2 capture capabilities. The viability of employing this strategy as an uncomplicated pre-treatment technique in various industrial sectors is a plausible prospect, given the study's outcomes.
Collapse
Affiliation(s)
- Ranjeet Kumar Jha
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Haripada Bhunia
- Department of Chemical Engineering, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India.
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
3
|
Barbarin I, Fidanchevska M, Politakos N, Serrano-Cantador L, Cecilia JA, Martín D, Sanz O, Tomovska R. Resembling Graphene/Polymer Aerogel Morphology for Advancing the CO 2/N 2 Selectivity of the Postcombustion CO 2 Capture Process. Ind Eng Chem Res 2024; 63:7073-7087. [PMID: 38681868 PMCID: PMC11048490 DOI: 10.1021/acs.iecr.3c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
The separation of CO2 from N2 remains a highly challenging task in postcombustion CO2 capture processes, primarily due to the relatively low CO2 content (3-15%) compared to that of N2 (70%). This challenge is particularly prominent for carbon-based adsorbents that exhibit relatively low selectivity. In this study, we present a successfully implemented strategy to enhance the selectivity of composite aerogels made of reduced graphene oxide (rGO) and functionalized polymer particles. Considering that the CO2/N2 selectivity of the aerogels is affected on the one hand by the surface chemistry (offering more sites for CO2 capture) and fine-tuned microporosity (offering molecular sieve effect), both of these parameters were affected in situ during the synthesis process. The resulting aerogels exhibit improved CO2 adsorption capacity and a significant reduction in N2 adsorption at a temperature of 25 °C and 1 atm, leading to a more than 10-fold increase in selectivity compared to the reference material. This achievement represents the highest selectivity reported thus far for carbon-based adsorbents. Detailed characterization of the aerogel surfaces has revealed an increase in the quantity of surface oxygen functional groups, as well as an augmentation in the fractions of micropores (<2 nm) and small mesopores (<5 nm) as a result of the modified synthesis methodology. Additionally, it was found that the surface morphology of the aerogels has undergone important changes. The reference materials feature a surface rich in curved wrinkles with an approximate diameter of 100 nm, resulting in a selectivity range of 50-100. In contrast, the novel aerogels exhibit a higher degree of oxidation, rendering them stiffer and less elastic, resembling crumpled paper morphology. This transformation, along with the improved functionalization and augmented microporosity in the altered aerogels, has rendered the aerogels almost completely N2-phobic, with selectivity values ranging from 470 to 621. This finding provides experimental evidence for the theoretically predicted relationship between the elasticity of graphene-based adsorbents and their CO2/N2 selectivity performance. It introduces a new perspective on the issue of N2-phobicity. The outstanding performance achieved, including a CO2 adsorption capacity of nearly 2 mmol/g and the highest selectivity of 620, positions these composites as highly promising materials in the field of carbon capture and sequestration (CCS) postcombustion technology.
Collapse
Affiliation(s)
- Iranzu Barbarin
- POLYMAT
and Department of Applied Chemistry, University
of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Monika Fidanchevska
- POLYMAT
and Department of Applied Chemistry, University
of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Nikolaos Politakos
- POLYMAT
and Department of Applied Chemistry, University
of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Luis Serrano-Cantador
- Biopren
Group, Inorganic Chemistry and Chemical Engineering Department, Nanochemistry University Institute (IUNAN), Universidad
de Córdoba, 14014 Córdoba, Spain
| | - Juan Antonio Cecilia
- Inorganic
Chemistry, Crystallography and Mineralogy, University of Málaga, 29071 Málaga, Spain
| | - Dolores Martín
- Macrobehaviour-Mesostructure-Nanotechnology
SGIker Service, Faculty of Engineering of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| | - Oihane Sanz
- Department
of Applied Chemistry, University of the
Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Radmila Tomovska
- POLYMAT
and Department of Applied Chemistry, University
of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
4
|
Jha RK, Bhunia H, Basu S. Experimental kinetics and thermodynamics investigation: Chemically activated carbon-enriched monolithic reduced graphene oxide for efficient CO 2 capture. Heliyon 2024; 10:e27439. [PMID: 38463862 PMCID: PMC10923840 DOI: 10.1016/j.heliyon.2024.e27439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
In this research, we have developed solid MGOs by self-assembled reduction process of GO at 90 °C with different weight ratios of oxalic acid (1:1, 1:0.500, and 1:0.250). The as-synthesized monoliths were carbonized (at 600 °C) and chemically activated with varying proportions of NaOH (1:1, 1:2, and 1:3). This materials offer the CO2 adsorption effect under dynamic conditions, fast mass transfer, easy handling, and outstanding stability throughout the adsorption-desorption cycle. FE-SEM, and HR-TEM analyses confirmed the porous nature and shape of the adsorbents, while XPS examination revealed the presence of distinct functional groups on the surface of the monolith. By increasing the mass ratios (MGO:NaOH) from 1:1 to 1:2, the surface areas increased by approximately 2.6 times, ranging from 520.8 to 753.9 m2 g⁻1 (surface area of the untreated MGO was 289.2 m2 g⁻1). Consequently, this resulted in a notable enhancement of 2.10 mmol g⁻1 in dynamic CO2 capture capacity. The assessment encompassed the evaluation of production yield, selectivity, regenerability, kinetics, equilibrium isotherm, and isosteric temperatures of adsorption (Qst). The decrease in CO2 capture effectiveness with rising adsorption temperature indicated an exothermic and physisorption process. The regenerability of 99.1 % at 100 °C and excellent cyclic stability with efficient CO2 adsorption make this monolithic adsorbent appropriate for post-combustion CO2 capture. The significant Qst lend support to the heterogeneity of the adsorbent's surface, and the pseudo-second-order kinetic model along with the Freundlich isotherm model emerged as the most fitting. Therefore, the current investigation shows that the carbon-enriched adsorbents enhance the CO2 adsorption capacity. It may be used as a low-cost pretreatment method on an industrial scale before carbon capture.
Collapse
Affiliation(s)
- Ranjeet Kumar Jha
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India
| | - Haripada Bhunia
- Department of Chemical Engineering, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India
| | - Soumen Basu
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India
| |
Collapse
|
5
|
Rashid MI, Yaqoob Z, Mujtaba M, Fayaz H, Saleel CA. Developments in mineral carbonation for Carbon sequestration. Heliyon 2023; 9:e21796. [PMID: 38027886 PMCID: PMC10660523 DOI: 10.1016/j.heliyon.2023.e21796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Mineral technology has attracted significant attention in recent decades. Mineral carbonation technology is being used for permanent sequestration of CO2 (greenhouse gas). Temperature programmed desorption studies showed interaction of CO2 with Mg indicating possibility of using natural feedstocks for mineral carbonation. Soaking is effective to increase yields of heat-activated materials. This review covers the latest developments in mineral carbonation technology. In this review, development in carbonation of natural minerals, effect of soaking on raw and heat-activated dunite, increasing reactivity of minerals, thermal activation, carbonations of waste materials, increasing efficiency of carbonation process and pilot plants on mineral carbonation are discussed. Developments in carbonation processes (single-stage carbonation, two-stage carbonation, acid dissolution, ph swing process) and pre-process and concurrent grinding are elaborated. This review also highlights future research required in mineral carbonation technology.
Collapse
Affiliation(s)
- Muhammad Imran Rashid
- Chemical, Polymer and Composite Materials Engineering Department, University of Engineering and Technology, Lahore (New Campus), 39021, Pakistan
- Discipline of Chemical Engineering, University of Newcastle, Callaghan NSW 2308, Australia
| | - Zahida Yaqoob
- Department of Material Science and Engineering, Institute of Space Technology, Islamabad, 44000, Pakistan
| | - M.A. Mujtaba
- Department of Mechanical Engineering, University of Engineering and Technology (New Campus), Lahore 54890, Pakistan
| | - H. Fayaz
- Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - C Ahamed Saleel
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Asir-Abha 61421, Saudi Arabia
| |
Collapse
|
6
|
Arango Hoyos BE, Osorio HF, Valencia Gómez EK, Guerrero Sánchez J, Del Canto Palominos AP, Larrain FA, Prías Barragán JJ. Exploring the capture and desorption of CO 2 on graphene oxide foams supported by computational calculations. Sci Rep 2023; 13:14476. [PMID: 37660192 PMCID: PMC10475065 DOI: 10.1038/s41598-023-41683-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023] Open
Abstract
In the last decade, the highest levels of greenhouse gases (GHG) in the atmosphere have been recorded, with carbon dioxide (CO2) being one of the GHGs that most concerns mankind due to the rate at which it is generated on the planet. Given its long time of permanence in the atmosphere (between 100 to 150 years); this has deployed research in the scientific field focused on the absorption and desorption of CO2 in the atmosphere. This work presents the study of CO2 adsorption employing materials based on graphene oxide (GO), such as GO foams with different oxidation percentages (3.00%, 5.25%, and 9.00%) in their structure, obtained via an environmentally friendly method. The characterization of CO2 adsorption was carried out in a closed system, within which were placed the GO foams and other CO2 adsorbent materials (zeolite and silica gel). Through a controlled chemical reaction, production of CO2 was conducted to obtain CO2 concentration curves inside the system and calculate from these the efficiency, obtained between 86.28 and 92.20%, yield between 60.10 and 99.50%, and effectiveness of CO2 adsorption of the materials under study. The results obtained suggest that GO foams are a promising material for carbon capture and the future development of a new clean technology, given their highest CO2 adsorption efficiency and yield.
Collapse
Affiliation(s)
- Bryan E Arango Hoyos
- Energy Engineering, Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
| | - H Franco Osorio
- Electronic Instrumentation Technology Program, Faculty of Basic Science and Technology, Universidad del Quindío, 630001, Armenia, Colombia
| | - E K Valencia Gómez
- Doctoral Program in Physical Sciences, Interdisciplinary Institute of Sciences, Universidad del Quindío, 630004, Armenia, Colombia
| | - J Guerrero Sánchez
- Virtual Materials Modeling Laboratory (LVMM), Center for Nanoscience and Nanotechnology, Universidad Nacional Autónoma de México, Ensenada, 22860, Mexico
| | - A P Del Canto Palominos
- Energy Engineering, Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
| | - Felipe A Larrain
- Energy Engineering, Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, 7941169, Santiago, Chile
| | - J J Prías Barragán
- Electronic Instrumentation Technology Program, Faculty of Basic Science and Technology, Universidad del Quindío, 630001, Armenia, Colombia.
- Doctoral Program in Physical Sciences, Interdisciplinary Institute of Sciences, Universidad del Quindío, 630004, Armenia, Colombia.
| |
Collapse
|
7
|
Mohamadi S, Naderian A, Nazari B. Evaluation of different organic solvents adsorption by porous ammonium-treated graphene and graphene oxide sponges. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Mankar JS, Rayalu SS, Balasubramanian R, Krupadam RJ. High performance CO 2 capture at elevated temperatures by using cenospheres prepared from solid waste, fly ash. CHEMOSPHERE 2021; 284:131405. [PMID: 34225122 DOI: 10.1016/j.chemosphere.2021.131405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Cenospheres (CS) are spherical shaped inorganic frameworks present in with fly ash which is generated from coal-fired thermal power plants. These spherical structures were functionalized with imidazole and amine moieties to capture CO2 selectively from flue gases at elevated temperature. The functionalized CS have shown a high selectivity for CO2 adsorption (4.68 mmol g-1) over N2 (0.46 mmol g-1) at 333 K/1 bar from a simulated flue gas (0.15 CO2 and 0.85 N2, v%) composition of thermal power plants. When the moisture content reached to 30 vol% the adsorption capacity of CS materials was reduced to 20 vol% as compared to dry flue gas. The functionalized CS can be used repeatedly for 50 cycles without losing its adsorption capacity. The cost estimate for CO2 capture by using the proposed adsorption system would be $12.01/ton of CO2 which is lower as compared to amine absorption system and zeolite-based adsorption system reported in the literature. The CS materials are prepared from solid wastes reduce the cost of production and their large scale manufacturing is technically feasible to capture CO2 from industrial flue gases efficiently in near future.
Collapse
Affiliation(s)
- Juili S Mankar
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
| | - Sadhana S Rayalu
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117575, Singapore
| | - Reddithota J Krupadam
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India.
| |
Collapse
|
9
|
Medesety P, Gade HM, Singh NK, Wanjari PP. Highly selective carbon capture by novel graphene-carbon nanotube hybrids. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1968391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Padmesh Medesety
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, India
| | - Hrushikesh M. Gade
- Department of Chemical Engineering, Malaviya National Institute of Technology (MNIT), Jaipur, India
| | - Nitin Kumar Singh
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, India
| | - Piyush P. Wanjari
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, India
| |
Collapse
|
10
|
Rajput NS, Al Zadjali S, Gutierrez M, Esawi AMK, Al Teneiji M. Synthesis of holey graphene for advanced nanotechnological applications. RSC Adv 2021; 11:27381-27405. [PMID: 35480691 PMCID: PMC9037835 DOI: 10.1039/d1ra05157a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
Holey or porous graphene, a structural derivative of graphene, has attracted immense attention due to its unique properties and potential applications in different branches of science and technology. In this review, the synthesis methods of holey or porous graphene/graphene oxide are systematically summarized and their potential applications in different areas are discussed. The process-structure-applications are explained, which helps relate the synthesis approaches to their corresponding key applications. The review paper is anticipated to benefit the readers in understanding the different synthesis methods of holey graphene, their key parameters to control the pore size distribution, advantages and limitations, and their potential applications in various fields.
Collapse
Affiliation(s)
- Nitul S Rajput
- Advanced Materials Research Center, Technology Innovation Institute Building B04C Abu Dhabi 9639 United Arab Emirates
| | - Shroq Al Zadjali
- Advanced Materials Research Center, Technology Innovation Institute Building B04C Abu Dhabi 9639 United Arab Emirates
| | - Monserrat Gutierrez
- Advanced Materials Research Center, Technology Innovation Institute Building B04C Abu Dhabi 9639 United Arab Emirates
| | - Amal M K Esawi
- Department of Mechanical Engineering, School of Sciences and Engineering, The American University in Cairo Cairo 11835 Egypt
| | - Mohamed Al Teneiji
- Advanced Materials Research Center, Technology Innovation Institute Building B04C Abu Dhabi 9639 United Arab Emirates
| |
Collapse
|
11
|
Almarasy AA, Hayasaki T, Abiko Y, Kawabata Y, Akasaka S, Fujimori A. Comparison of characteristics of single-walled carbon nanotubes obtained by super-growth CVD and improved-arc discharge methods pertaining to interfacial film formation and nanohybridization with polymers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Panda D, Saini C, Kumar EA, Singh SK. In situ casting of rice husk ash in metal organic frameworks induces enhanced CO 2 capture performance. Sci Rep 2020; 10:20219. [PMID: 33214652 PMCID: PMC7678836 DOI: 10.1038/s41598-020-77213-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/08/2020] [Indexed: 12/02/2022] Open
Abstract
Incorporation of rice-husk-ash (RHA), an agricultural waste, in situ during the synthesis of MIL-101(Cr) resulted in a significant improvement in the CO2 adsorption properties over the synthesized RHA-MIL-101(Cr). The newly synthesized RHA-MIL-101(Cr) composite exhibited an enhancement of 14-27% in CO2 adsorption capacity as compared to MIL-101(Cr) at 25 °C and 1 bar. The content of RHA incorporated in RHA-MIL-101(Cr) fine tuned the CO2 capture performance to achieve high working capacity (0.54 mmol g-1), high purity (78%), superior CO2/N2 selectivity (18) and low isosteric heat of adsorption (20-30 kJ mol-1). The observed superior CO2 adsorption performance of RHA-MIL-101(Cr) is attributed to the fine tuning of textural characteristics-enhancement of 12-27% in BET surface area, 12-33% in total pore volume and 18-30% in micropore volume-upon incorporation of RHA in MIL-101(Cr).
Collapse
Affiliation(s)
- Debashis Panda
- Discipline of Mechanical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Chanchal Saini
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - E Anil Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, 517506, India
| | - Sanjay Kumar Singh
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
13
|
Abd AA, Naji SZ, Hashim AS, Othman MR. Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104142. [DOI: 10.1016/j.jece.2020.104142] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Meconi GM, Zangi R. Adsorption-induced clustering of CO 2 on graphene. Phys Chem Chem Phys 2020; 22:21031-21041. [PMID: 32926038 DOI: 10.1039/d0cp03482g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Utilization of graphene-based materials for selective carbon dioxide capture has been demonstrated recently as a promising technological approach. In this study we report results from density functional theory calculations and molecular dynamics simulations on the adsorption of CO2, N2, and CH4 gases on a graphene sheet. We calculate adsorption isotherms of ternary and binary mixtures of these gases and reproduce the larger selectivity of CO2 to graphene relative to the other two gases. Furthermore it is shown that the confinement to two-dimensions, associated with adsorbing the CO2 gas molecules on the plane of graphene, increases their propensity to form clusters on the surface. Above a critical surface coverage (or partial pressure) of the gas, these CO2-CO2 interactions augment the effective adsorption energy to graphene, and, in part, contribute to the high selectivity of carbon dioxide with respect to nitrogen and methane. The origin of the attractive interaction between the CO2 molecules adsorbed on the surface is of electric quadrupole-quadrupole nature, in which the positively-charged carbon of one molecule interacts with the negatively-charged oxygen of another molecule. The energy of attraction of forming a CO2 dimer is predicted to be around 5-6 kJ mol-1, much higher than the corresponding values calculated for N2 and CH4. We also evaluated the adsorption energies of these gases to a graphene sheet and found that the attractions obtained using the classical force-fields might be over-exaggerated. Nevertheless, even when the magnitudes of these (classical force-field) graphene-gas interactions are scaled-down sufficiently, the tendency of CO2 molecules to cluster on the surface is still observed.
Collapse
Affiliation(s)
- Giulia Magi Meconi
- POLYMAT & Department of Applied Chemistry, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, San Sebastian, Spain
| | | |
Collapse
|
15
|
Politakos N, Barbarin I, Cordero-Lanzac T, Gonzalez A, Zangi R, Tomovska R. Reduced Graphene Oxide/Polymer Monolithic Materials for Selective CO 2 Capture. Polymers (Basel) 2020; 12:polym12040936. [PMID: 32316554 PMCID: PMC7240369 DOI: 10.3390/polym12040936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 01/29/2023] Open
Abstract
Polymer composite materials with hierarchical porous structure have been advancing in many different application fields due to excellent physico-chemical properties. However, their synthesis continues to be a highly energy-demanding and environmentally unfriendly process. This work reports a unique water based synthesis of monolithic 3D reduced graphene oxide (rGO) composite structures reinforced with poly(methyl methacrylate) polymer nanoparticles functionalized with epoxy functional groups. The method is based on reduction-induced self-assembly process performed at mild conditions. The textural properties and the surface chemistry of the monoliths were varied by changing the reaction conditions and quantity of added polymer to the structure. Moreover, the incorporation of the polymer into the structures improves the solvent resistance of the composites due to the formation of crosslinks between the polymer and the rGO. The monolithic composites were evaluated for selective capture of CO2. A balance between the specific surface area and the level of functionalization was found to be critical for obtaining high CO2 capacity and CO2/N2 selectivity. The polymer quantity affects the textural properties, thus lowering its amount the specific surface area and the amount of functional groups are higher. This affects positively the capacity for CO2 capture, thus, the maximum achieved was in the range 3.56–3.85 mmol/g at 1 atm and 25 °C.
Collapse
Affiliation(s)
- Nikolaos Politakos
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Center—Avda. Tolosa, 72, 20018 San Sebastian, Spain;
- Correspondence: (N.P.); (R.T.)
| | - Iranzu Barbarin
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Center—Avda. Tolosa, 72, 20018 San Sebastian, Spain;
| | - Tomás Cordero-Lanzac
- Department of Chemical Engineering, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain;
| | - Alba Gonzalez
- POLYMAT, Department of Polymer Science and Technology, Faculty of Chemistry, University of the Basque Country, P.O. Box 1072, 20080 Donostia-San Sebastián, Spain;
| | - Ronen Zangi
- POLYMAT and Department of Organic Chemistry I, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Center—Avda. Tolosa, 72, 20018 San Sebastian, Spain;
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Radmila Tomovska
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Center—Avda. Tolosa, 72, 20018 San Sebastian, Spain;
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
- Correspondence: (N.P.); (R.T.)
| |
Collapse
|
16
|
Politakos N, Barbarin I, Cantador LS, Cecilia JA, Mehravar E, Tomovska R. Graphene-Based Monolithic Nanostructures for CO2 Capture. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nikolaos Politakos
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa, 72, Donostia-San Sebastian 20018, Spain
| | - Iranzu Barbarin
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa, 72, Donostia-San Sebastian 20018, Spain
| | - Luis Serrano Cantador
- Inorganic Chemistry and Chemical Engineering Department, University of Cordoba, 14014 Cordoba, Spain
| | - Juan Antonio Cecilia
- Inorganic Chemistry, Crystallography and Mineralogy, University of Malaga, 29071 Malaga, Spain
| | - Ehsan Mehravar
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa, 72, Donostia-San Sebastian 20018, Spain
| | - Radmila Tomovska
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa, 72, Donostia-San Sebastian 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
17
|
|
18
|
Panda D, Kumar EA, Singh SK. Amine Modification of Binder-Containing Zeolite 4A Bodies for Post-Combustion CO2 Capture. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b03958] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - E. Anil Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Tirupati 517506, India
| | | |
Collapse
|
19
|
An L, Liu S, Wang L, Wu J, Wu Z, Ma C, Yu Q, Hu X. Novel Nitrogen-Doped Porous Carbons Derived from Graphene for Effective CO2 Capture. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06122] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Liying An
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Shenfang Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Linlin Wang
- College of Engineering, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jiayi Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Zhenzhen Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Changdan Ma
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Qiankun Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Xin Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
20
|
Janeta M, Bury W, Szafert S. Porous Silsesquioxane-Imine Frameworks as Highly Efficient Adsorbents for Cooperative Iodine Capture. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19964-19973. [PMID: 29788716 DOI: 10.1021/acsami.8b03023] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The efficient capture and storage of radioactive iodine (129I or 131I), which can be formed during nuclear energy generation or nuclear waste storage, is of paramount importance. Herein, we present highly efficient aerogels for reversible iodine capture, namely, porous silsesquioxane-imine frameworks (PSIFs), constructed by condensation of octa(3-aminopropyl)silsesquioxane cage compound and selected multitopic aldehydes. The resulting PSIFs are permanently porous (Brunauer-Emmet-Teller surface areas up to 574 m2/g), thermally stable, and present a combination of micro-, meso-, and macropores in their structures. The presence of a large number of imine functional groups in combination with silsesquioxane cores results in extremely high I2 affinity with uptake capacities up to 485 wt %, which is the highest reported to date. Porous properties can be controlled by the strut length and rigidity of linkers. In addition, PSIF-1a could be recycled at least four times while maintaining 94% I2 uptake capacity. Kinetic studies of I2 desorption show two strong binding sites with apparent activation energies of 77.0 and 89.0 kJ/mol. These energies are considerably higher than the enthalpy of sublimation of bulk I2.
Collapse
Affiliation(s)
- Mateusz Janeta
- Faculty of Chemistry , University of Wrocław , 14 F. Joliot-Curie , 50-383 Wrocław , Poland
| | - Wojciech Bury
- Faculty of Chemistry , University of Wrocław , 14 F. Joliot-Curie , 50-383 Wrocław , Poland
| | - Sławomir Szafert
- Faculty of Chemistry , University of Wrocław , 14 F. Joliot-Curie , 50-383 Wrocław , Poland
| |
Collapse
|
21
|
Khandelwal M, Li Y, Hur SH, Chung JS. Surface modification of co-doped reduced graphene oxide through alkanolamine functionalization for enhanced electrochemical performance. NEW J CHEM 2018. [DOI: 10.1039/c7nj03592f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The synergistic effect of heteroatom co-doping and triethanolamine functionalization on reduced graphene oxide resulted in impressive electrochemical features.
Collapse
Affiliation(s)
- Mahima Khandelwal
- School of Chemical Engineering
- University of Ulsan
- Ulsan 680-749
- South Korea
| | - Yuanyuan Li
- School of Chemical Engineering
- University of Ulsan
- Ulsan 680-749
- South Korea
| | - Seung Hyun Hur
- School of Chemical Engineering
- University of Ulsan
- Ulsan 680-749
- South Korea
| | - Jin Suk Chung
- School of Chemical Engineering
- University of Ulsan
- Ulsan 680-749
- South Korea
| |
Collapse
|
22
|
Kudahi SN, Noorpoor AR, Mahmoodi NM. Determination and analysis of CO2 capture kinetics and mechanisms on the novel graphene-based adsorbents. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Jiang ZJ, Jiang Z, Tian X, Luo L, Liu M. Sulfonated Holey Graphene Oxide (SHGO) Filled Sulfonated Poly(ether ether ketone) Membrane: The Role of Holes in the SHGO in Improving Its Performance as Proton Exchange Membrane for Direct Methanol Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20046-20056. [PMID: 28535030 DOI: 10.1021/acsami.7b00198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sulfonated holey graphene oxides (SHGOs) have been synthesized by the etching of sulfonated graphene oxides with concentrated HNO3 under the assistance of ultrasonication. These SHGOs could be used as fillers for the sulfonated aromatic poly(ether ether ketone) (SPEEK) membrane. The obtained SHGO-incorporated SPEEK membrane has a uniform and dense structure, exhibiting higher performance as proton exchange membranes (PEMs), for instance, higher proton conductivity, lower activation energy for proton conduction, and comparable methanol permeability, as compared to Nafion 112. The sulfonated graphitic structure of the SHGOs is believed to be one of the crucial factors resulting in the higher performance of the SPEEK/SHGO membrane, since it could increase the local density of the -SO3H groups in the membrane and induce a strong interfacial interaction between SHGO and the SPEEK matrix, which improve the proton conductivity and lower the swelling ratio of the membrane, respectively. Additionally, the proton conductivity of the membrane could be further enhanced by the presence of the holes in the graphitic planes of the SHGOs, since it provides an additional channel for transport of the protons. When used, direct methanol fuel cell with the SPEEK/SHGO membrane is found to exhibit much higher performance than that with Nafion 112, suggesting potential use of the SPEEK/SHGO membrane as the PEMs.
Collapse
Affiliation(s)
- Zhong-Jie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, College of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| | - Zhongqing Jiang
- Department of Materials and Chemical Engineering, Ningbo University of Technology , Ningbo 315211, Zhejiang, China
| | - Xiaoning Tian
- Department of Materials and Chemical Engineering, Ningbo University of Technology , Ningbo 315211, Zhejiang, China
| | - Lijuan Luo
- Department of Materials and Chemical Engineering, Ningbo University of Technology , Ningbo 315211, Zhejiang, China
| | - Meilin Liu
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, College of Environment and Energy, South China University of Technology , Guangzhou 510006, China
- School of Materials Science & Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Asphalt-derived high surface area activated porous carbons for the effective adsorption separation of ethane and ethylene. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.01.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Wang Y, Sinha S, Hu L, Das S. Interaction between a water drop and holey graphene: retarded imbibition and generation of novel water–graphene wetting states. Phys Chem Chem Phys 2017; 19:27421-27434. [DOI: 10.1039/c7cp04411a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Water nanodrop imbibition in holey graphene is studied unraveling novel fiber-like wetting state that enhances water–accessible graphene surface area.
Collapse
Affiliation(s)
- Yanbin Wang
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| | - Shayandev Sinha
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| | - Liangbing Hu
- Deapartment of Materials Science and Engineering
- University of Maryland
- College Park
- USA
| | - Siddhartha Das
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| |
Collapse
|
26
|
Chowdhury S, Balasubramanian R. Three-Dimensional Graphene-Based Porous Adsorbents for Postcombustion CO2 Capture. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b04052] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shamik Chowdhury
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Republic of Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Republic of Singapore
| |
Collapse
|