1
|
Hussain MN, Demuynck A, Van Gerven T. Altering ROY polymorph crystallization in conventional and microfluidic crystallizers with acoustic cavitation. Sci Rep 2025; 15:14227. [PMID: 40274892 PMCID: PMC12022130 DOI: 10.1038/s41598-025-97635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Selective crystallization of polymorphs can be a difficult task, influenced by several physical and chemical parameters like mixing, temperature, supersaturation, solvent, etc. Acoustic cavitation, produced at low ultrasonic frequencies, induces effects like micro-mixing and local heating which, when coupled to crystallization, can alter crystal form nucleation. In this work, anti-solvent crystallization of a model compound (ROY) was conducted to investigate the effect of acoustic cavitation on polymorph nucleation. Experiments were conducted in batch and microfluidic flow crystallization setups at different anti-solvent volume fractions under silent and sonicated conditions. Results show that sonication has a significant effect on the polymorphic outcome. In batch crystallization sonication promoted the formation of the stable Y form. This observation was consistent for flow crystallization experiments at a low flow rate. At a higher flow rate, this effect weakened due to low residence times. In some batch experiments recorded with a high speed camera it was found that the formation of the Y form was most probably facilitated by ultrasound enhanced polymorphic transformation rather than direct nucleation. Additionally, computational fluid dynamic simulations (only silent-flow conditions) indicate that supersaturation distribution within the channel has a significant effect on the polymorph nucleated.
Collapse
Affiliation(s)
| | - Arthur Demuynck
- ProcESS Division, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Tom Van Gerven
- ProcESS Division, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Yamaguchi K, Mima J, Nakajima K, Sakuta H, Yoshikawa K, Goto Y. Accelerated amyloid fibril formation at the interface of liquid-liquid phase-separated droplets by depletion interactions. Protein Sci 2025; 34:e5163. [PMID: 39876094 PMCID: PMC11774873 DOI: 10.1002/pro.5163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 01/30/2025]
Abstract
Amyloid fibril formation of α-synuclein (αSN) is a hallmark of synucleinopathies. Although the previous studies have provided numerous insights into the molecular basis of αSN amyloid formation, it remains unclear how αSN self-assembles into amyloid fibrils in vivo. Here, we show that αSN amyloid formation is accelerated in the presence of two macromolecular crowders, polyethylene glycol (PEG) (MW: ~10,000) and dextran (DEX) (MW: ~500,000), with a maximum at approximately 7% (w/v) PEG and 7% (w/v) DEX. Under these conditions, the two crowders induce a two-phase separation of upper PEG and lower DEX phases with a small number of liquid droplets of DEX and PEG in PEG and DEX phases, respectively. Fluorescence microscope images revealed that the interfaces of DEX droplets in the upper PEG phase are the major sites of amyloid formation. We consider that the depletion interactions working in micro phase-segregated state with DEX and PEG systems causes αSN condensation at the interface between solute PEG and DEX droplets, resulting in accelerated amyloid formation. Ultrasonication further accelerated the amyloid formation in both DEX and PEG phases, confirming the droplet-dependent amyloid formation. Similar PEG/DEX-dependent accelerated amyloid formation was observed for amyloid β peptide. In contrast, amyloid formation of β2-microglobulin or hen egg white lysozyme with a native fold was suppressed in the PEG/DEX mixtures, suggesting that the depletion interactions work adversely depending on whether the protein is unfolded or folded.
Collapse
Affiliation(s)
- Keiichi Yamaguchi
- Graduate School of EngineeringOsaka UniversityOsakaJapan
- Global Center for Medical Engineering and InformaticsOsaka UniversityOsakaJapan
| | - Joji Mima
- Graduate School of EngineeringOsaka UniversityOsakaJapan
- Global Center for Medical Engineering and InformaticsOsaka UniversityOsakaJapan
| | - Kichitaro Nakajima
- Graduate School of EngineeringOsaka UniversityOsakaJapan
- Global Center for Medical Engineering and InformaticsOsaka UniversityOsakaJapan
| | - Hiroki Sakuta
- Faculty of Life and Medical SciencesDoshisha UniversityKyotoJapan
- Center for Complex Systems BiologyUniversal Biology Institute, The University of TokyoTokyoJapan
| | | | - Yuji Goto
- Graduate School of EngineeringOsaka UniversityOsakaJapan
- Global Center for Medical Engineering and InformaticsOsaka UniversityOsakaJapan
| |
Collapse
|
3
|
Nakajima K, Ota T, Toda H, Yamaguchi K, Goto Y, Ogi H. Surface Modification of Ultrasonic Cavitation by Surfactants Improves Detection Sensitivity of α-Synuclein Amyloid Seeds. ACS Chem Neurosci 2024; 15:1643-1651. [PMID: 38546732 DOI: 10.1021/acschemneuro.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
The rapid amplification and sensitive detection of α-synuclein (αSyn) seeds is an efficient approach for the early diagnosis of Parkinson's disease. Ultrasonication stands out as a promising method for the rapid amplification of αSyn seeds because of its robust fibril fragmentation capability. However, ultrasonication also induces the primary nucleation of αSyn monomers, deteriorating the seed detection sensitivity by generating seed-independent fibrils. In this study, we show that an addition of surfactants to the αSyn monomer solution during αSyn seed detection under ultrasonication remarkably improves the detection sensitivity of the αSyn seeds by a factor of 100-1000. Chemical kinetic analysis reveals that these surfactants reduce the rate of primary nucleation while promoting the fragmentation of the αSyn fibrils under ultrasonication. These effects are attributed to the modification of the ultrasonic cavitation surface by the surfactants. Our study enhances the utility of ultrasonication in clinical assays targeting αSyn seeds as the Parkinson's disease biomarker.
Collapse
Affiliation(s)
- Kichitaro Nakajima
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Tomoki Ota
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hajime Toda
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Keiichi Yamaguchi
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Yuji Goto
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
An D, Ban Q, Du H, Wang Q, Teng F, Li L, Xiao H. Nanofibrils of food-grade proteins: Formation mechanism, delivery systems, and application evaluation. Compr Rev Food Sci Food Saf 2022; 21:4847-4871. [PMID: 36201382 DOI: 10.1111/1541-4337.13028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
Due to the high aspect ratio, appealing mechanical characteristics, and various adjustable functional groups on the surface proteins, food-grade protein nanofibrils have attracted great research interest in the field of food science. Fibrillation, known as a process of peptide self-assembly, is recognized as a common attribute for food-grade proteins. Converting food-grade proteins into nanofibrils is a promising strategy to broaden their functionality and applications, such as improvement of the properties of gelling and emulsifying, especially for constructing various delivery systems for bioactive compounds. Protein source and processing conditions have a great impact on the size, structure, and morphology of nanofibrils, resulting in extreme differences in functionality. With this feature, it is possible to engineer nanofibrils into four different delivery systems, including gels, microcapsules, emulsions, and complexes. Construction of nanofibril-based gels via multiple cross-linking methods can endow gels with special network structures to efficiently capture bioactive compounds and extra mechanical behavior. The adsorption behavior of nanofibrils at the interface is highly complex due to the influence of several intrinsic factors, which makes it challenging to form stabilized nanofibril-based emulsion systems. Based on electrostatic interactions, microcapsules and complexes prepared using nanofibrils and polysaccharides have combined functional properties, resulting in adjustable release behavior and higher encapsulation efficiency. The bioactive compounds delivery system based on nanofibrils is a potential solution to enhance their absorption in the gastrointestinal tract, improve their bioavailability, and deliver them to target organs. Although food-grade protein nanofibrils show unknown toxicity to humans, further research can contribute to broadening the application of nanofibrils in delivery systems.
Collapse
Affiliation(s)
- Di An
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
Nakajima K, Yamaguchi K, Noji M, Aguirre C, Ikenaka K, Mochizuki H, Zhou L, Ogi H, Ito T, Narita I, Gejyo F, Naiki H, Yamamoto S, Goto Y. Macromolecular crowding and supersaturation protect hemodialysis patients from the onset of dialysis-related amyloidosis. Nat Commun 2022; 13:5689. [PMID: 36192385 PMCID: PMC9530240 DOI: 10.1038/s41467-022-33247-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Dialysis-related amyloidosis (DRA), a serious complication among long-term hemodialysis patients, is caused by amyloid fibrils of β2-microglobulin (β2m). Although high serum β2m levels and a long dialysis vintage are the primary and secondary risk factors for the onset of DRA, respectively, patients with these do not always develop DRA, indicating that there are additional risk factors. To clarify these unknown factors, we investigate the effects of human sera on β2m amyloid fibril formation, revealing that sera markedly inhibit amyloid fibril formation. Results from over 100 sera indicate that, although the inhibitory effects of sera deteriorate in long-term dialysis patients, they are ameliorated by maintenance dialysis treatments in the short term. Serum albumin prevents amyloid fibril formation based on macromolecular crowding effects, and decreased serum albumin concentration in dialysis patients is a tertiary risk factor for the onset of DRA. We construct a theoretical model assuming cumulative effects of the three risk factors, suggesting the importance of monitoring temporary and accumulated risks to prevent the development of amyloidosis, which occurs based on supersaturation-limited amyloid fibril formation in a crowded milieu.
Collapse
Affiliation(s)
- Kichitaro Nakajima
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan.,Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Keiichi Yamaguchi
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan.,Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masahiro Noji
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshidahonmatsu-cho, Sakyo-ku, Kyoto, 606-8316, Japan
| | - César Aguirre
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Lianjie Zhou
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toru Ito
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Fumitake Gejyo
- Niigata University of Pharmacy and Applied Life Sciences, Niigata, 956-8603, Japan
| | - Hironobu Naiki
- Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan.
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan. .,Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Supersaturation-Dependent Formation of Amyloid Fibrils. Molecules 2022; 27:molecules27144588. [PMID: 35889461 PMCID: PMC9321232 DOI: 10.3390/molecules27144588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
The supersaturation of a solution refers to a non-equilibrium phase in which the solution is trapped in a soluble state, even though the solute’s concentration is greater than its thermodynamic solubility. Upon breaking supersaturation, crystals form and the concentration of the solute decreases to its thermodynamic solubility. Soon after the discovery of the prion phenomena, it was recognized that prion disease transmission and propagation share some similarities with the process of crystallization. Subsequent studies exploring the structural and functional association between amyloid fibrils and amyloidoses solidified this paradigm. However, recent studies have not necessarily focused on supersaturation, possibly because of marked advancements in structural studies clarifying the atomic structures of amyloid fibrils. On the other hand, there is increasing evidence that supersaturation plays a critical role in the formation of amyloid fibrils and the onset of amyloidosis. Here, we review the recent evidence that supersaturation plays a role in linking unfolding/folding and amyloid fibril formation. We also introduce the HANABI (HANdai Amyloid Burst Inducer) system, which enables high-throughput analysis of amyloid fibril formation by the ultrasonication-triggered breakdown of supersaturation. In addition to structural studies, studies based on solubility and supersaturation are essential both to developing a comprehensive understanding of amyloid fibrils and their roles in amyloidosis, and to developing therapeutic strategies.
Collapse
|
7
|
Wang Y, Wu C. The effect of mechanical shocks on the initial aggregation behavior of yeast prion protein Sup35NM. Int J Biol Macromol 2022; 212:465-473. [PMID: 35618091 DOI: 10.1016/j.ijbiomac.2022.05.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
To study the effect of mechanical shocks on the neurodegenerative-related fibril-formation protein, the aggregation process, especially the initial oligomerization of a model yeast prion protein Sup35NM, was followed and analyzed by using a combination of laser light scattering, the Smoluchowski coagulation analysis, Thioflavin T fluorescence assay, and transmission electron microscopy. We find that an initial short-time mechanical shock (ultrasonication or circular shaking) affects the in vitro association kinetics of neurodegenerative-related Sup35NM proteins in dilute PBS solutions by generating a relatively larger number of smaller non-structured oligomers that further serve as tiny "crystallization" seeds in promoting the formation of longer fibrils. Our study provides an effective and quantitative method to investigate the initial oligomerization kinetics of amyloid fibrils formation. Furthermore, the current results may shed light on the molecular understanding on how environmental factors increase the risk of neurodegenerative diseases such as dementia.
Collapse
Affiliation(s)
- Yanjing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Chi Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, The University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Development of HANABI, an ultrasonication-forced amyloid fibril inducer. Neurochem Int 2021; 153:105270. [PMID: 34954259 DOI: 10.1016/j.neuint.2021.105270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Amyloid fibrils involved in amyloidoses are crystal-like aggregates, which are formed by breaking supersaturation of denatured proteins. Ultrasonication is an efficient method of agitation for breaking supersaturation and thus inducing amyloid fibrils. By combining an ultrasonicator and a microplate reader, we developed the HANABI (HANdai Amyloid Burst Inducer) system that enables high-throughput analysis of amyloid fibril formation. Among high-throughput approaches of amyloid fibril assays, the HANABI system has advantages in accelerating and detecting spontaneous amyloid fibril formation. HANABI is also powerful for amplifying a tiny amount of preformed amyloid fibrils by seeding. Thus, HANABI will contribute to creating therapeutic strategies against amyloidoses by identifying their biomarkers.
Collapse
|
9
|
Movafaghi S, Daniels AL, Kelly MD, Witeof AE, Calderon CP, Randolph TW, Goodwin AP. Hydrogel Coatings on Container Surfaces Reduce Protein Aggregation Caused by Mechanical Stress and Cavitation. ACS APPLIED BIO MATERIALS 2021; 4:6946-6953. [DOI: 10.1021/acsabm.1c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sanli Movafaghi
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Austin L. Daniels
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mary D. Kelly
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Alyssa E. Witeof
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher P. Calderon
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Ursa Analytics, Inc., Denver, Colorado 80212, United States
| | - Theodore W. Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Andrew P. Goodwin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
10
|
Nakajima K, Toda H, Yamaguchi K, So M, Ikenaka K, Mochizuki H, Goto Y, Ogi H. Half-Time Heat Map Reveals Ultrasonic Effects on Morphology and Kinetics of Amyloidogenic Aggregation Reaction. ACS Chem Neurosci 2021; 12:3456-3466. [PMID: 34467753 DOI: 10.1021/acschemneuro.1c00461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ultrasonication has been recently adopted in amyloid-fibril assays because of its ability to accelerate fibril formation, being promising in the early stage diagnosis of amyloidoses in clinical applications. Although applications of this technique are expanding in the field of protein science, its effects on the aggregation reactions of amyloidogenic proteins are poorly understood. In this study, we comprehensively investigated the morphology and structure of resultant aggregates, kinetics of fibril formation, and seed-detection sensitivity under ultrasonication using β2-microglobulin and compared these characteristics under shaking, which has been traditionally adopted in amyloid-fibril assays. To discuss the ultrasonic effects on the amyloid-fibril formation, we propose the half-time heat map, which describes the phase diagram of the aggregation reaction of amyloidogenic proteins. The experimental results show that ultrasonication greatly promotes fibril formation, especially in dilute monomer solutions, induces short-dispersed fibrils, and is capable of detecting ultra-trace-concentration seeds with a detection limit of 10 fM. Furthermore, we indicate that ultrasonication highly alters the energy landscape of an aggregation reaction due to the effect of ultrasonic cavitation. These insights contribute not only to our understanding of the effects of agitation on amyloidogenic aggregation reactions but also to their effective application in the clinical diagnosis of amyloidoses.
Collapse
Affiliation(s)
- Kichitaro Nakajima
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hajime Toda
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keiichi Yamaguchi
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masatomo So
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Wu H, Movafaghi S, Francino Urdániz IM, Rowe TM, Goodwin A, Randolph TW. Insulin Fibril Formation Caused by Mechanical Shock and Cavitation. J Phys Chem B 2021; 125:8021-8027. [PMID: 34260251 DOI: 10.1021/acs.jpcb.1c01997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cavitation can occur when liquids are exposed to pressure waves of sufficient amplitude, producing rapidly expanding and collapsing gas bubbles that generate localized regions of high energy dissipation. When vials containing insulin were subjected to mechanical shock or when ultrasound was applied to the vials, the resulting cavitation events induced formation of insulin amyloid fibril nuclei that were detected by transmission electron microscopy and quantified by fluorescence spectroscopy following staining with the amyloid-sensitive dye thioflavin-T. Dropping insulin solutions in glass vials produced only minute amounts of insulin fibril nuclei, which could be detected by allowing the nuclei to grow. Cavitation-induced formation of amyloid aggregates may be relevant for iatrogenic insulin deposition disease, where insulin fibrils formed in vitro prior to administration to patients could serve as nuclei for growing fibril deposits in vivo.
Collapse
Affiliation(s)
- Hao Wu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Sanli Movafaghi
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Irene M Francino Urdániz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Tessa M Rowe
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Andrew Goodwin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States.,Material Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
12
|
So M, Kimura Y, Yamaguchi K, Sugiki T, Fujiwara T, Aguirre C, Ikenaka K, Mochizuki H, Kawata Y, Goto Y. Polyphenol-solubility alters amyloid fibril formation of α-synuclein. Protein Sci 2021; 30:1701-1713. [PMID: 34046949 DOI: 10.1002/pro.4130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Amyloid fibrils form above the solubility of amyloidogenic proteins or peptides upon breaking supersaturation, followed by a nucleation and elongation mechanism, which is similar to the crystallization of solutes. Many additives, including salts, detergents, and natural compounds, promote or inhibit amyloid formation. However, the underlying mechanisms of the opposing effects are unclear. We examined the effects of two polyphenols, that is, epigallocatechin gallate (EGCG) and kaempferol-7─O─glycoside (KG), with high and low solubilities, respectively, on the amyloid formation of α-synuclein (αSN). EGCG and KG inhibited and promoted amyloid formation of αSN, respectively, when monitored by thioflavin T (ThT) fluorescence or transmission electron microscopy (TEM). Nuclear magnetic resonance (NMR) analysis revealed that, although interactions of αSN with soluble EGCG increased the solubility of αSN, thus inhibiting amyloid formation, interactions of αSN with insoluble KG reduced the solubility of αSN, thereby promoting amyloid formation. Our study suggests that opposing effects of polyphenols on amyloid formation of proteins and peptides can be interpreted based on the solubility of polyphenols.
Collapse
Affiliation(s)
- Masatomo So
- Institute for Protein Research, Osaka University, Osaka, Japan.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Yuto Kimura
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Keiichi Yamaguchi
- Institute for Protein Research, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | | | | | - Cesar Aguirre
- Institute for Protein Research, Osaka University, Osaka, Japan.,Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Exploring ligand binding pathways on proteins using hypersound-accelerated molecular dynamics. Nat Commun 2021; 12:2793. [PMID: 33990583 PMCID: PMC8121818 DOI: 10.1038/s41467-021-23157-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Capturing the dynamic processes of biomolecular systems in atomistic detail remains difficult despite recent experimental advances. Although molecular dynamics (MD) techniques enable atomic-level observations, simulations of “slow” biomolecular processes (with timescales longer than submilliseconds) are challenging because of current computer speed limitations. Therefore, we developed a method to accelerate MD simulations by high-frequency ultrasound perturbation. The binding events between the protein CDK2 and its small-molecule inhibitors were nearly undetectable in 100-ns conventional MD, but the method successfully accelerated their slow binding rates by up to 10–20 times. Hypersound-accelerated MD simulations revealed a variety of microscopic kinetic features of the inhibitors on the protein surface, such as the existence of different binding pathways to the active site. Moreover, the simulations allowed the estimation of the corresponding kinetic parameters and exploring other druggable pockets. This method can thus provide deeper insight into the microscopic interactions controlling biomolecular processes. Molecular dynamics (MD) techniques enable atomic-level observations, but simulations of “slow” biomolecular processes are challenging because of current computer speed limitations. Here, the authors develop a method to accelerate MD simulations by high-frequency ultrasound perturbation and reveal binding events between the protein CDK2 and its small-molecule inhibitors.
Collapse
|
14
|
Nakajima K, Noi K, Yamaguchi K, So M, Ikenaka K, Mochizuki H, Ogi H, Goto Y. Optimized sonoreactor for accelerative amyloid-fibril assays through enhancement of primary nucleation and fragmentation. ULTRASONICS SONOCHEMISTRY 2021; 73:105508. [PMID: 33770746 PMCID: PMC7994783 DOI: 10.1016/j.ultsonch.2021.105508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Ultrasonication to supersaturated protein solutions forcibly forms amyloid fibrils, thereby allowing the early-stage diagnosis for amyloidoses. Previously, we constructed a high-throughput sonoreactor to investigate features of the amyloid-fibril nucleation. Although the instrument substantiated the ultrasonication efficacy, several challenges remain; the key is the precise control of the acoustic field in the reactor, which directly affects the fibril-formation reaction. In the present study, we develop the optimized sonoreactor for the amyloid-fibril assay, which improves the reproducibility and controllability of the fibril formation. Using β2-microglobulin, we experimentally demonstrate that achieving identical acoustic conditions by controlling oscillation amplitude and frequency of each transducer results in identical fibril-formation behavior across 36 solutions. Moreover, we succeed in detecting the 100-fM seeds using the developed sonoreactor at an accelerated rate. Finally, we reveal that the acceleration of the fibril-formation reaction with the seeds is achieved by enhancing the primary nucleation and the fibril fragmentation through the analysis of the fibril-formation kinetics. These results demonstrate the efficacy of the developed sonoreactor for the diagnosis of amyloidoses owing to the accelerative seed detection and the possibility for further early-stage diagnosis even without seeds through the accelerated primary nucleation.
Collapse
Affiliation(s)
- Kichitaro Nakajima
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kentaro Noi
- Institute for NanoScience Design, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Keiichi Yamaguchi
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduated School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduated School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
15
|
Machine Learning and Accelerated Stress Approaches to Differentiate Potential Causes of Aggregation in Polyclonal Antibody Formulations During Shipping. J Pharm Sci 2021; 110:2743-2752. [PMID: 33647275 DOI: 10.1016/j.xphs.2021.02.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Therapeutic proteins are among the most widely prescribed medications, with wide distribution and complex supply chains. Shipping exposes protein formulations to stresses that can trigger aggregation, although the exact mechanism(s) responsible for aggregation are unknown. To better understand how shipping causes aggregation, we compared populations of aggregates that were formed in a polyclonal antibody formulation during live shipping studies to populations observed in accelerated stability studies designed to mimic both the sporadic high g-force and continuous low g-force stresses encountered during shipping. Additionally, we compared the effects on aggregation levels generated in two types of secondary packaging, one of which was designed to mitigate the effects of large g-force stresses. Aggregation was quantified using fluorescence intensity of 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) dye, size exclusion high performance liquid chromatography (SECHPLC), and flow imaging microscopy (FIM). FIM was also combined with machine learning methods to analyze particle morphology distributions. These comparisons revealed that the morphology distributions of aggregates formed during live shipping resemble distributions that result from low g-force events, but not those observed following high g-force events, suggesting that low g-force stresses play a predominant role in shipping-induced aggregation.
Collapse
|
16
|
Breakdown of supersaturation barrier links protein folding to amyloid formation. Commun Biol 2021; 4:120. [PMID: 33500517 PMCID: PMC7838177 DOI: 10.1038/s42003-020-01641-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
The thermodynamic hypothesis of protein folding, known as the "Anfinsen's dogma" states that the native structure of a protein represents a free energy minimum determined by the amino acid sequence. However, inconsistent with the Anfinsen's dogma, globular proteins can misfold to form amyloid fibrils, which are ordered aggregates associated with diseases such as Alzheimer's and Parkinson's diseases. Here, we present a general concept for the link between folding and misfolding. We tested the accessibility of the amyloid state for various proteins upon heating and agitation. Many of them showed Anfinsen-like reversible unfolding upon heating, but formed amyloid fibrils upon agitation at high temperatures. We show that folding and amyloid formation are separated by the supersaturation barrier of a protein. Its breakdown is required to shift the protein to the amyloid pathway. Thus, the breakdown of supersaturation links the Anfinsen's intramolecular folding universe and the intermolecular misfolding universe.
Collapse
|
17
|
Nakajima K, Yamazaki T, Kimura Y, So M, Goto Y, Ogi H. Time-Resolved Observation of Evolution of Amyloid-β Oligomer with Temporary Salt Crystals. J Phys Chem Lett 2020; 11:6176-6184. [PMID: 32687370 DOI: 10.1021/acs.jpclett.0c01487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The aggregation behavior of amyloid-β (Aβ) peptides remains unclarified despite the fact that it is closely related to the pathogenic mechanism of Alzheimer's disease. Aβ peptides form diverse oligomers with various diameters before nucleation, making clarification of the mechanism involved a complex problem with conventional macroscopic analysis methods. Time-resolved single-molecule level analysis in bulk solution is thus required to fully understand their early stage aggregation behavior. Here, we perform time-resolved observation of the aggregation dynamics of Aβ oligomers in bulk solution using liquid-state transmission electron microscopy. Our observations reveal previously unknown behaviors. The most important discovery is that a salt crystal can precipitate even with a concentration much lower than its solubility, and it then dissolves in a short time, during which the aggregation reaction of Aβ peptides is significantly accelerated. These findings will provide new insights in the evolution of the Aβ oligomer.
Collapse
Affiliation(s)
- Kichitaro Nakajima
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoya Yamazaki
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-8638, Japan
| | - Yuki Kimura
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-8638, Japan
| | - Masatomo So
- Institute of Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Goto
- Institute of Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Furukawa K, Aguirre C, So M, Sasahara K, Miyanoiri Y, Sakurai K, Yamaguchi K, Ikenaka K, Mochizuki H, Kardos J, Kawata Y, Goto Y. Isoelectric point-amyloid formation of α-synuclein extends the generality of the solubility and supersaturation-limited mechanism. Curr Res Struct Biol 2020; 2:35-44. [PMID: 34235468 PMCID: PMC8244297 DOI: 10.1016/j.crstbi.2020.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/02/2020] [Accepted: 03/30/2020] [Indexed: 12/30/2022] Open
Abstract
Proteins in either a native or denatured conformation often aggregate at an isoelectric point (pI), a phenomenon known as pI precipitation. However, only a few studies have addressed the role of pI precipitation in amyloid formation, the crystal-like aggregation of denatured proteins. We found that α-synuclein, an intrinsically disordered protein of 140 amino acid residues associated with Parkinson's disease, formed amyloid fibrils at pI (= 4.7) under the low-sodium phosphate conditions. Although α-synuclein also formed amyloid fibrils at a wide pH range under high concentrations of sodium phosphate, the pI-amyloid formation was characterized by marked amyloid-specific thioflavin T fluorescence and clear fibrillar morphology, indicating highly ordered structures. Analysis by heteronuclear NMR in combination with principal component analysis suggested that amyloid formation under low and high phosphate conditions occurred by distinct mechanisms. The former was likely to be caused by the intermolecular attractive charge-charge interactions, where α-synuclein has +17 and −17 charges even with the zero net charge. On the other hand, the latter was caused by the phosphate-dependent salting-out effects. pI-amyloid formation may play a role in the membrane-dependent amyloid formation of α-synuclein, where the negatively charged membrane surface reduces the local pH to pI and the membrane hydrophobic environment enhances electrostatic interactions. The results extend the supersaturation-limited mechanism of amyloid formation: Amyloid fibrils are formed under a variety of conditions of decreased solubility of denatured proteins triggered by the breakdown of supersaturation. pI precipitation of α-synuclein led to the formation of amyloid fibrils. Fibrils formed at pI were more organized than those formed under other conditions. Attractive charge-charge interactions are responsible for the pI-amyloid formation. pI-amyloid formation may lead to the amyloid formation upon phospholipid membranes.
Collapse
Affiliation(s)
- Koki Furukawa
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Cesar Aguirre
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Kenji Sasahara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Kazumasa Sakurai
- Institute of Advanced Technology, Kindai University, Wakayama, 649-6493, Japan
| | - Keiichi Yamaguchi
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Jozsef Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. Sétány 1/C, Budapest, 1117, Hungary
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, 680-8552, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
19
|
Bhangu SK, Bocchinfuso G, Ashokkumar M, Cavalieri F. Sound-driven dissipative self-assembly of aromatic biomolecules into functional nanoparticles. NANOSCALE HORIZONS 2020; 5:553-563. [PMID: 32118232 DOI: 10.1039/c9nh00611g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Dissipative self-assembly processes were recently exploited to assemble synthetic materials into supramolecular structures. In most cases, chemical fuel or light driven self-assembly of synthetic molecules was reported. Herein, experimental and computational approaches were used to unveil the role of acoustic cavitation in the formation of supramolecular nanoaggregates by dissipative self-assembly. Acoustic cavitation bubbles were employed as an energy source and a transient interface to fuel and refuel the dissipative self-assembly of simple aromatic biomolecules into uniform nanoparticles. Molecular dynamics simulations were applied to predict the formation of metastable aggregates and the dynamic exchange of the interacting molecules in the nanoaggregates. The intracellular trafficking and dissipative dissolution of the nanoparticles were tracked by microscopy imaging.
Collapse
Affiliation(s)
| | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", via della ricerca scientifica 1, 00133, Rome, Italy
| | | | - Francesca Cavalieri
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", via della ricerca scientifica 1, 00133, Rome, Italy and Department of Chemical Engineering, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
20
|
Noji M, Sasahara K, Yamaguchi K, So M, Sakurai K, Kardos J, Naiki H, Goto Y. Heating during agitation of β 2-microglobulin reveals that supersaturation breakdown is required for amyloid fibril formation at neutral pH. J Biol Chem 2019; 294:15826-15835. [PMID: 31495783 DOI: 10.1074/jbc.ra119.009971] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/19/2019] [Indexed: 12/27/2022] Open
Abstract
Amyloidosis-associated amyloid fibrils are formed by denatured proteins when supersaturation of denatured proteins is broken. β2-Microglobulin (β2m) forms amyloid fibrils and causes dialysis-related amyloidosis in patients receiving long-term hemodialysis. Although amyloid fibrils of β2m in patients are observed at neutral pH, formation of β2m amyloids in vitro has been difficult to discern at neutral pH because of the amyloid-resistant native structure. Here, to further understand the mechanism underlying in vivo amyloid formation, we investigated the relationship between protein folding/unfolding and misfolding leading to amyloid formation. Using thioflavin T assays, CD spectroscopy, and transmission EM analyses, we found that β2m efficiently forms amyloid fibrils even at neutral pH by heating with agitation at high-salt conditions. We constructed temperature- and NaCl concentration-dependent conformational phase diagrams in the presence or absence of agitation, revealing how amyloid formation under neutral pH conditions is related to thermal unfolding and breakdown of supersaturation. Of note, after supersaturation breakdown and following the law of mass action, the β2m monomer equilibrium shifted to the unfolded state, destabilizing the native state and thereby enabling amyloid formation even under physiological conditions with a low amount of unfolded precursor. The amyloid fibrils depolymerized at both lower and higher temperatures, resembling cold- or heat-induced denaturation of globular proteins. Our results suggest an important role for heating in the onset of dialysis-related amyloidosis and related amyloidoses.
Collapse
Affiliation(s)
- Masahiro Noji
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Kenji Sasahara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Keiichi Yamaguchi
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Kazumasa Sakurai
- Institute of Advanced Technology, Kindai University, Wakayama 649-6493, Japan
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. Sétány 1/C, Budapest, 1117, Hungary
| | - Hironobu Naiki
- Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Dapic I, Baljeu-Neuman L, Uwugiaren N, Kers J, Goodlett DR, Corthals GL. Proteome analysis of tissues by mass spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:403-441. [PMID: 31390493 DOI: 10.1002/mas.21598] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Tissues and biofluids are important sources of information used for the detection of diseases and decisions on patient therapies. There are several accepted methods for preservation of tissues, among which the most popular are fresh-frozen and formalin-fixed paraffin embedded methods. Depending on the preservation method and the amount of sample available, various specific protocols are available for tissue processing for subsequent proteomic analysis. Protocols are tailored to answer various biological questions, and as such vary in lysis and digestion conditions, as well as duration. The existence of diverse tissue-sample protocols has led to confusion in how to choose the best protocol for a given tissue and made it difficult to compare results across sample types. Here, we summarize procedures used for tissue processing for subsequent bottom-up proteomic analysis. Furthermore, we compare protocols for their variations in the composition of lysis buffers, digestion procedures, and purification steps. For example, reports have shown that lysis buffer composition plays an important role in the profile of extracted proteins: the most common are tris(hydroxymethyl)aminomethane, radioimmunoprecipitation assay, and ammonium bicarbonate buffers. Although, trypsin is the most commonly used enzyme for proteolysis, in some protocols it is supplemented with Lys-C and/or chymotrypsin, which will often lead to an increase in proteome coverage. Data show that the selection of the lysis procedure might need to be tissue-specific to produce distinct protocols for individual tissue types. Finally, selection of the procedures is also influenced by the amount of sample available, which range from biopsies or the size of a few dozen of mm2 obtained with laser capture microdissection to much larger amounts that weight several milligrams.
Collapse
Affiliation(s)
- Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | | | - Naomi Uwugiaren
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Jesper Kers
- Department of Pathology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - David R Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- University of Maryland, 20N. Pine Street, Baltimore, MD 21201
| | - Garry L Corthals
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Mizuguchi C, Nakagawa M, Namba N, Sakai M, Kurimitsu N, Suzuki A, Fujita K, Horiuchi S, Baba T, Ohgita T, Nishitsuji K, Saito H. Mechanisms of aggregation and fibril formation of the amyloidogenic N-terminal fragment of apolipoprotein A-I. J Biol Chem 2019; 294:13515-13524. [PMID: 31341020 DOI: 10.1074/jbc.ra119.008000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/20/2019] [Indexed: 01/26/2023] Open
Abstract
The N-terminal (1-83) fragment of the major constituent of plasma high-density lipoprotein, apolipoprotein A-I (apoA-I), strongly tends to form amyloid fibrils, leading to systemic amyloidosis. Here, using a series of deletion variants, we examined the roles of two major amyloidogenic segments (residues 14-22 and 50-58) in the aggregation and fibril formation of an amyloidogenic G26R variant of the apoA-I 1-83 fragment (apoA-I 1-83/G26R). Thioflavin T fluorescence assays and atomic force microscopy revealed that elimination of residues 14-22 completely inhibits fibril formation of apoA-I 1-83/G26R, whereas Δ32-40 and Δ50-58 variants formed fibrils with markedly reduced nucleation and fibril growth rates. CD measurements revealed structural transitions from random coil to β-sheet structures in all deletion variants except for the Δ14-22 variant, indicating that residues 14-22 are critical for the β-transition and fibril formation. Thermodynamic analysis of the kinetics of fibril formation by apoA-I 1-83/G26R indicated that both nucleation and fibril growth are enthalpically unfavorable, whereas entropically, nucleation is favorable, but fibril growth is unfavorable. Interestingly, the nucleation of the Δ50-58 variant was entropically unfavorable, indicating that residues 50-58 entropically promote the nucleation step in fibril formation of apoA-I 1-83/G26R. Moreover, a residue-level structural investigation of apoA-I 1-83/G26R fibrils with site-specific pyrene labeling indicated that the two amyloidogenic segments are in close proximity to form an amyloid core structure, whereas the N- and C-terminal tail regions are excluded from the amyloid core. These results provide critical insights into the aggregation mechanism and fibril structure of the amyloidogenic N-terminal fragment of apoA-I.
Collapse
Affiliation(s)
- Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Miho Nakagawa
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Norihiro Namba
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Misae Sakai
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Naoko Kurimitsu
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Ayane Suzuki
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kaho Fujita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Sayaka Horiuchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Teruhiko Baba
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
23
|
Noji M, So M, Yamaguchi K, Hojo H, Onda M, Akazawa-Ogawa Y, Hagihara Y, Goto Y. Heat-Induced Aggregation of Hen Ovalbumin Suggests a Key Factor Responsible for Serpin Polymerization. Biochemistry 2018; 57:5415-5426. [DOI: 10.1021/acs.biochem.8b00619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Masahiro Noji
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Keiichi Yamaguchi
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Maki Onda
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Naka Ku, Sakai, Osaka 599-8570, Japan
| | - Yoko Akazawa-Ogawa
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yoshihisa Hagihara
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Nejadnik MR, Randolph TW, Volkin DB, Schöneich C, Carpenter JF, Crommelin DJ, Jiskoot W. Postproduction Handling and Administration of Protein Pharmaceuticals and Potential Instability Issues. J Pharm Sci 2018; 107:2013-2019. [DOI: 10.1016/j.xphs.2018.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/18/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022]
|
25
|
Yamaguchi KI, Honda RP, Elhelaly AE, Kuwata K. Acceleration of nucleation of prion protein during continuous ultrasonication. J Biochem 2018; 163:503-513. [PMID: 29409004 DOI: 10.1093/jb/mvy015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/25/2017] [Indexed: 01/31/2023] Open
Abstract
Although pulsatile irradiation of ultrasonication is frequently used for generating amyloid fibrils in vitro, the potential for inducing amyloid fibrillation of proteins during continuous ultrasonication is unknown. In this study, we implemented a continuous irradiation system and measured far-ultraviolet circular dichroism in a real-time manner. During the continuous ultrasonication, the conformation of full-length mouse prion protein (mPrP) was rapidly altered without a lag time and electron microscopy revealed that distorted fibrils, β-oligomers and amorphous aggregates were formed at pH 2.2, 4.0 and 9.1, respectively. Similarly, hen egg white lysozyme formed distorted fibrils and small and large amorphous aggregates at pH 2.2 and 7.1 and 11.9, respectively, without a lag time. The concentration dependencies of the initial rates were different between the two systems. The aggregate formation of mPrP followed a first-order reaction, whereas that of lysozyme followed the zeroth-order reaction. Importantly, the reactions were immediately stopped by switching off ultrasonication, and restarted instantaneously when ultrasonication was restarted. Thus, the continuous ultrasonication significantly accelerates the nucleations of mPrP and lysozyme aggregates by the interaction between monomer and cavitation bubble. These cavitation bubbles may act as catalysts that decrease the activation free energy for nucleation, which is low in mPrP and high in lysozyme.
Collapse
Affiliation(s)
- Kei-Ichi Yamaguchi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Ryo P Honda
- Department of Molecular Pathobiochemistry, Graduate School of Medicine
| | - Abdelazim Elsayed Elhelaly
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan.,Department of Gene and Development, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
26
|
Lai YT, Ogi H, Noi K, Kato F. Viscoelasticity Response during Fibrillation of Amyloid β Peptides on a Quartz-Crystal-Microbalance Biosensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5474-5479. [PMID: 29697982 DOI: 10.1021/acs.langmuir.8b00639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Unlike previous in vitro measurements where Amyloid β (Aβ) aggregation was studied in bulk solutions, we detect the structure change of the Aβ aggregate on the surface of a wireless quartz-crystal-microbalance biosensor, which resembles more closely the aggregation process on the cell membrane. Using a 58 MHz quartz crystal, we monitored changes in the viscoelastic properties of the aggregate formed on the quartz surface from monomers to oligomers and then to fibrils, involving up to the 7th overtone mode (406 MHz). With atomic-force microscopy observations, we found a significant stiffness increase as well as thinning of the protein layer during the structure change from oligomer to fibrils at 20 h, which indicates that the stiffness of the fibril is much higher. Viscoelasticity can provide a significant index of fibrillation and can be useful for evaluating inhibitory medicines in drug development.
Collapse
Affiliation(s)
- Yen-Ting Lai
- Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan
| | - Kentaro Noi
- Graduate School of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan
| | - Fumihito Kato
- Department of Mechanical Engineering , Nippon Institute of Technology , 4-1 Gakuendai , Minamisaitama-gun, Saitama 345-8501 , Japan
| |
Collapse
|
27
|
Yamaguchi KI, Kuwata K. Formation and properties of amyloid fibrils of prion protein. Biophys Rev 2018; 10:517-525. [PMID: 29204880 PMCID: PMC5899736 DOI: 10.1007/s12551-017-0377-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023] Open
Abstract
Amyloid fibrils formed from prion protein (PrP) are associated with prion diseases. In this review we discuss a number of extrinsic and intrinsic experimental factors related to the formation of PrP amyloid fibrils in vitro. We first examined the effects of ultrasonic power on the induction of amyloid fibrillation from PrP. The most important conclusion drawn from the results is that an applied ultrasonic power of approximately 2 W enhanced the nucleation of amyloid fibrils efficiently but that more powerful ultrasonication led to retardation of growth. We also reviewed evidence on the amyloidogenic regions of PrP based on peptide screening throughout the polypeptide sequence. These results showed that helix 2 (H2) peptides of PrP were capable of both the fibrillation and propagation of straight, long fibrils. Moreover, the conformation of preformed H2 fibrils changed reversibly depending on the pH of the solution, implying that interactions between side-chains modulated the conformation of amyloid fibrils. The evidence discussed in this review relates specifically to PrP but may be relevant to other amyloidogenic proteins.
Collapse
Affiliation(s)
- Kei-ichi Yamaguchi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193 Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193 Japan
- Graduate School of Medicine, Gifu University, Yanagido 1-1, Gifu, 501-1193 Japan
| |
Collapse
|
28
|
Honda R, Kuwata K. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils. FASEB J 2018; 32:3641-3652. [PMID: 29401635 DOI: 10.1096/fj.201701183rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Amyloid fibrils are filamentous protein aggregates associated with the pathogenesis of a wide variety of human diseases. The formation of such aggregates typically follows nucleation-dependent kinetics, wherein the assembly and structural conversion of amyloidogenic proteins into oligomeric aggregates (nuclei) is the rate-limiting step of the overall reaction. In this study, we sought to gain structural insights into the oligomeric nuclei of the human prion protein (PrP) by preparing a series of deletion mutants lacking 14-44 of the C-terminal 107 residues of PrP and examined the kinetics and thermodynamics of these mutants in amyloid formation. An analysis of the experimental data using the concepts of the Φ-value analysis indicated that the helix 2 region (residues 168-196) acquires an amyloid-like β-sheet during nucleation, whereas the other regions preserves a relatively disordered structure in the nuclei. This finding suggests that the helix 2 region serves as the nucleation site for the assembly of amyloid fibrils.-Honda, R., Kuwata, K. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils.
Collapse
Affiliation(s)
- Ryo Honda
- Department of Molecular Pathobiochemistry, Graduate School of Medicine, Gifu University, Gifu, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.,Department of Gene and Development, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
29
|
Yamamoto N, Tsuhara S, Tamura A, Chatani E. A specific form of prefibrillar aggregates that functions as a precursor of amyloid nucleation. Sci Rep 2018; 8:62. [PMID: 29311640 PMCID: PMC5758805 DOI: 10.1038/s41598-017-18390-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022] Open
Abstract
Non-fibrillar protein aggregates that appear in the earlier stages of amyloid fibril formation are sometimes considered to play a key role in amyloid nucleation; however, the structural features of these aggregates currently remain unclear. We herein identified a characteristic pathway of fibril formation by human insulin B chain, in which two major species of prefibrillar aggregates were identified. Based on the time-resolved tracking of this pathway with far-UV circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), and 1H-NMR spectroscopy, the first prefibrillar aggregate with a hydrodynamic diameter of approximately 70 nm accumulated concomitantly with the formation of a β-sheet structure, and the size further evolved to 130 nm with an additional structural development. These prefibrillar aggregates were metastable and survived at least 24 hours as long as they were maintained under quiescent conditions. The energy barrier for nucleation was overcome by shaking or even by applying a single short ultrasonic pulse. Furthermore, an investigation where nucleation efficiency was monitored by fibrillation rates with varying the timing of the ultrasonic-pulse treatment revealed that the second prefibrillar aggregate specifically produced amyloid nuclei. These results suggest that the second form of the prefibrillar aggregates acts as a direct precursor for the amyloid nucleation.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Shoko Tsuhara
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Atsuo Tamura
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Eri Chatani
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
30
|
Goto Y, Adachi M, Muta H, So M. Salt-induced formations of partially folded intermediates and amyloid fibrils suggests a common underlying mechanism. Biophys Rev 2017; 10:493-502. [PMID: 29256120 DOI: 10.1007/s12551-017-0370-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/19/2017] [Indexed: 12/26/2022] Open
Abstract
Amyloid fibrils are misfolded forms of proteins and are involved in various diseases. They have been studied extensively with the aim to obtain a comprehensive understanding of protein folding and misfolding and to use this knowledge to develop therapeutic strategies against the associated diseases. Salt conditions are important factors determining the formation and stability of amyloid fibrils. In the 1990s, salt effects were studied extensively to understand the conformational stability of acid-denatured proteins, and the results of these studies revealed the role of electrostatic repulsion in forming the compact intermediate states. In this review, we compare the effects of salts on the compact intermediate states with those on the formation of amyloid fibrils under acidic conditions. The results argue that both protein folding and misfolding are driven by the same forces, although the resultant conformations are distinct because they are monomeric and multimeric reactions, respectively.
Collapse
Affiliation(s)
- Yuji Goto
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan.
| | - Masayuki Adachi
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Hiroya Muta
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
31
|
Nitani A, Muta H, Adachi M, So M, Sasahara K, Sakurai K, Chatani E, Naoe K, Ogi H, Hall D, Goto Y. Heparin-dependent aggregation of hen egg white lysozyme reveals two distinct mechanisms of amyloid fibrillation. J Biol Chem 2017; 292:21219-21230. [PMID: 29101231 DOI: 10.1074/jbc.m117.813097] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/19/2017] [Indexed: 01/22/2023] Open
Abstract
Heparin, a biopolymer possessing high negative charge density, is known to accelerate amyloid fibrillation by various proteins. Using hen egg white lysozyme, we studied the effects of heparin on protein aggregation at low pH, raised temperature, and applied ultrasonic irradiation, conditions under which amyloid fibrillation was promoted. Heparin exhibited complex bimodal concentration-dependent effects, either accelerating or inhibiting fibrillation at pH 2.0 and 60 °C. At concentrations lower than 20 μg/ml, heparin accelerated fibrillation through transient formation of hetero-oligomeric aggregates. Between 0.1 and 10 mg/ml, heparin rapidly induced amorphous heteroaggregation with little to no accompanying fibril formation. Above 10 mg/ml, heparin again induced fibrillation after a long lag time preceded by oligomeric aggregate formation. Compared with studies performed using monovalent and divalent anions, the results suggest two distinct mechanisms of heparin-induced fibrillation. At low heparin concentrations, initial hen egg white lysozyme cluster formation and subsequent fibrillation is promoted by counter ion binding and screening of repulsive charges. At high heparin concentrations, fibrillation is caused by a combination of salting out and macromolecular crowding effects probably independent of protein net charge. Both fibrillation mechanisms compete against amorphous aggregation, producing a complex heparin concentration-dependent phase diagram. Moreover, the results suggest an active role for amorphous oligomeric aggregates in triggering fibrillation, whereby breakdown of supersaturation takes place through heterogeneous nucleation of amyloid on amorphous aggregates.
Collapse
Affiliation(s)
- Ayame Nitani
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Hiroya Muta
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Masayuki Adachi
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Masatomo So
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Kenji Sasahara
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Kazumasa Sakurai
- Institute of Advanced Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Eri Chatani
- Department of Chemistry, Graduate School of Science, Kobe University, Hyogo 657-8501, Japan
| | - Kazumitsu Naoe
- National Institute of Technology, Nara College, Nara 639-1080, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Suita, Osaka 565-0871, Japan, and
| | - Damien Hall
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.,Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Yuji Goto
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan,
| |
Collapse
|
32
|
Friability Testing as a New Stress-Stability Assay for Biopharmaceuticals. J Pharm Sci 2017; 106:2966-2978. [DOI: 10.1016/j.xphs.2017.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/08/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022]
|
33
|
Liu TH, Yuyama KI, Hiramatsu T, Yamamoto N, Chatani E, Miyasaka H, Sugiyama T, Masuhara H. Femtosecond-Laser-Enhanced Amyloid Fibril Formation of Insulin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8311-8318. [PMID: 28742366 DOI: 10.1021/acs.langmuir.7b01822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Femtosecond (fs)-laser-induced crystallization as a novel crystallization technique was proposed for the first time by our group, where the crystallization time can be significantly shortened under fs laser irradiation. Similarly, we have further extended our investigation to amyloid fibril formation, also known as a nucleation-dependence process. Here we demonstrate that the necessary time for amyloid fibril formation can be significantly shortened by fs laser irradiation, leading to favorable enhancement. The enhancement was confirmed by both spectral measurements and direct observations of amyloid fibrils. The thioflavin T fluorescence intensity of laser-irradiated solution increased earlier than that of the control solution, and such a difference was simultaneously revealed by ellipticity changes. At the same time before intensity saturation in fluorescence, the number of amyloid fibrils obtained under laser irradiation was generally more than that in the control solution. Besides, such an enhancement is correlated to the laser power threshold of cavitation bubbling. Possible mechanisms are proposed by referring to fs-laser-induced crystallization and ultrasonication-induced amyloid fibril formation.
Collapse
Affiliation(s)
- Tsung-Han Liu
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 30010, Taiwan
| | - Ken-Ichi Yuyama
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 30010, Taiwan
| | - Takato Hiramatsu
- Department of Chemistry, Graduate School of Science, Kobe University , Kobe, Hyogo 657-8501, Japan
| | - Naoki Yamamoto
- Department of Chemistry, Graduate School of Science, Kobe University , Kobe, Hyogo 657-8501, Japan
| | - Eri Chatani
- Department of Chemistry, Graduate School of Science, Kobe University , Kobe, Hyogo 657-8501, Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| | - Teruki Sugiyama
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 30010, Taiwan
- Graduate School of Materials Science, Nara Institute of Science and Technology , Ikoma, Nara 630-0192, Japan
| | - Hiroshi Masuhara
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 30010, Taiwan
| |
Collapse
|
34
|
Nakajima K, Nishioka D, Hirao M, So M, Goto Y, Ogi H. Drastic acceleration of fibrillation of insulin by transient cavitation bubble. ULTRASONICS SONOCHEMISTRY 2017; 36:206-211. [PMID: 28069203 DOI: 10.1016/j.ultsonch.2016.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/30/2016] [Accepted: 11/27/2016] [Indexed: 05/26/2023]
Abstract
Amyloid-fibril formation of proteins can be accelerated by ultrasonic irradiation to the peptide solutions. Although this phenomenon contributes to understanding pathogenic behavior of amyloidosis, its physical mechanism has not been clarified, because several factors (cavitation, temperature increase, stirring effect, and so on) related to ultrasonic irradiation can participate in the fibrillation reaction. Here, we independently study contributions of the possible factors, using insulin, which is extremely stable and then suitable for the mechanism clarification. We find that the optimized ultrasonic irradiation can drastically accelerate the fibrillation reaction; the time for completing the reaction is shortened compared with the high-speed (1200rpm) stirring agitation by a factor of 430. The fibrillation reaction proceeds only when the subharmonic-mode intensity exceeds a threshold, indicating generation of the transient cavitation bubbles. Our results reveal that not the temperature increase but the transient cavitation bubbles work as the dominant accelerator of the fibrillation reaction.
Collapse
Affiliation(s)
- Kichitaro Nakajima
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Daisuke Nishioka
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masahiko Hirao
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
35
|
Nakajima K, So M, Takahashi K, Tagawa YI, Hirao M, Goto Y, Ogi H. Optimized Ultrasonic Irradiation Finds Out Ultrastable Aβ1–40 Oligomers. J Phys Chem B 2017; 121:2603-2613. [DOI: 10.1021/acs.jpcb.7b01409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kichitaro Nakajima
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masatomo So
- Institute
for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuma Takahashi
- School
of Life Science and Technology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yoh-ichi Tagawa
- School
of Life Science and Technology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masahiko Hirao
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yuji Goto
- Institute
for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
36
|
So M, Hata Y, Naiki H, Goto Y. Heparin-induced amyloid fibrillation of β 2 -microglobulin explained by solubility and a supersaturation-dependent conformational phase diagram. Protein Sci 2017; 26:1024-1036. [PMID: 28249361 DOI: 10.1002/pro.3149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/19/2022]
Abstract
Amyloid fibrils are fibrillar deposits of denatured proteins associated with amyloidosis and are formed by a nucleation and growth mechanism. We revisited an alternative and classical view of amyloid fibrillation: amyloid fibrils are crystal-like precipitates of denatured proteins formed above solubility upon breaking supersaturation. Various additives accelerate and then inhibit amyloid fibrillation in a concentration-dependent manner, suggesting that the combined effects of stabilizing and destabilizing forces affect fibrillation. Heparin, a glycosaminoglycan and anticoagulant, is an accelerator of fibrillation for various amyloidogenic proteins. By using β2 -microglobulin, a protein responsible for dialysis-related amyloidosis, we herein examined the effects of various concentrations of heparin on fibrillation at pH 2. In contrast to previous studies that focused on accelerating effects, higher concentrations of heparin inhibited fibrillation, and this was accompanied by amorphous aggregation. The two-step effects of acceleration and inhibition were similar to those observed for various salts. The results indicate that the anion effects caused by sulfate groups are one of the dominant factors influencing heparin-dependent fibrillation, although the exact structures of fibrils and amorphous aggregates might differ between those formed by simple salts and matrix-forming heparin. We propose that a conformational phase diagram, accommodating crystal-like amyloid fibrils and glass-like amorphous aggregates, is important for understanding the effects of various additives.
Collapse
Affiliation(s)
- Masatomo So
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Yasuko Hata
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Hironobu Naiki
- Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
37
|
Torisu T, Maruno T, Hamaji Y, Ohkubo T, Uchiyama S. Synergistic Effect of Cavitation and Agitation on Protein Aggregation. J Pharm Sci 2017; 106:521-529. [DOI: 10.1016/j.xphs.2016.10.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/27/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022]
|