1
|
Wang M, Ou WC, Yu ZT. Porous Silicon-Supported Catalytic Materials for Energy Conversion and Storage. CHEMSUSCHEM 2025; 18:e202401459. [PMID: 39269735 DOI: 10.1002/cssc.202401459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Porous silicon (Si) has a tetrahedral structure similar to that of sp3-hybridized carbon atoms in a typical diamond structure, which affords it unique chemical and physical properties including an adjustable intrinsic bandgap, a high-speed carrier transfer efficiency. It has shown great potential in photocatalysis, rechargeable batteries, solar cells, detectors, and electrocatalysis. This review introduces various porous Si-supported electrocatalysts and analyzes the reasons why porous Si is used as a new carrier/active sites from the perspectives of its molecular structure, electronic properties, synthesis methods, etc. The electrochemical applications of porous Si-based electrocatalysts in energy conversion reactions such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and total water decomposition together with lithium-ion battery and supercapacitor in energy storage are summarized. The challenges and future research directions for porous Si are also discussed. This review aims to deepen the understanding of porous Si and promote the development and applications of this new type of Si material.
Collapse
Affiliation(s)
- Man Wang
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| | - Wei-Cheng Ou
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| |
Collapse
|
2
|
Bakhtiari MA, Fathi M, Abdolmohammadi F, Hoseinian SMA, Sepahi S, Hooshyar P, Ahmadian MT, Assempour A. Investigation the behavior of different fullerenes on graphene surface. Sci Rep 2024; 14:18220. [PMID: 39107364 PMCID: PMC11303706 DOI: 10.1038/s41598-024-69359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
In the present study, the regime of motion of fullerene molecules on graphene substrate in a specific temperature range is investigated. The potential energy of fullerene molecules is analyzed using classical molecular dynamics methods. Fullerene molecules C36, C50, C60, C76, C80, and C90 are selected due to spherical shapes of different sizes and good motion performance in previous studies. Analysis of the motion regime at different temperatures is one of the main objectives of this study. To achieve this aim, the translational and rotational movements of fullerene molecules are studied independently. In the first step of the investigation, Lennard-Jone's potential energy of fullerene molecules is calculated. Subsequently, the motion regime of different fullerenes is classified based on their displacement and diffusion coefficient. Findings indicate C60 is not appropriate in all conditions. However, C90 and C76 molecules are found to be appropriate candidates in most cases in different conditions. As far as a straight-line movement is considered, the deviation of fullerene molecules is compared by their angular velocities. Although C60 has a lower angular velocity due to its symmetrical shape, it may not move well due to its low diffusion coefficient. Overall, our study helps to understand the performance of different fullerene molecules on graphene substrate and find their possible applications, especially as wheels in nanomachine or nanocarrier structures.
Collapse
Affiliation(s)
- Mohammad Ali Bakhtiari
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Mohammad Fathi
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | | | | | - Siavash Sepahi
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Pooya Hooshyar
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Mohammad Taghi Ahmadian
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran.
| | - Ahmad Assempour
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| |
Collapse
|
3
|
Foroutan M, Boudaghi A, Alibalazadeh M. Fullerenes containing water molecules: a study of reactive molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:32493-32502. [PMID: 37997178 DOI: 10.1039/d3cp04420c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A different technique was used to investigate fullerenes encapsulating a polar guest species. By reactive molecular dynamics simulations, three types of fullerenes were investigated on a gold surface: an empty C60, a single H2O molecule inside C60 (H2O@C60), and two water molecules inside C60 ((H2O)2@C60). Our findings revealed that despite the free movement of all fullerenes on gold surfaces, confined H2O molecules within the fullerenes result in a distinct pattern of motion in these systems. The (H2O)2@C60 complex had the highest displacement and average velocity, while C60 had the lowest displacement and average velocity. The symmetry of molecules and the polarity of water seem to be crucial in these cases. ReaxFF simulations showed that water molecules in an H2O molecule, H2O@C60, and (H2O)2@C60 have dipole moments of 1.76, 0.42, and 0.47 D, respectively. A combination of the non-polar C60 and polar water demonstrated a significant reduction in the dipole moment of H2O molecules due to encapsulation. The dipole moments of water molecules agreed with those in other studies, which can be useful in the development of biocompatible and high-efficiency nanocars.
Collapse
Affiliation(s)
- Masumeh Foroutan
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Ahmad Boudaghi
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Mahtab Alibalazadeh
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Youzi M, Kianezhad M, Vaezi M, Nejat Pishkenari H. Motion of nanovehicles on pristine and vacancy-defected silicene: implications for controlled surface motion. Phys Chem Chem Phys 2023; 25:28895-28910. [PMID: 37855185 DOI: 10.1039/d3cp02835f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Understanding the motion of surface-rolling nanomachines has attracted lots of attention in recent studies, due to their ability in carrying molecular payloads and nanomaterials on the surface. Controlling the surface motion of these nanovehicles is beneficial in the fabrication of nano-transportation systems. In the present study, molecular dynamics (MD) simulations alongside the potential energy analysis have been utilized to investigate the motion of C60 and C60-based nanovehicles on the silicene monolayer. Nano-machine simulations are performed using molecular mechanic forcefield. Compared with graphene and hexagonal boron-nitride, the molecules experience a higher energy barrier on the silicene, which leads to a lower diffusion coefficient and higher activation energy of C60 and nanomachines. Overcoming the maximum energy barrier against sliding motion is more probable at higher temperatures where the nanomachines receive higher thermal energy. After evaluating the motion of molecules around local vacancies, we introduce a nanoroad structure that can restrict surface motion. The motion of C60 and nanovehicles over the surface is limited to the width of nanorods up to a certain temperature. To increase the controllability of the motion, a thermal gradient has been applied to the surface and the molecules move toward the lower temperature regions, where they find lower energy levels. Comparing the results of this study with other investigations regarding the surface motion of molecules on boron-nitride and graphene surfaces brings forth the idea of controlling the motion by silicene-based hybrid substrates, which can be further investigated.
Collapse
Affiliation(s)
- Mehrdad Youzi
- Department of Civil and Environmental Engineering, University of California Irvine, Irvine, USA
| | - Mohammad Kianezhad
- Department of Structural Engineering, University of California-San Diego, La Jolla, CA, 92093-0085, USA
| | - Mehran Vaezi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | | |
Collapse
|
5
|
Kianezhad M, Youzi M, Vaezi M, Nejat Pishkenari H. Unidirectional motion of C 60-based nanovehicles using hybrid substrates with temperature gradient. Sci Rep 2023; 13:1100. [PMID: 36670148 PMCID: PMC9860030 DOI: 10.1038/s41598-023-28245-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
With the synthesis of nanocar structures the idea of transporting energy and payloads on the surface became closer to reality. To eliminate the concern of diffusive surface motion of nanocars, in this study, we evaluate the motion of C60 and C60-based nanovehicles on graphene and hexagonal boron-nitride (BN) surfaces using molecular dynamics simulations and potential energy analysis. Utilizing the graphene-hBN hybrid substrate, it has been indicated that C60 is more stable on boron-nitride impurity regions in the hybrid substrate and an energy barrier restricts the motion to the boron-nitride impurity. Increasing the temperature causes the molecule to overcome the energy barrier frequently. A nanoroad of boron-nitride with graphene sideways is designed to confine the surface motion of C60 and nanovehicles at 300 K. As expected, the motion of all surface molecules is limited to the boron-nitride nanoroads. Although the motion is restricted to the boron-nitride nanoroad, the diffusive motion is still noticeable in lateral directions. To obtain the unidirectional motion for C60 and nanocars on the surface, a temperature gradient is applied to the surface. The unidirectional transport to the nanoroad regions with a lower temperature occurs in a short period of time due to the lower energies of molecules on the colder parts.
Collapse
Affiliation(s)
- Mohammad Kianezhad
- grid.412553.40000 0001 0740 9747Civil Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Mehrdad Youzi
- grid.266093.80000 0001 0668 7243Department of Civil and Environmental Engineering, University of California Irvine, Irvine, USA
| | - Mehran Vaezi
- grid.412553.40000 0001 0740 9747Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Hossein Nejat Pishkenari
- grid.412553.40000 0001 0740 9747Nanorobotics Laboratory, Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Shamloo A, Bakhtiari MA, Tohidloo M, Seifi S. Investigation of fullerene motion on thermally activated gold substrates with different shapes. Sci Rep 2022; 12:14397. [PMID: 36002477 PMCID: PMC9402714 DOI: 10.1038/s41598-022-18730-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022] Open
Abstract
In the current study, the regime of motion of fullerene molecules on substrates with different shapes at a range of specific temperatures has been investigated. To do so, the potential energy of fullerene molecules was analyzed using the classical molecular dynamics method. C20, C36, C50, C60, C72, C76, C80, and C90 fullerene molecules were selected due to their spherical shapes with different sizes. In addition, to completely analyze the behavior of these molecules, different gold substrates, including flat, concave, the top side of the step (upward step), and the downside of the step (downward step) substrates, were considered. Specifying the regime of the motion at different temperatures is one of the main goals of this study. For this purpose, we have studied the translational and rotational motions of fullerene molecules independently. In the first step of the investigation, Lennard-Jones potential energy of fullerene molecules was calculated. Subsequently, the regime of motion of different fullerenes has been classified, based on their displacement and sliding velocity. Our findings indicated that C60 is appropriate in less than [Formula: see text] of the conditions. However, C20, C76 and C80 molecules were found to be appropriate candidates in most cases in different conditions while they were incompetent only in seven situations. As far as a straight-line movement is considered, the concave geometry demonstrated a better performance compared to the other substrates. In addition, C72 indicated less favorable performance concerning the range of movement and diffusion coefficients. All in all, our investigation helps to understand the performance of different fullerene molecules on gold substrates and find their probable application, especially as a wheel in nano-machine structures.
Collapse
Affiliation(s)
- Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran.
| | - Mohammad Ali Bakhtiari
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Mahdi Tohidloo
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Saeed Seifi
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| |
Collapse
|
7
|
Chen X, Jiang X, Yang N. Graphdiyne Electrochemistry: Progress and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201135. [PMID: 35429089 DOI: 10.1002/smll.202201135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Graphdiyne, a carbon allotrope, was synthesized in 2010 for the first time. It consists of two acetylene bonds between adjacent benzene rings. Graphdiyne and its composites thus exhibit ultrahigh intrinsic electrochemical activities. As "star" electrode materials, they have been utilized for various electrochemical applications. With the aim of giving a full screen of graphdiyne electrochemistry, this review starts from the history of graphdiyne materials, followed by their structural and electrochemical features. Recent progress and achievements in the synthesis of graphdiyne materials and their composites are overviewed. Subsequently, various electrochemical applications of graphdiyne materials and their composites are summarized, covering those in the fields of electrochemical energy conversion, electrochemical energy storage, and electrochemical sensing. The perspectives of graphdiyne electrochemistry are also discussed and outlined.
Collapse
Affiliation(s)
- Xinyue Chen
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| |
Collapse
|
8
|
Vaezi M, Nejat Pishkenari H, Ejtehadi MR. Collective movement and thermal stability of fullerene clusters on the graphene layer. Phys Chem Chem Phys 2022; 24:11770-11781. [PMID: 35506871 DOI: 10.1039/d2cp00667g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding the motion characteristics of fullerene clusters on the graphene surface is critical for designing surface manipulation systems. Toward this purpose, using the molecular dynamics method, we evaluated six clusters of fullerenes including 1, 2, 3, 5, 10, and 25 molecules on the graphene surface, in the temperature range of 25 to 500 K. First, the surface motion of clusters is studied at 200 K and lower temperatures, in which fullerenes remain as a single group. The trajectories of the motion as well as the diffusion coefficients indicate the reduction of surface mobility as a response to the increase of the fullerene number. The clusters show normal diffusion at the temperature of 25 K, while they follow the super-diffusion regime at higher temperatures. The separation of fullerenes occurs at 300 K and higher temperatures. Due to the increase of vdW attraction with the increase of the fullerene number, the separation of fullerenes in larger clusters occurs at higher temperatures. The thermal energy at 500 K is sufficient to divide the large C60 clusters into smaller clusters. This energy level is related to the saturation of the interaction energy experienced by individual fullerenes, which can be estimated from the potential energy analysis. The results of simulations reveal that the separation occurs at the edge of clusters. Moreover, we studied the thermal stability of multilayer fullerene clusters on graphene. The simulation results indicate the tendency of multilayer clusters to locate on the surface, which implies the wetting property of C60s on the graphene layer.
Collapse
Affiliation(s)
- Mehran Vaezi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | | | | |
Collapse
|
9
|
Sun Q, He J, Gao L, Lu T, Ma X, Huang C. Synthesis Methods of Graphdiyne and Graphdiyne Based Materials. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Quanhu Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao Shandong 266101 China
- Centre of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Jianjiang He
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao Shandong 266101 China
| | - Lei Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao Shandong 266101 China
| | - Tiantian Lu
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao Shandong 266101 China
| | - Xiaodi Ma
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao Shandong 266101 China
| | - Changshui Huang
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao Shandong 266101 China
- Centre of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
10
|
Shi Z, Khaledialidusti R, Malaki M, Zhang H. MXene-Based Materials for Solar Cell Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3170. [PMID: 34947518 PMCID: PMC8707056 DOI: 10.3390/nano11123170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
MXenes are a class of two-dimensional nanomaterials with exceptional tailor-made properties, making them promising candidates for a wide variety of critical applications from energy systems, optics, electromagnetic interference shielding to those advanced sensors, and medical devices. Owing to its mechano-ceramic nature, MXenes have superior thermal, mechanical, and electrical properties. Recently, MXene-based materials are being extensively explored for solar cell applications wherein materials with superior sustainability, performance, and efficiency have been developed in demand to reduce the manufacturing cost of the present solar cell materials as well as enhance the productivity, efficiency, and performance of the MXene-based materials for solar energy harvesting. It is aimed in this review to study those MXenes employed in solar technologies, and in terms of the layout of the current paper, those 2D materials candidates used in solar cell applications are briefly reviewed and discussed, and then the fabrication methods are introduced. The key synthesis methods of MXenes, as well as the electrical, optical, and thermoelectric properties, are explained before those research efforts studying MXenes in solar cell materials are comprehensively discussed. It is believed that the use of MXene in solar technologies is in its infancy stage and many research efforts are yet to be performed on the current pitfalls to fill the existing voids.
Collapse
Affiliation(s)
- Zhe Shi
- School of Physics and New Energy, Xuzhou University of Technology, Xuzhou 221018, China;
| | - Rasoul Khaledialidusti
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway;
| | - Massoud Malaki
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science and Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
11
|
Azizi K, Vaez Allaei SM, Fathizadeh A, Sadeghi A, Sahimi M. Graphyne-3: a highly efficient candidate for separation of small gas molecules from gaseous mixtures. Sci Rep 2021; 11:16325. [PMID: 34381061 PMCID: PMC8358044 DOI: 10.1038/s41598-021-95304-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Two-dimensional nanosheets, such as the general family of graphenes have attracted considerable attention over the past decade, due to their excellent thermal, mechanical, and electrical properties. We report on the result of a study of separation of gaseous mixtures by a model graphyne-3 membrane, using extensive molecular dynamics simulations and density functional theory. Four binary and one ternary mixtures of H[Formula: see text], CO[Formula: see text], CH[Formula: see text] and C[Formula: see text]H[Formula: see text] were studied. The results indicate the excellence of graphyne-3 for separation of small gas molecules from the mixtures. In particular, the H[Formula: see text] permeance through the membrane is on the order of [Formula: see text] gas permeation unit, by far much larger than those in other membranes, and in particular in graphene. To gain deeper insights into the phenomenon, we also computed the density profiles and the residence times of the gases near the graphyne-3 surface, as well as their interaction energies with the membrane. The results indicate clearly the tendency of H[Formula: see text] to pass through the membrane at high rates, leaving behind C[Formula: see text]H[Formula: see text] and larger molecules on the surface. In addition, the possibility of chemisorption is clearly ruled out. These results, together with the very good mechanical properties of graphyne-3, confirm that it is an excellent candidate for separating small gas molecules from gaseous mixtures, hence opening the way for its industrial use.
Collapse
Affiliation(s)
- Khatereh Azizi
- Department of Physics, University of Tehran, Tehran, 14395-547, Iran
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531, Iran
| | - S Mehdi Vaez Allaei
- Department of Physics, University of Tehran, Tehran, 14395-547, Iran.
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531, Iran.
| | - Arman Fathizadeh
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ali Sadeghi
- Department of Physics, Shahid Beheshti University, Tehran, Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531, Iran
| | - Muhammad Sahimi
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089-1211, USA
| |
Collapse
|
12
|
Adsorption of Polymer-Grafted Nanoparticles on Curved Surfaces. CHEMISTRY 2021. [DOI: 10.3390/chemistry3010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nanometer-curved surfaces are abundant in biological systems as well as in nano-sized technologies. Properly functionalized polymer-grafted nanoparticles (PGNs) adhere to surfaces with different geometries and curvatures. This work explores some of the energetic and mechanical characteristics of the adhesion of PGNs to surfaces with positive, negative and zero curvatures using Coarse-Grained Molecular Dynamics (CGMD) simulations. Our calculated free energies of binding of the PGN to the curved and flat surfaces as a function of separation distance show that curvature of the surface critically impacts the adhesion strength. We find that the flat surface is the most adhesive, and the concave surface is the least adhesive surface. This somewhat counterintuitive finding suggests that while a bare nanoparticle is more likely to adhere to a positively curved surface than a flat surface, grafting polymer chains to the nanoparticle surface inverts this behavior. Moreover, we studied the rheological behavior of PGN upon separation from the flat and curved surfaces under external pulling force. The results presented herein can be exploited in drug delivery and self-assembly applications.
Collapse
|
13
|
Mofidi SM, Nejat Pishkenari H, Ejtehadi MR, Akimov AV. Locomotion of the C 60-based nanomachines on graphene surfaces. Sci Rep 2021; 11:2576. [PMID: 33510367 PMCID: PMC7844297 DOI: 10.1038/s41598-021-82280-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
We provide a comprehensive computational characterization of surface motion of two types of nanomachines with four C60 "wheels": a flexible chassis Nanocar and a rigid chassis Nanotruck. We study the nanocars' lateral and rotational diffusion as well as the wheels' rolling motion on two kinds of graphene substrates-flexible single-layer graphene which may form surface ripples and an ideally flat graphene monolayer. We find that the graphene surface ripples facilitate the translational diffusion of Nanocar and Nanotruck, but have little effect on their surface rotation or the rolling of their wheels. The latter two types of motion are strongly affected by the structure of the nanomachines instead. Surface diffusion of both nanomachines occurs preferentially via a sliding mechanism whereas the rolling of the "wheels" contributes little. The axial rotation of all "wheels" is uncorrelated.
Collapse
Affiliation(s)
- Seyedeh Mahsa Mofidi
- grid.412553.40000 0001 0740 9747Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, 14588-89694 Tehran, Iran
| | - Hossein Nejat Pishkenari
- grid.412553.40000 0001 0740 9747Mechanical Engineering Department, Sharif University of Technology, 11155-9567 Tehran, Iran
| | - Mohammad Reza Ejtehadi
- grid.412553.40000 0001 0740 9747Department of Physics, Sharif University of Technology, 11155-9161 Tehran, Iran
| | - Alexey V. Akimov
- grid.273335.30000 0004 1936 9887Department of Chemistry, University at Buffalo, State University of New York, Buffalo, 14260-3000 USA
| |
Collapse
|
14
|
Vaezi M, Nejat Pishkenari H, Nemati A. Mechanism of C 60 rotation and translation on hexagonal boron-nitride monolayer. J Chem Phys 2020; 153:234702. [PMID: 33353326 DOI: 10.1063/5.0029490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Newly synthesized nanocars have shown great potential to transport molecular payloads. Since wheels of nanocars dominate their motion, the study of the wheels helps us to design a suitable surface for them. We investigated C60 thermal diffusion on the hexagonal boron-nitride (h-BN) monolayer as the wheel of nanocars. We calculated C60 potential energy variation during the translational and rotational motions at different points on the substrate. The study of the energy barriers and diffusion coefficients of the molecule at different temperatures indicated three noticeable changes in the C60 motion regime. C60 starts to slide on the surface at 30 K-40 K, slides freely on the boron-nitride monolayer at 100 K-150 K, and shows rolling motions at temperatures higher than 500 K. The anomaly parameter of the motion reveals that C60 has a diffusive motion on the boron-nitride substrate at low temperatures and experiences superdiffusion with Levy flight motions at higher temperatures. A comparison of the fullerene motion on the boron-nitride and graphene surfaces demonstrated that the analogous structure of the graphene and hexagonal boron-nitride led to similar characteristics such as anomaly parameters and the temperatures at which the motion regime changes. The results of this study empower us to predict that fullerene prefers to move on boron-nitride sections on a hybrid substrate composed of graphene and boron-nitride. This property can be utilized to design pathways or regions on a surface to steer or trap the C60 or other molecular machines, which is a step toward directional transportation at the molecular scale.
Collapse
Affiliation(s)
- Mehran Vaezi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Hossein Nejat Pishkenari
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Alireza Nemati
- Institute for Future, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Readout and control of an endofullerene electronic spin. Nat Commun 2020; 11:6405. [PMID: 33335106 PMCID: PMC7746685 DOI: 10.1038/s41467-020-20202-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 11/16/2020] [Indexed: 11/09/2022] Open
Abstract
Atomic spins for quantum technologies need to be individually addressed and positioned with nanoscale precision. C60 fullerene cages offer a robust packaging for atomic spins, while allowing in-situ physical positioning at the nanoscale. However, achieving single-spin level readout and control of endofullerenes has so far remained elusive. In this work, we demonstrate electron paramagnetic resonance on an encapsulated nitrogen spin (14N@C60) within a C60 matrix using a single near-surface nitrogen vacancy (NV) center in diamond at 4.7 K. Exploiting the strong magnetic dipolar interaction between the NV and endofullerene electronic spins, we demonstrate radio-frequency pulse controlled Rabi oscillations and measure spin-echos on an encapsulated spin. Modeling the results using second-order perturbation theory reveals an enhanced hyperfine interaction and zero-field splitting, possibly caused by surface adsorption on diamond. These results demonstrate the first step towards controlling single endofullerenes, and possibly building large-scale endofullerene quantum machines, which can be scaled using standard positioning or self-assembly methods. Encasing a single atom within a fullerene (C60) cage can create a robustly packaged single atomic spin system. Here, the authors perform electron paramagnetic resonance on a single encased spin using a diamond NV-center, demonstrating the first steps in controlling single spins in fullerene cages.
Collapse
|
16
|
Nemati A, Nejat Pishkenari H, Meghdari A, Ge SS. Directional control of surface rolling molecules exploiting non-uniform heat-induced substrates. Phys Chem Chem Phys 2020; 22:26887-26900. [PMID: 33205804 DOI: 10.1039/d0cp04960c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular machines, such as nanocars, have shown promising potential for various tasks, including manipulation at the nanoscale. In this paper, we examined the influence of temperature gradients on nanocar and nanotruck motion as well as C60 - as their wheel - on a flat gold surface under various conditions. We also compared the accuracy and computational cost of two different approaches for generating the temperature gradient. The results show that severe vibrations and frequent impacts of gold atoms at high temperatures increase the average distance of C60 from the substrate, reducing its binding energy. Moreover, the temperature field drives C60 to move along the temperature variation; still, the diffusive motion of C60 remained unchanged in the direction perpendicular to the temperature gradient. Increasing the magnitude of the temperature gradient speeds up its motion parallel to the gradient, while raising the average temperature of the substrate increases the diffusion coefficient in all directions. The temperature field influences the nanocar motion in the same manner as C60. However, the nanocars have a substantially shorter motion range compared to C60. The relatively larger, heavier, and more flexible chassis of the nanocar makes it more sluggish than the nanotruck. In general, the motion of large and heavy surface rolling molecules is less affected by the temperature field compared to small and light molecules. The results of the study show that concentrated heat sources can be employed to push surface rolling molecules or break down their large clusters. We can exploit a temperature field as a driving force to push nanocars in a desired direction on prebuilt pathways.
Collapse
Affiliation(s)
- Alireza Nemati
- Institute for Future (IFF), Qingdao University, Qingdao 266071, China
| | | | | | | |
Collapse
|
17
|
Ge C, Chen J, Tang S, Du Y, Tang N. Review of the Electronic, Optical, and Magnetic Properties of Graphdiyne: From Theories to Experiments. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2707-2716. [PMID: 29701448 DOI: 10.1021/acsami.8b03413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Graphdiyne (GDY), a two-dimensional artificial-synthesis carbon material, has aroused tremendous interest because of its unique physical properties. The very high activity affords the possibility to chemically dope GDY with metal atoms or lightweight elements such as hydrogen and halogen and so on. Chemical doping has been confirmed to be an effective method to lead to various GDY derivatives with useful physical properties. Thus, this review is intended to provide an overview of the electronic, optical, and magnetic properties of pristine GDY and its derivatives reported from theories to experiments. Because of the importance of pristine GDY and its derivatives in real applications, we also summarize the main physical applications of GDY and its derivatives reported in recent years in this review. We believe that the review will be valuable to all those interested in GDY.
Collapse
Affiliation(s)
- Chuannan Ge
- National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , China
- School of Physics & Electronic Engineering , Jiangsu Second Normal University , Nanjing 210013 , China
| | - Jie Chen
- National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , China
| | - Shaolong Tang
- National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , China
| | - Youwei Du
- National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , China
| | - Nujiang Tang
- National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
18
|
James A, John C, Owais C, Myakala SN, Chandra Shekar S, Choudhuri JR, Swathi RS. Graphynes: indispensable nanoporous architectures in carbon flatland. RSC Adv 2018; 8:22998-23018. [PMID: 35540143 PMCID: PMC9081630 DOI: 10.1039/c8ra03715a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/07/2018] [Indexed: 11/21/2022] Open
Abstract
Theoretical design and experimental realization of novel nanoporous architectures in carbon membranes has been a success story in recent times. Research on graphynes, an interesting class of materials in carbon flatland, has contributed immensely to this success story. Graphyne frameworks possessing sp and sp2 hybridized carbon atoms offer a variety of uniformly distributed nanoporous architectures for applications ranging from water desalination, gas separation, and energy storage to catalysis. Theory has played a pivotal role in research on graphynes, starting from the prediction of various structural forms to the emergence of their remarkable applications. Herein, we attempt to provide an up-to-date account of research on graphynes, highlighting contributions from numerous theoretical investigations that have led to the current status of graphynes as indispensable materials in carbon flatland. Despite unsolved challenges in large-scale synthesis, the future appears bright for graphynes in present theoretical and experimental research scenarios.
Collapse
Affiliation(s)
- Anto James
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Vithura Kerala India-695551
| | - Chris John
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Vithura Kerala India-695551
| | - Cheriyacheruvakkara Owais
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Vithura Kerala India-695551
| | - Stephen Nagaraju Myakala
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Vithura Kerala India-695551
| | - Sarap Chandra Shekar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Vithura Kerala India-695551
| | - Jyoti Roy Choudhuri
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Vithura Kerala India-695551
| | - Rotti Srinivasamurthy Swathi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Vithura Kerala India-695551
| |
Collapse
|
19
|
Nemati A, Nejat Pishkenari H, Meghdari A, Sohrabpour S. Directing the diffusive motion of fullerene-based nanocars using nonplanar gold surfaces. Phys Chem Chem Phys 2018; 20:332-344. [PMID: 29210390 DOI: 10.1039/c7cp07217a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new method for guiding the motion of fullerene and fullerene-based nanocars is introduced in this paper. The effects of non-flat substrates on the motion of C60, a nanocar and a nanotruck are investigated at different conditions and temperatures. Their behavior is studied using two different approaches: analyzing the variation in potential energy and conducting all-atom classical molecular dynamics simulations. This paper proposes that the use of a stepped substrate will make their motion more predictable and controllable. The results of the simulations show that C60 stays on the top side of the step and cannot jump over the step at temperatures of 400 K and lower. However, at temperatures of 500 K and higher, C60 has sufficient energy to travel to the down side of the step. C60 attaches to the edge and moves just alongside of the edge when it is on the down side of the step. The edge also restricts the motion of C60 alongside the edge and reduces its range of motion. By considering the motion of C60, the general behavior of the nanocar and nanotruck is predictable. The nanocar stays on the top side of the step at temperatures of 400 K and less; at 500 K and higher temperatures, its wheels jump off the edge, and its range of motion is restricted. The relatively rigid chassis of the nanotruck does not allow the free individual motion of the wheels. As a result, the entire nanotruck stays on the top side of the step, even at 600 K. A pathway with the desired route can be fabricated for the motion of C60 and nanocars using the method presented in this paper. This represents a step towards the directional motion of C60 and nanocars.
Collapse
Affiliation(s)
- Alireza Nemati
- Nano Robotics Laboratory, Center of Excellence in Design, Robotic and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | | | | | | |
Collapse
|