1
|
Gomes VMS, Bulla ACS, Torres PHM, Leal da Silva M. RND/HAE-1 members in the Pseudomonadota phylum: exploring multidrug resistance. Biophys Rev 2025; 17:687-699. [PMID: 40376394 PMCID: PMC12075780 DOI: 10.1007/s12551-025-01297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/24/2025] [Indexed: 05/18/2025] Open
Abstract
The hydrophobe/amphiphile efflux-1 (HAE-1) family, part of the Resistance-Nodulation-Division (RND) superfamily, plays a critical role in the development of multidrug resistance (MDR) in bacteria. Known for its broad substrate transport capacity, this family of efflux pumps can actively expel a wide range of molecules, including antibiotics, salts, and dyes, thereby reducing the intracellular concentration of toxic substances. These transporters, which form efflux systems, are primarily found in bacteria within the phylum Pseudomonadota (Proteobacteria), where they are strongly associated with increased resistance and enhanced virulence, thus contributing to bacterial survival in hostile environments. In addition, efflux systems are composed of two other protein components: Membrane Fusion Proteins (MFPs) and Outer Membrane Factors (OMFs). Notably, several bacterial species identified by the World Health Organization (WHO) as urgent priorities for new antibiotic development, such as Escherichia coli and Pseudomonas aeruginosa, have well-studied HAE-1 efflux systems, such as AcrAB-TolC and MexAB-OprM. These systems efficiently transport molecules from the periplasm to the extracellular space, facilitating bacterial persistence. In this review, we examined the current knowledge of HAE-1 efflux transporters and their roles in the physiology and survival of bacteria in the Pseudomonadota phylum.
Collapse
Affiliation(s)
- Vinnícius Machado Schelk Gomes
- Programa de Pós-Graduação Em Biologia Computacional E Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-900 Brazil
| | - Ana Carolina Silva Bulla
- Programa de Pós-Graduação Em Biologia Computacional E Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-900 Brazil
| | - Pedro Henrique Monteiro Torres
- Programa de Pós-Graduação em Ciências Biológicas – Biofísica, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho 373 - CCS - Bloco G1-19, Cidade Universitária, Rio de Janeiro, RJ 21941-902 Brazil
| | - Manuela Leal da Silva
- Programa de Pós-Graduação Em Biologia Computacional E Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-900 Brazil
- Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas, Instituto de Biodiversidade E Sustentabilidade NUPEM, Universidade Federal Do Rio de Janeiro, Avenida São José Do Barreto, 764. Centro, Macaé, RJ 27965-045 Brazil
| |
Collapse
|
2
|
Zhang W, Harper CE, Lee J, Fu B, Ramsukh M, Hernandez CJ, Chen P. Transporter excess and clustering facilitate adaptor protein shuttling for bacterial efflux. CELL REPORTS. PHYSICAL SCIENCE 2025; 6:102441. [PMID: 40083904 PMCID: PMC11905320 DOI: 10.1016/j.xcrp.2025.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Multidrug efflux pumps confer not only antibiotic resistance to bacteria but also cell proliferation. In gram-negative bacteria, the ATP-binding cassette (ABC)-family transporter MacB, the adaptor protein MacA, and the outer membrane protein TolC form the MacA6:MacB2:TolC3 assembly to extrude antibiotics and virulence factors. Here, using quantitative single-molecule single-cell imaging, we uncover that, in E. coli cells, there is a large excess of MacB (and TolC) driving the limiting adaptor protein MacA mostly into the MacAB-TolC assembly. Moreover, the excess MacB transporters can dynamically cluster around the assembly, and MacA can dynamically disassemble from the MacAB-TolC assembly, leading to an adaptor protein shuttling mechanism for efficient substrate sequestration from the periplasm toward efflux. We further show that both MacB clustering and MacAB-TolC assembly can be perturbed chemically or physically via microfluidics-based extrusion loading for compromised antibiotic tolerance. These insights may provide opportunities for countering the activities of multidrug efflux systems for antimicrobial treatments.
Collapse
Affiliation(s)
- Wenyao Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Present address: US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Present address: The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Equal contributions
| | - Christine E. Harper
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Present address: Chronus Health, 34175 Ardenwood Boulevard, Fremont, CA 94555, USA
- Equal contributions
| | - Junsung Lee
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Bing Fu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Present address: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Malissa Ramsukh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
- Present address: Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
- Present address: Departments of Bioengineering and Therapeutic Sciences and Orthopedic Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Lead contact
| |
Collapse
|
3
|
Vignolini T, Capitanio M, Caldini C, Gardini L, Pavone FS. Highly inclined light sheet allows volumetric super-resolution imaging of efflux pumps distribution in bacterial biofilms. Sci Rep 2024; 14:12902. [PMID: 38839922 PMCID: PMC11153600 DOI: 10.1038/s41598-024-63729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Bacterial biofilms are highly complex communities in which isogenic bacteria display different gene expression patterns and organize in a three-dimensional mesh gaining enhanced resistance to biocides. The molecular mechanisms behind such increased resistance remain mostly unknown, also because of the technical difficulties in biofilm investigation at the sub-cellular and molecular level. In this work we focus on the AcrAB-TolC protein complex, a multidrug efflux pump found in Enterobacteriaceae, whose overexpression is associated with most multiple drug resistance (MDR) phenotypes occurring in Gram-negative bacteria. We propose an optical method to quantify the expression level of the AcrAB-TolC pump within the biofilm volume at the sub-cellular level, with single-molecule sensitivity. Through a combination of super-resolution PALM with single objective light sheet and precision genome editing, we can directly quantify the spatial distribution of endogenous AcrAB-TolC pumps expressed in both planktonic bacteria and, importantly, within the bacterial biofilm volume. We observe a gradient of pump density within the biofilm volume and over the course of biofilm maturation. Notably, we propose an optical method that could be broadly employed to achieve volumetric super-resolution imaging of thick samples.
Collapse
Affiliation(s)
- T Vignolini
- European Laboratory for Non- Linear Spectroscopy, LENS, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019, Sesto Fiorentino, Italy.
- Parasite RNA Biology Group, Institut Pasteur, Université Paris Cité, 75015, Paris, France.
| | - M Capitanio
- European Laboratory for Non- Linear Spectroscopy, LENS, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019, Sesto Fiorentino, Italy
| | - C Caldini
- European Laboratory for Non- Linear Spectroscopy, LENS, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019, Sesto Fiorentino, Italy
| | - L Gardini
- European Laboratory for Non- Linear Spectroscopy, LENS, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy.
- National Institute of Optics, National Research Council, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy.
| | - F S Pavone
- European Laboratory for Non- Linear Spectroscopy, LENS, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Ahmed MS, Lauersen KJ, Ikram S, Li C. Efflux Transporters' Engineering and Their Application in Microbial Production of Heterologous Metabolites. ACS Synth Biol 2021; 10:646-669. [PMID: 33751883 DOI: 10.1021/acssynbio.0c00507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic engineering of microbial hosts for the production of heterologous metabolites and biochemicals is an enabling technology to generate meaningful quantities of desired products that may be otherwise difficult to produce by traditional means. Heterologous metabolite production can be restricted by the accumulation of toxic products within the cell. Efflux transport proteins (transporters) provide a potential solution to facilitate the export of these products, mitigate toxic effects, and enhance production. Recent investigations using knockout lines, heterologous expression, and expression profiling of transporters have revealed candidates that can enhance the export of heterologous metabolites from microbial cell systems. Transporter engineering efforts have revealed that some exhibit flexible substrate specificity and may have broader application potentials. In this Review, the major superfamilies of efflux transporters, their mechanistic modes of action, selection of appropriate efflux transporters for desired compounds, and potential transporter engineering strategies are described for potential applications in enhancing engineered microbial metabolite production. Future studies in substrate recognition, heterologous expression, and combinatorial engineering of efflux transporters will assist efforts to enhance heterologous metabolite production in microbial hosts.
Collapse
Affiliation(s)
- Muhammad Saad Ahmed
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Abid Majeed Road, The Mall, Rawalpindi 46000, Pakistan
| | - Kyle J. Lauersen
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Sana Ikram
- Beijing Higher Institution Engineering Research Center for Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
5
|
Salcedo-Sora JE, Jindal S, O'Hagan S, Kell DB. A palette of fluorophores that are differentially accumulated by wild-type and mutant strains of Escherichia coli: surrogate ligands for profiling bacterial membrane transporters. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001016. [PMID: 33406033 PMCID: PMC8131027 DOI: 10.1099/mic.0.001016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Our previous work demonstrated that two commonly used fluorescent dyes that were accumulated by wild-type Escherichia coli MG1655 were differentially transported in single-gene knockout strains, and also that they might be used as surrogates in flow cytometric transporter assays. We summarize the desirable properties of such stains, and here survey 143 candidate dyes. We eventually triage them (on the basis of signal, accumulation levels and cost) to a palette of 39 commercially available and affordable fluorophores that are accumulated significantly by wild-type cells of the 'Keio' strain BW25113, as measured flow cytometrically. Cheminformatic analyses indicate both their similarities and their (much more considerable) structural differences. We describe the effects of pH and of the efflux pump inhibitor chlorpromazine on the accumulation of the dyes. Even the 'wild-type' MG1655 and BW25113 strains can differ significantly in their ability to take up such dyes. We illustrate the highly differential uptake of our dyes into strains with particular lesions in, or overexpressed levels of, three particular transporters or transporter components (yhjV, yihN and tolC). The relatively small collection of dyes described offers a rapid, inexpensive, convenient and informative approach to the assessment of microbial physiology and phenotyping of membrane transporter function.
Collapse
Affiliation(s)
- Jesus Enrique Salcedo-Sora
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
| | - Srijan Jindal
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
| | - Steve O'Hagan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
6
|
Coexpression of MmpS5 and MmpL5 Contributes to Both Efflux Transporter MmpL5 Trimerization and Drug Resistance in Mycobacterium tuberculosis. mSphere 2021; 6:6/1/e00518-20. [PMID: 33408221 PMCID: PMC7845600 DOI: 10.1128/msphere.00518-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has been reported that mycobacterial membrane protein large 5 (MmpL5), a resistance-nodulation-division (RND)-type inner membrane transporter in Mycobacterium tuberculosis (Mtb), is involved in the transport of antimycobacterial drugs. However, the functional roles of the membrane fusion protein mycobacterial membrane protein small 5 (MmpS5), organized as an operon with MmpL5, are unclear. The increasing occurrence of multidrug-resistant Mycobacterium tuberculosis (Mtb) is a serious threat to global public health. Among the many mechanisms of drug resistance, only resistance-nodulation-division (RND)-type multidrug efflux systems can simultaneously render bacteria tolerant to numerous toxic compounds, including antibiotics. The elevated expression of RND-type xenobiotic efflux transporter complexes, which consist of an inner membrane transporter, membrane fusion protein, and outer membrane channel, plays a major role in multidrug resistance. Among the 14 mycobacterial membrane protein large (MmpL) proteins identified as inner membrane transporters of Mtb, MmpL5 is known to participate in the acquisition of resistance to bedaquiline and clofazimine. MmpL5 exports these drugs by forming a complex with the membrane fusion protein mycobacterial membrane protein small 5 (MmpS5). However, the role of MmpS5 in the efflux of antituberculous drugs by MmpL5 remains unclear. In this study, we focused on the in vivo dynamics of MmpL5 using green fluorescent protein (GFP). Single-molecule observations of MmpL5 showed substantial lateral displacements of MmpL5-GFP without the expression of MmpS5. Nondiffusing MmpL5-GFP foci typically showed three-step photobleaching, suggesting that MmpL5 formed a homotrimeric functional complex on the inner membrane in the presence of MmpS5. These results suggest that the expression of MmpS5 facilitates the assembly of monomeric MmpL5 into a homotrimer that is anchored to the inner membrane to transport various antimycobacterial drugs. IMPORTANCE It has been reported that mycobacterial membrane protein large 5 (MmpL5), a resistance-nodulation-division (RND)-type inner membrane transporter in Mycobacterium tuberculosis (Mtb), is involved in the transport of antimycobacterial drugs. However, the functional roles of the membrane fusion protein mycobacterial membrane protein small 5 (MmpS5), organized as an operon with MmpL5, are unclear. Via the single-molecule imaging of MmpL5, we uncovered the maintenance of the functional trimeric complex structure of MmpL5 in the presence of MmpS5. These findings demonstrate that the assembly mechanisms of mycobacterial RND efflux systems are the dynamically regulated process through interactions among the components. This represents the first report of the single-molecule observation of Mtb efflux transporters, which may enhance our understanding of innate antibiotic resistance.
Collapse
|
7
|
Kapach G, Nuri R, Schmidt C, Danin A, Ferrera S, Savidor A, Gerlach RG, Shai Y. Loss of the Periplasmic Chaperone Skp and Mutations in the Efflux Pump AcrAB-TolC Play a Role in Acquired Resistance to Antimicrobial Peptides in Salmonella typhimurium. Front Microbiol 2020; 11:189. [PMID: 32210923 PMCID: PMC7075815 DOI: 10.3389/fmicb.2020.00189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/27/2020] [Indexed: 01/01/2023] Open
Abstract
Bacterial resistance to antibiotics is a major concern worldwide, leading to an extensive search for alternative drugs. Promising candidates are antimicrobial peptides (AMPs), innate immunity molecules, shown to be highly efficient against multidrug resistant bacteria. Therefore, it is essential to study bacterial resistance mechanisms against them. For that purpose, we used experimental evolution, and isolated a Salmonella enterica serovar typhimurium-resistant line to the AMP 4DK5L7. This AMP displayed promising features including widespread activity against Gram-negative bacteria and protection from proteolytic degradation. However, the resistance that evolved in the isolated strain was particularly high. Whole genome sequencing revealed that five spontaneous mutations had evolved. Of these, three are novel in the context of acquired AMP resistance. Two mutations are related to the AcrAB-TolC multidrug efflux pump. One occurred in AcrB, the substrate-binding domain of the system, and the second in RamR, a transcriptional regulator of the system. Together, the mutations increased the minimal inhibitory concentration (MIC) by twofold toward this AMP. Moreover, the mutation in AcrB induced hypersusceptibility toward ampicillin and colistin. The last mutation occurred in Skp, a periplasmic chaperone that participates in the biogenesis of outer membrane proteins (OMPs). This mutation increased the MIC by twofold to 4DK5L7 and by fourfold to another AMP, seg5D. Proteomic analysis revealed that the mutation abolished Skp expression, reduced OMP abundance, and increased DegP levels. DegP, a protease that was reported to have an additional chaperone activity, escorts OMPs through the periplasm along with Skp, but is also associated with AMP resistance. In conclusion, our data demonstrate that both loss of Skp and manipulation of the AcrAB-TolC system are alternative strategies of AMP acquired resistance in Salmonella typhimurium and might represent a common mechanism in other Gram-negative bacteria.
Collapse
Affiliation(s)
- Gal Kapach
- Departmant of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Reut Nuri
- Departmant of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Adi Danin
- Departmant of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shir Ferrera
- Departmant of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Roman G Gerlach
- Project Group 5, Robert Koch Institute, Wernigerode, Germany
| | - Yechiel Shai
- Departmant of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Multidrug Resistance in Neisseria gonorrhoeae: Identification of Functionally Important Residues in the MtrD Efflux Protein. mBio 2019; 10:mBio.02277-19. [PMID: 31744915 PMCID: PMC6867893 DOI: 10.1128/mbio.02277-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
With over 78 million new infections globally each year, gonorrhea remains a frustratingly common infection. Continuous development and spread of antimicrobial-resistant strains of Neisseria gonorrhoeae, the causative agent of gonorrhea, have posed a serious threat to public health. One of the mechanisms in N. gonorrhoeae involved in resistance to multiple drugs is performed by the MtrD multidrug resistance efflux pump. This study demonstrated that the MtrD pump has a broader substrate specificity than previously proposed and identified a cluster of residues important for drug binding and translocation. Additionally, a permeation pathway for the MtrD substrate progesterone actively moving through the protein was determined, revealing key interactions within the putative MtrD drug binding pockets. Identification of functionally important residues and substrate-protein interactions of the MtrD protein is crucial to develop future strategies for the treatment of multidrug-resistant gonorrhea. A key mechanism that Neisseria gonorrhoeae uses to achieve multidrug resistance is the expulsion of structurally different antimicrobials by the MtrD multidrug efflux protein. MtrD resembles the homologous Escherichia coli AcrB efflux protein with several common structural features, including an open cleft containing putative access and deep binding pockets proposed to interact with substrates. A highly discriminating N. gonorrhoeae strain, with the MtrD and NorM multidrug efflux pumps inactivated, was constructed and used to confirm and extend the substrate profile of MtrD to include 14 new compounds. The structural basis of substrate interactions with MtrD was interrogated by a combination of long-timescale molecular dynamics simulations and docking studies together with site-directed mutagenesis of selected residues. Of the MtrD mutants generated, only one (S611A) retained a wild-type (WT) resistance profile, while others (F136A, F176A, I605A, F610A, F612C, and F623C) showed reduced resistance to different antimicrobial compounds. Docking studies of eight MtrD substrates confirmed that many of the mutated residues play important nonspecific roles in binding to these substrates. Long-timescale molecular dynamics simulations of MtrD with its substrate progesterone showed the spontaneous binding of the substrate to the access pocket of the binding cleft and its subsequent penetration into the deep binding pocket, allowing the permeation pathway for a substrate through this important resistance mechanism to be identified. These findings provide a detailed picture of the interaction of MtrD with substrates that can be used as a basis for rational antibiotic and inhibitor design.
Collapse
|
9
|
Jindal S, Yang L, Day PJ, Kell DB. Involvement of multiple influx and efflux transporters in the accumulation of cationic fluorescent dyes by Escherichia coli. BMC Microbiol 2019; 19:195. [PMID: 31438868 PMCID: PMC6704527 DOI: 10.1186/s12866-019-1561-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background It is widely believed that most xenobiotics cross biomembranes by diffusing through the phospholipid bilayer, and that the use of protein transporters is an occasional adjunct. According to an alternative view, phospholipid bilayer transport is negligible, and several different transporters may be involved in the uptake of an individual molecular type. We recognise here that the availability of gene knockout collections allows one to assess the contributions of all potential transporters, and flow cytometry based on fluorescence provides a convenient high-throughput assay for xenobiotic uptake in individual cells. Results We used high-throughput flow cytometry to assess the ability of individual gene knockout strains of E coli to take up two membrane-permeable, cationic fluorescent dyes, namely the carbocyanine diS-C3(5) and the DNA dye SYBR Green. Individual strains showed a large range of distributions of uptake. The range of modal steady-state uptakes for the carbocyanine between the different strains was 36-fold. Knockouts of the ATP synthase α- and β-subunits greatly inhibited uptake, implying that most uptake was ATP-driven rather than being driven by a membrane potential. Dozens of transporters changed the steady-state uptake of the dye by more than 50% with respect to that of the wild type, in either direction (increased or decreased); knockouts of known influx and efflux transporters behaved as expected, giving credence to the general strategy. Many of the knockouts with the most reduced uptake were transporter genes of unknown function (‘y-genes’). Similarly, several overexpression variants in the ‘ASKA’ collection had the anticipated, opposite effects. Similar results were obtained with SYBR Green (the range being approximately 69-fold). Although it too contains a benzothiazole motif there was negligible correlation between its uptake and that of the carbocyanine when compared across the various strains (although the membrane potential is presumably the same in each case). Conclusions Overall, we conclude that the uptake of these dyes may be catalysed by a great many transporters of putatively broad and presently unknown specificity, and that the very large range between the ‘lowest’ and the ‘highest’ levels of uptake, even in knockouts of just single genes, implies strongly that phospholipid bilayer transport is indeed negligible. This work also casts serious doubt upon the use of such dyes as quantitative stains for representing either bioenergetic parameters or the amount of cellular DNA in unfixed cells (in vivo). By contrast, it opens up their potential use as transporter assay substrates in high-throughput screening. Electronic supplementary material The online version of this article (10.1186/s12866-019-1561-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Srijan Jindal
- Department of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Lei Yang
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs, Lyngby, Denmark
| | - Philip J Day
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Douglas B Kell
- Department of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK. .,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK. .,Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs, Lyngby, Denmark. .,Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| |
Collapse
|
10
|
Tsutsumi K, Yonehara R, Ishizaka-Ikeda E, Miyazaki N, Maeda S, Iwasaki K, Nakagawa A, Yamashita E. Structures of the wild-type MexAB-OprM tripartite pump reveal its complex formation and drug efflux mechanism. Nat Commun 2019; 10:1520. [PMID: 30944318 PMCID: PMC6447562 DOI: 10.1038/s41467-019-09463-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/11/2019] [Indexed: 11/30/2022] Open
Abstract
In Pseudomonas aeruginosa, MexAB–OprM plays a central role in multidrug resistance by ejecting various drug compounds, which is one of the causes of serious nosocomial infections. Although the structures of the components of MexAB–OprM have been solved individually by X-ray crystallography, no structural information for fully assembled pumps from P. aeruginosa were previously available. In this study, we present the structure of wild-type MexAB–OprM in the presence or absence of drugs at near-atomic resolution. The structure reveals that OprM does not interact with MexB directly, and that it opens its periplasmic gate by forming a complex. Furthermore, we confirm the residues essential for complex formation and observed a movement of the drug entrance gate. Based on these results, we propose mechanisms for complex formation and drug efflux. In Pseudomonas aeruginosa, MexAB–OprM plays a central role in multidrug resistance by ejecting various drug compounds. Here the authors present the structure of wild-type MexAB–OprM in the presence or absence of drugs and propose mechanisms for complex formation and drug efflux.
Collapse
Affiliation(s)
- Kenta Tsutsumi
- Institute for Protein Research, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Ryo Yonehara
- Institute for Protein Research, Osaka University, Suita, 565-0871, Osaka, Japan
| | | | - Naoyuki Miyazaki
- Institute for Protein Research, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Shintaro Maeda
- Institute for Protein Research, Osaka University, Suita, 565-0871, Osaka, Japan.,The Scripps Research Institute Department of Integrative Structural and Computational Biology, North Torrey Pines Road, La Jolla, CA, 10550, USA
| | - Kenji Iwasaki
- Institute for Protein Research, Osaka University, Suita, 565-0871, Osaka, Japan.,University of Tsukuba Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance 1-1-1 Tennodai, Tsukuba, 305-8577, Ibaraki, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
11
|
Weng J, Wang W. Structural Features and Energetics of the Periplasmic Entrance Opening of the Outer Membrane Channel TolC Revealed by Molecular Dynamics Simulation and Markov State Model Analysis. J Chem Inf Model 2019; 59:2359-2366. [DOI: 10.1021/acs.jcim.8b00957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jingwei Weng
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China 200433
| | - Wenning Wang
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China 200433
| |
Collapse
|
12
|
Tusk SE, Delalez NJ, Berry RM. Subunit Exchange in Protein Complexes. J Mol Biol 2018; 430:4557-4579. [DOI: 10.1016/j.jmb.2018.06.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 01/09/2023]
|
13
|
Mapping the Dynamic Functions and Structural Features of AcrB Efflux Pump Transporter Using Accelerated Molecular Dynamics Simulations. Sci Rep 2018; 8:10470. [PMID: 29992991 PMCID: PMC6041327 DOI: 10.1038/s41598-018-28531-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/25/2018] [Indexed: 11/08/2022] Open
Abstract
Multidrug efflux pumps confer resistance to their bacterial hosts by pumping out a diverse range of compounds, including most antibiotics. Being more familiar with the details of functional dynamics and conformations of these types of pumps could help in discovering approaches to stop them functioning properly. Computational approaches, particularly conventional molecular dynamics simulations followed by diverse post simulation analysis, are powerful methods that help researchers by opening a new window to study phenomena that are not detectable in as much detail in vitro or in vivo as they are in silico. In this study, accelerated molecular dynamics simulations were applied to study the dynamics of AcrB efflux pump transporters in interaction with PAβN and tetracycline as an inhibitor and a substrate, respectively, to compare the differences in the dynamics and consequently the mechanism of action of the pump. The different dynamics for PAβN -bound form of AcrB compared to the TET-bound form is likely to affect the rotating mechanism typically observed for AcrB transporter. This shows the dynamics of the active AcrB transporter is different in a substrate-bound state compared to an inhibitor-bound state. This advances our knowledge and helps to unravel the mechanism of tripartite efflux pumps.
Collapse
|
14
|
Mateus A, Bobonis J, Kurzawa N, Stein F, Helm D, Hevler J, Typas A, Savitski MM. Thermal proteome profiling in bacteria: probing protein state in vivo. Mol Syst Biol 2018; 14:e8242. [PMID: 29980614 PMCID: PMC6056769 DOI: 10.15252/msb.20188242] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Increasing antibiotic resistance urges for new technologies for studying microbes and antimicrobial mechanism of action. We adapted thermal proteome profiling (TPP) to probe the thermostability of Escherichia coli proteins in vivoE. coli had a more thermostable proteome than human cells, with protein thermostability depending on subcellular location-forming a high-to-low gradient from the cell surface to the cytoplasm. While subunits of protein complexes residing in one compartment melted similarly, protein complexes spanning compartments often had their subunits melting in a location-wise manner. Monitoring the E. coli meltome and proteome at different growth phases captured changes in metabolism. Cells lacking TolC, a component of multiple efflux pumps, exhibited major physiological changes, including differential thermostability and levels of its interaction partners, signaling cascades, and periplasmic quality control. Finally, we combined in vitro and in vivo TPP to identify targets of known antimicrobial drugs and to map their downstream effects. In conclusion, we demonstrate that TPP can be used in bacteria to probe protein complex architecture, metabolic pathways, and intracellular drug target engagement.
Collapse
Affiliation(s)
- André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jacob Bobonis
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nils Kurzawa
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johannes Hevler
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
15
|
Neuberger A, Du D, Luisi BF. Structure and mechanism of bacterial tripartite efflux pumps. Res Microbiol 2018; 169:401-413. [PMID: 29787834 DOI: 10.1016/j.resmic.2018.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/20/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Abstract
Efflux pumps are membrane proteins which contribute to multi-drug resistance. In Gram-negative bacteria, some of these pumps form complex tripartite assemblies in association with an outer membrane channel and a periplasmic membrane fusion protein. These tripartite machineries span both membranes and the periplasmic space, and they extrude from the bacterium chemically diverse toxic substrates. In this chapter, we summarise current understanding of the structural architecture, functionality, and regulation of tripartite multi-drug efflux assemblies.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
16
|
Miyazaki R, Myougo N, Mori H, Akiyama Y. A photo-cross-linking approach to monitor folding and assembly of newly synthesized proteins in a living cell. J Biol Chem 2017; 293:677-686. [PMID: 29158258 DOI: 10.1074/jbc.m117.817270] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/03/2017] [Indexed: 11/06/2022] Open
Abstract
Many proteins form multimeric complexes that play crucial roles in various cellular processes. Studying how proteins are correctly folded and assembled into such complexes in a living cell is important for understanding the physiological roles and the qualitative and quantitative regulation of the complex. However, few methods are suitable for analyzing these rapidly occurring processes. Site-directed in vivo photo-cross-linking is an elegant technique that enables analysis of protein-protein interactions in living cells with high spatial resolution. However, the conventional site-directed in vivo photo-cross-linking method is unsuitable for analyzing dynamic processes. Here, by combining an improved site-directed in vivo photo-cross-linking technique with a pulse-chase approach, we developed a new method that can analyze the folding and assembly of a newly synthesized protein with high spatiotemporal resolution. We demonstrate that this method, named the pulse-chase and in vivo photo-cross-linking experiment (PiXie), enables the kinetic analysis of the formation of an Escherichia coli periplasmic (soluble) protein complex (PhoA). We also used our new technique to investigate assembly/folding processes of two membrane complexes (SecD-SecF in the inner membrane and LptD-LptE in the outer membrane), which provided new insights into the biogenesis of these complexes. Our PiXie method permits analysis of the dynamic behavior of various proteins and enables examination of protein-protein interactions at the level of individual amino acid residues. We anticipate that our new technique will have valuable utility for studies of protein dynamics in many organisms.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- From the Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Naomi Myougo
- From the Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroyuki Mori
- From the Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshinori Akiyama
- From the Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
17
|
Adaptor protein mediates dynamic pump assembly for bacterial metal efflux. Proc Natl Acad Sci U S A 2017; 114:6694-6699. [PMID: 28607072 DOI: 10.1073/pnas.1704729114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multicomponent efflux complexes constitute a primary mechanism for Gram-negative bacteria to expel toxic molecules for survival. As these complexes traverse the periplasm and link inner and outer membranes, it remains unclear how they operate efficiently without compromising periplasmic plasticity. Combining single-molecule superresolution imaging and genetic engineering, we study in living Escherichia coli cells the tripartite efflux complex CusCBA of the resistance-nodulation-division family that is essential for bacterial resistance to drugs and toxic metals. We find that CusCBA complexes are dynamic structures and shift toward the assembled form in response to metal stress. Unexpectedly, the periplasmic adaptor protein CusB is a key metal-sensing element that drives the assembly of the efflux complex ahead of the transcription activation of the cus operon for defending against metals. This adaptor protein-mediated dynamic pump assembly allows the bacterial cell for efficient efflux upon cellular demand while still maintaining periplasmic plasticity; this could be broadly relevant to other multicomponent efflux systems.
Collapse
|
18
|
Lee SJ, Park NH, Mechesso AF, Lee KJ, Park SC. The phenotypic and molecular resistance induced by a single-exposure to sub-mutant prevention concentration of marbofloxacin in Salmonella Typhimurium isolates from swine. Vet Microbiol 2017; 207:29-35. [PMID: 28757036 DOI: 10.1016/j.vetmic.2017.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/24/2017] [Accepted: 05/29/2017] [Indexed: 11/16/2022]
Abstract
In the present study, the molecular mechanisms of antibiotic resistance in Salmonella Typhimurium clinical isolates from pigs were investigated using a single-step mutation model of exposure to sub-mutant prevention concentrations (MPCs) of marbofloxacin. The minimum inhibitory concentrations (MICs) of seven antibacterial drugs were evaluated against 30 S. Typhimurium clinical isolates from different pigs. MPCs of marbofloxacin were also determined. The mechanism of marbofloxacin-resistance was investigated by sequencing analysis of target gene mutations and quantifying the overexpression of efflux pumps and their regulators by quantitative RT-PCR. Marbofloxacin showed the highest potency against all isolates (23.3%), including multi-drug resistant isolates. The MPC50 (0.5μg/mL) and MPC90 (2μg/mL) of marbofloxacin were determined, as were MPC/MIC ratios of 2.5 to 8. A gyrA mutation (Ser83Phe or Asp87His) was detected in isolates with an MIC>0.06μg/mL and all single-step mutants. Moreover, expression of acrAB-tolC and marA/soxS/ramA increased following a single-step mutation, but only ramA expression showed a positive correlation with the resistance phenotype of clinical isolates and single-step mutants (p<0.05). Furthermore, the acrR mutation was detected in two clinical isolates and 50% of single-step mutants, regardless of whether the gyrA mutation was present. This is the first report of acrR mutations in S. Typhimurium isolates from pigs in Korea. Our findings suggest that a single-exposure to sub-MPCs of marbofloxacin was sufficient to reduce the susceptibility of Salmonella isolates. Therefore, optimized dosing based on application with the MPC concept is required to reduce the chances of marbofloxacin resistance.
Collapse
Affiliation(s)
- Seung-Jin Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, 41566 Daegu, South Korea
| | - Na-Hye Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, 41566 Daegu, South Korea
| | - Abraham Fikru Mechesso
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, 41566 Daegu, South Korea
| | - Kwang-Jick Lee
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 39660 Gimcheon, South Korea.
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, 41566 Daegu, South Korea.
| |
Collapse
|
19
|
Bergmiller T, Andersson AMC, Tomasek K, Balleza E, Kiviet DJ, Hauschild R, Tkačik G, Guet CC. Biased partitioning of the multidrug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity. Science 2017; 356:311-315. [DOI: 10.1126/science.aaf4762] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/30/2016] [Accepted: 03/13/2017] [Indexed: 12/22/2022]
|
20
|
Beyond Antimicrobial Resistance: Evidence for a Distinct Role of the AcrD Efflux Pump in Salmonella Biology. mBio 2016; 7:mBio.01916-16. [PMID: 27879336 PMCID: PMC5120143 DOI: 10.1128/mbio.01916-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For over 20 years, bacterial multidrug resistance (MDR) efflux pumps have been studied because of their impact on resistance to antimicrobials. However, critical questions remain, including why produce efflux pumps under non-antimicrobial treatment conditions, and why have multiple pumps if their only purpose is antimicrobial efflux? Salmonella spp. possess five efflux pump families, including the resistance-nodulation-division (RND) efflux pumps. Notably, the RND efflux pump AcrD has a unique substrate profile, distinct from other Salmonella efflux pumps. Here we show that inactivation of acrD results in a profoundly altered transcriptome and modulation of pathways integral to Salmonella biology. The most significant transcriptome changes were central metabolism related, with additional changes observed in pathogenicity, environmental sensing, and stress response pathway expression. The extent of tricarboxylic acid cycle and fumarate metabolism expression changes led us to hypothesize that acrD inactivation may result in motility defects due to perturbation of metabolite concentrations, such as fumarate, for which a role in motility has been established. Despite minimal detectable changes in flagellar gene expression, we found that an acrD mutant Salmonella enterica serovar Typhimurium isolate was significantly impaired for swarming motility, which was restored by addition of fumarate. The acrD mutant outcompeted the wild type in fitness experiments. The results of these diverse experiments provide strong evidence that the AcrD efflux pump is not simply a redundant system providing response resilience, but also has distinct physiological functions. Together, these data indicate that the AcrD efflux pump has a significant and previously underappreciated impact on bacterial biology, despite only minor perturbations of antibiotic resistance profiles. Efflux pumps in Gram-negative bacteria are studied because of their important contributions to antimicrobial resistance. However, the role of these pumps in bacterial biology has remained surprisingly elusive. Here, we provide evidence that loss of the AcrD efflux pump significantly impacts the physiology of Salmonella enterica serovar Typhimurium. Inactivation of acrD led to changes in the expression of 403 genes involved in fundamental processes, including basic metabolism, virulence, and stress responses. Pathways such as these allow Salmonella to grow, survive in the environment, and cause disease. Indeed, our data show that the acrD mutant is more fit than wild-type Salmonella under standard lab conditions. We hypothesized that inactivation of acrD would alter levels of bacterial metabolites, impacting traits such as swarming motility. We demonstrated this by exogenous addition of the metabolite fumarate, which partially restored the acrD mutant’s swarming defect. This work extends our understanding of the role of bacterial efflux pumps.
Collapse
|