1
|
Yang JT, Tan ZM, Jiang YT, Bai YX, Zhang YJ, Xue HW, Xu TD, Dong T, Lin WH. Non-adapted bacterial infection suppresses plant reproduction. SCIENCE ADVANCES 2025; 11:eads7738. [PMID: 39772678 PMCID: PMC11708875 DOI: 10.1126/sciadv.ads7738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Environmental stressors, including pathogens, substantially affect the growth of host plants. However, how non-adapted bacteria influence nonhost plants has not been reported. Here, we reveal that infection of Arabidopsis flowers by Xanthomonas oryzae pv. oryzae PXO99A, a bacterial pathogen causing rice blight disease, suppresses ovule initiation and reduces seed number without causing visible disease symptoms. TleB, secreted by the type VI secretion system (T6SS), interacts with plant E3 ligase PUB14 and disrupts the function of the PUB14-BZR1 module, leading to decreased ovule initiation and seed yield. On the other site, PUB14 concurrently promotes TleB's degradation. Our findings indicate that bacterial infections in nonhost plants directly repress offspring production. The regulatory mechanism by effectors PUB14-BZR1 is widely present, suggesting that plants may balance reproduction and defense and produce fewer offspring to conserve resources, thus enabling them to remain in a standby mode prepared for enhanced resistance.
Collapse
Affiliation(s)
- Jing-Ting Yang
- School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Min Tan
- School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yu-Tong Jiang
- School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Xuan Bai
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan-Jie Zhang
- School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Tong-Da Xu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Tao Dong
- School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Wen-Hui Lin
- School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Shao Y, Tang G, Zhang J, Zhao J, Ruan L. The pathogenicity-associated regulators participating in the regulatory cascade for RaxSTAB and RaxX in Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2024; 25:e70025. [PMID: 39529415 PMCID: PMC11554876 DOI: 10.1111/mpp.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
The RaxX sulfopeptide, secreted via a type Ι secretion system, is crucial for activating XA21-mediated innate immunity in resistant rice lines bearing the XA21 receptor kinase. Certain pathogenicity-associated regulators that control the expression of the raxSTAB-raxX gene cluster have been functionally characterized, but the comprehensive regulatory cascade of RaxSTAB and RaxX in Xanthomonas oryzae pv. oryzae (Xoo) remains incompletely understood. Our investigation revealed that pathogenicity-associated regulators, including HrpG, HrpX, VemR, PhoR, and Clp, form a regulatory cascade governing the expression of the raxSTAB-raxX gene cluster. HrpG regulates the raxSTAB-raxX gene cluster transcription through the key regulator HrpX. VemR also participates in the transcription of the raxSTAB-raxX. The histidine kinase PhoR positively modulates raxSTAB-raxX expression, while the global regulator Clp directly binds the raxX promoter region to promote its transcription. These findings shed light on the intricate regulatory cascade of rax-related genes in Xoo, emphasizing the complex roles of pathogenicity-associated regulators within the pathogenic regulatory system.
Collapse
Affiliation(s)
- Yanan Shao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Guiyu Tang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinye Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinjia Zhao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Lifang Ruan
- National Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Tibet Agriculture & Animal Husbandry UniversityNyingchiChina
| |
Collapse
|
3
|
Ding J, Liao M, Wang Q. Co-regulation of Thermosensor Pathogenic Factors by C-di-GMP-Related Two-Component Systems and a cAMP Receptor-like Protein (Clp) in Stenotrophomonas maltophilia. Foods 2024; 13:1201. [PMID: 38672874 PMCID: PMC11049440 DOI: 10.3390/foods13081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Stenotrophomonas maltophilia is a major threat to the food industry and human health owing to its strong protease production and biofilm formation abilities. However, information regarding regulatory factors or potential mechanisms is limited. Herein, we observed that temperature differentially regulates biofilm formation and protease production, and a cAMP receptor-like protein (Clp) negatively regulates thermosensor biofilm formation, in contrast to protease synthesis. Among four c-di-GMP-related two-component systems (TCSs), promoter fusion analysis revealed that clp transcription levels were predominantly controlled by LotS/LotR, partially controlled by both RpfC/RpfG and a novel TCS Sm0738/Sm0737, with no obvious effect caused by Sm1912/Sm1911. Biofilm formation in Δclp and ΔTCSs strains suggested that LotS/LotR controlled biofilm formation in a Clp-mediated manner, whereas both RpfC/RpfG and Sm0738/Sm0737 may occur in a distinct pathway. Furthermore, enzymatic activity analysis combined with c-di-GMP level indicated that the enzymatic activity of c-di-GMP-related metabolism proteins may not be a vital contributor to changes in c-di-GMP level, thus influencing physiological functions. Our findings elucidate that the regulatory pathway of c-di-GMP-related TCSs and Clp in controlling spoilage or the formation of potentially pathogenic factors in Stenotrophomonas expand the understanding of c-di-GMP metabolism and provide clues to control risk factors of S. maltophilia in food safety.
Collapse
Affiliation(s)
| | | | - Qingling Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi’an 710069, China; (J.D.); (M.L.)
| |
Collapse
|
4
|
Wang H, Chen F, Tang G, Ke W, Wang S, Zheng D, Ruan L. A transcriptional Regulator Gar Regulates the Growth and Virulence of Xanthomonas oryzae pv. oryzae. Curr Microbiol 2023; 80:279. [PMID: 37436661 DOI: 10.1007/s00284-023-03396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of bacterial blight, one of the most devastating diseases of rice. Pathogenic bacteria possess numerous transcriptional regulators to participate in the regulation of cellular processes. Here, we identified a transcriptional regulator Gar (PXO_RS11965) that is involved in regulating the growth and virulence of Xoo. Notably, the knockout of gar in Xoo enhanced bacterial virulence to the host rice. RNA-sequencing analysis and quantitative β-glucuronidase (GUS) assay indicated that Gar positively regulates the expression of a σ54 factor rpoN2. Further experiments confirmed that overexpression of rpoN2 restored the phenotypic changes caused by gar deletion. Our research revealed that Gar influences bacterial growth and virulence by positively regulating the expression of rpoN2.
Collapse
Affiliation(s)
- Huihui Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fan Chen
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guiyu Tang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenli Ke
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shasha Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dehong Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Lifang Ruan
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
- College of Resources & Environment, Tibet Agriculture & Animal Husbandry University, Nyingchi, China.
| |
Collapse
|
5
|
Bozsó Z, Krüzselyi D, Szatmári Á, Csilléry G, Szarka J, Ott PG. Two Non-Necrotic Disease Resistance Types Distinctly Affect the Expression of Key Pathogenic Determinants of Xanthomonas euvesicatoria in Pepper. PLANTS (BASEL, SWITZERLAND) 2022; 12:89. [PMID: 36616218 PMCID: PMC9824575 DOI: 10.3390/plants12010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Pepper (Capsicum annuum L.) carrying the gds (corresponding to bs5) gene can prevent the development of bacterial leaf spot disease without HR. However, little is known regarding the development of the resistance mechanism encoded by gds, especially its influence on the bacterium. Here, the effect of gds was compared with pattern-triggered immunity (PTI), another form of asymptomatic resistance, to reveal the interactions and differences between these two defense mechanisms. The level of resistance was examined by its effect on the bacterial growth and in planta expression of the stress and pathogenicity genes of Xanthomonas euvesicatoria. PTI, which was activated with a Pseudomonas syringae hrcC mutant pretreatment, inhibited the growth of Xanthomonas euvesicatoria to a greater extent than gds, and the effect was additive when PTI was activated in gds plants. The stronger influence of PTI was further supported by the expression pattern of the dpsA bacterial stress gene, which reached its highest expression level in PTI-induced plants. PTI inhibited the hrp/hrc expression, but unexpectedly, in gds plant leaves, the hrp/hrc genes were generally expressed at a higher level than in the susceptible one. These results imply that different mechanisms underlie the gds and PTI to perform the symptomless defense reaction.
Collapse
Affiliation(s)
- Zoltán Bozsó
- Plant Protection Institute, ELKH Centre for Agricultural Research, Herman Ottó Str. 15, H-1022 Budapest, Hungary
| | - Dániel Krüzselyi
- Plant Protection Institute, ELKH Centre for Agricultural Research, Herman Ottó Str. 15, H-1022 Budapest, Hungary
| | - Ágnes Szatmári
- Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117 Budapest, Hungary
| | | | | | - Péter G. Ott
- Plant Protection Institute, ELKH Centre for Agricultural Research, Herman Ottó Str. 15, H-1022 Budapest, Hungary
| |
Collapse
|
6
|
Abstract
Xanthomonas is a notorious plant pathogen causing serious diseases in hundreds of plant hosts. Xanthomonas species are equipped with an array of signal transduction systems that regulate gene expression to survive in various harsh environments and successfully infect hosts. Although certain pathogenicity-associated regulators have been functionally characterized, signal transduction systems always function as a regulatory network which remains to be elucidated in Xanthomonas. This study used a systematic approach to characterize all identified pathogenicity-associated regulators in Xanthomonas oryzae pv. oryzae (Xoo), including a transcriptional regulator with unknown function, and their interactive regulatory network. RNA sequencing was used in elucidating the patterns of the 10 pathogenicity-associated regulators identified. Results revealed that each pathogenicity-associated regulator has cross talk with others and all these regulators function as a regulatory network, with VemR and PXO_RS20790 being the master pathogenicity-associated regulators and HrpX being the final executant. Moreover, regulome analysis showed that numerous genes other than genes in pathogenicity islands are finely regulated within the regulatory network. Given that most of the pathogenicity-associated regulators are conserved in Xanthomonadales, our findings suggest a global network of gene regulation in this evolutionarily conserved pathogen. In conclusion, our study provides essential basic information about the regulatory network in Xoo, suggesting that this complicated regulatory network is one of the reasons for the robustness and fitness of Xanthomonas spp. IMPORTANCE The host plant infection process of pathogenic bacteria is a coordinating cellular behavior, which requires dynamic regulation at several levels in response to variations in host plants or fluctuations in the external environment. As one of the most important genera of plant-pathogenic bacteria, Xanthomonas has been studied as a model. Although certain pathogenicity-associated regulators have been functionally characterized, interactions among them remain to be elucidated. This study systematically characterized pathogenicity-associated regulators in Xoo and revealed that cross talk exists among pathogenicity-associated regulators and function as a regulatory network in which a hierarchy exists among the regulators. Our study elucidated the landscape of the pathogenicity-associated regulatory network in Xanthomonas, promoting understanding of the infection process of pathogenic bacteria.
Collapse
|
7
|
Barcarolo MV, Garavaglia BS, Thomas L, Marondedze C, Gehring C, Gottig N, Ottado J. Proteome changes and physiological adaptations of the phytopathogen Xanthomonas citri subsp. citri under salt stress and their implications for virulence. FEMS Microbiol Ecol 2019; 95:5509571. [DOI: 10.1093/femsec/fiz081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- María Victoria Barcarolo
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR). Ocampo y Esmeralda, Rosario, 2000, Argentina
| | - Betiana S Garavaglia
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR). Ocampo y Esmeralda, Rosario, 2000, Argentina
| | - Ludivine Thomas
- HM.Clause, rue Louis Saillant, 26801 Portes-lès-Valence, France
| | - Claudius Marondedze
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/DRF/BIG, INRA UMR1417, CNRS UMR5168, 38054 Grenoble Cedex 9, France
| | - Chris Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia,
06121 Perugia, Italy
| | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR). Ocampo y Esmeralda, Rosario, 2000, Argentina
| | - Jorgelina Ottado
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR). Ocampo y Esmeralda, Rosario, 2000, Argentina
| |
Collapse
|
8
|
Kim H, Joe A, Lee M, Yang S, Ma X, Ronald PC, Lee I. A Genome-Scale Co-Functional Network of Xanthomonas Genes Can Accurately Reconstruct Regulatory Circuits Controlled by Two-Component Signaling Systems. Mol Cells 2019; 42:166-174. [PMID: 30759970 PMCID: PMC6399010 DOI: 10.14348/molcells.2018.0403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/09/2018] [Accepted: 12/19/2018] [Indexed: 01/24/2023] Open
Abstract
Bacterial species in the genus Xanthomonas infect virtually all crop plants. Although many genes involved in Xanthomonas virulence have been identified through molecular and cellular studies, the elucidation of virulence-associated regulatory circuits is still far from complete. Functional gene networks have proven useful in generating hypotheses for genetic factors of biological processes in various species. Here, we present a genome-scale co-functional network of Xanthomonas oryze pv. oryzae (Xoo) genes, XooNet (www.inetbio.org/xoonet/), constructed by integrating heterogeneous types of genomics data derived from Xoo and other bacterial species. XooNet contains 106,000 functional links, which cover approximately 83% of the coding genome. XooNet is highly predictive for diverse biological processes in Xoo and can accurately reconstruct cellular pathways regulated by two-component signaling transduction systems (TCS). XooNet will be a useful in silico research platform for genetic dissection of virulence pathways in Xoo.
Collapse
Affiliation(s)
- Hanhae Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul,
Korea
- Bio and Basic Science R&D Coordination Division, Korea Institute of S&T Evaluation and Planning, Seoul,
Korea
| | - Anna Joe
- Department of Plant Pathology and the Genome Center, University of California, CA 95616,
USA
- Feedstocks Division, Joint Bioenergy Institute, CA 94608,
USA
| | - Muyoung Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul,
Korea
| | - Sunmo Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul,
Korea
| | - Xiaozhi Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou,
China
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, CA 95616,
USA
- Feedstocks Division, Joint Bioenergy Institute, CA 94608,
USA
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul,
Korea
| |
Collapse
|
9
|
Han SW, Lee MA, Yoo Y, Cho MH, Lee SW. Genome-wide Screening to Identify Responsive Regulators Involved in the Virulence of Xanthomonas oryzae pv. oryzae. THE PLANT PATHOLOGY JOURNAL 2019; 35:84-89. [PMID: 30828283 PMCID: PMC6385649 DOI: 10.5423/ppj.nt.09.2018.0193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
Two-component systems (TCSs) are critical to the pathogenesis of Xanthomonas oryzae pv. oryzae (Xoo). We mutated 55 of 62 genes annotated as responsive regulators (RRs) of TCSs in the genome of Xoo strain PXO99A and identified 9 genes involved in Xoo virulence. Four (rpfG, hrpG, stoS, and detR) of the 9 genes were previously reported as key regulators of Xoo virulence and the other 5 have not been characterized. Lesion lengths on rice leaves inoculated with the mutants were shorter than those of the wild type and were significantly restored with gene complementation. The population density of the 5 mutants in planta was smaller than that of PXO99A at 14 days after inoculation, but the growth curves of the mutants in rich medium were similar to those of the wild type. These newly reported RR genes will facilitate studies on the function of TCSs and of the integrated regulation of TCSs for Xoo pathogenesis.
Collapse
Affiliation(s)
- Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546,
Korea
| | - Mi-Ae Lee
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
- Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Youngchul Yoo
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
- Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Man-Ho Cho
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
| | - Sang-Won Lee
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
- Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| |
Collapse
|
10
|
Zheng D, Xue B, Shao Y, Yu H, Yao X, Ruan L. Activation of PhoBR under phosphate-rich conditions reduces the virulence of Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2018; 19:2066-2076. [PMID: 29575480 PMCID: PMC6638161 DOI: 10.1111/mpp.12680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 05/20/2023]
Abstract
The two-component signal transduction system PhoBR regulates the adaptation to phosphate limitation and the virulence of many animal bacterial pathogens. However, PhoBR in phytopathogens has rarely been investigated. In this study, we found that PhoBR in Xanthomonas oryzae pv. oryzae (Xoo), the pathogen of rice bacterial leaf blight, also regulates the adaptation to phosphate starvation. Unexpectedly, rice leaves infected by the phoBR-deleted mutant and wild-type PXO99A showed similar lesions, indicating that PhoBR is unnecessary for the virulence of Xoo. phoBR was found to be silenced during host infection, whereas artificially constitutive PhoBR expression attenuated virulence on host rice and growth in phosphate-rich media. RNA-sequencing (RNA-seq) was then performed to investigate the global effect caused by constitutive PhoBR activation. RNA-seq and further experiments revealed that the PhoBR regulon in Xoo comprised a wide range of genes. Nutrient transport and metabolism readjustments that resulted from PhoBR regulon activation may be responsible for growth attenuation. Our findings suggest that growth reduction regulated by PhoBR is a fitness cost of adaptation to phosphate starvation. PhoBR in Xoo is activated under phosphate-limited conditions, which could exist in epiphytic and saprophytic surviving phases, and is strictly repressed within phosphate-rich host plants to minimize fitness costs.
Collapse
Affiliation(s)
- Dehong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan 430070China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan 430070China
| | - Bingbing Xue
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan 430070China
| | - Yanan Shao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan 430070China
| | - Haoquan Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan 430070China
| | - Xiaoyan Yao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan 430070China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan 430070China
| |
Collapse
|
11
|
Garita‐Cambronero J, Palacio‐Bielsa A, Cubero J. Xanthomonas arboricola pv. pruni, causal agent of bacterial spot of stone fruits and almond: its genomic and phenotypic characteristics in the X. arboricola species context. MOLECULAR PLANT PATHOLOGY 2018; 19:2053-2065. [PMID: 29575564 PMCID: PMC6638108 DOI: 10.1111/mpp.12679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/13/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Xanthomonas arboricola pv. pruni (Xap) causes bacterial spot of stone fruits and almond, an important disease that may reduce the yield and vigour of the trees, as well as the marketability of affected fruits. Xap lies within the Xanthomonas genus, which has been intensively studied because of its strain specialization and host range complexity. Here, we summarize the recent advances in our understanding of the complexities of Xap, including studies of the molecular features that result after comparative phenotypic and genomic analyses, in order to obtain a clearer overview of the bacterial behaviour and infection mechanism in the context of the X. arboricola species. TAXONOMIC STATUS Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species X. arboricola; Pathovar pruni. HOST RANGE AND SYMPTOMS Xap infects most Prunus species, including apricot, peach, nectarine, plum and almond, and occasionally cherry. Symptoms are found on leaves, fruits, twigs and branches or trunks. In severe infections, defoliation and fruit dropping may occur. DISTRIBUTION Bacterial spot of stone fruits and almond is worldwide in distribution, with Xap being isolated in Africa, North and South America, Asia, Europe and Oceania. It is a common disease in geographical areas in which stone fruits and almonds are grown. Xap is listed as a quarantine organism in several areas of the world. GENOME The genomes of six isolates from Xap have been publicly released. The genome consists of a single chromosome of around 5 000 000 bp with 65 mol% GC content and an extrachromosomal plasmid element of around 41 000 bp with 62 mol% GC content. Genomic comparative studies in X. arboricola have allowed the identification of putative virulence components associated with the infection process of bacterial spot of stone fruits and almond. DISEASE CONTROL Management of bacterial spot of stone fruits and almond is based on an integrated approach that comprises essential measures to avoid Xap introduction in a production zone, as well as the use of tolerant or resistant plant material and chemical treatments, mainly based on copper compounds. Management programmes also include the use of appropriate cultivation practices when the disease is already established. Finally, for the effective control of the disease, appropriate detection and characterization methods are needed for use in symptomatic or asymptomatic samples as a first approach for pathogen exclusion. USEFUL WEBSITES: https://gd.eppo.int/taxon/XANTPR; http://www.cost.eu/COST_Actions/ca/CA16107; http://www.xanthomonas.org.
Collapse
Affiliation(s)
- Jerson Garita‐Cambronero
- Departamento de Protección VegetalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Madrid 28040Spain
- Centro de Investigación de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Villarejo de Órbigo 24358LeónSpain
| | - Ana Palacio‐Bielsa
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón‐IA2 ‐ (CITA ‐ Universidad de Zaragoza)Zaragoza 50059Spain
| | - Jaime Cubero
- Departamento de Protección VegetalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Madrid 28040Spain
| |
Collapse
|
12
|
Zhang ZC, Zhao M, Xu LD, Niu XN, Qin HP, Li YM, Li ML, Jiang ZW, Yang X, Huang GH, Jiang W, Tang JL, He YQ. Genome-Wide Screening for Novel Candidate Virulence Related Response Regulator Genes in Xanthomonas oryzae pv. oryzicola. Front Microbiol 2018; 9:1789. [PMID: 30131784 PMCID: PMC6090019 DOI: 10.3389/fmicb.2018.01789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Two-component regulatory system (TCS), a major type of cellular signal transduction system, is widely used by bacteria to adapt to different conditions and to colonize certain ecological niches in response to environmental stimuli. TCSs are of distinct functional diversity, genetic diversity, and species specificity (pathovar specificity, even strain specificity) across bacterial groups. Although TCSs have been demonstrated to be crucial to the virulence of Xanthomonas, only a few researches have been reported about the studies of TCSs in Xanthomonas oryzae pathovar oryzicola (hereafter Xoc), the pathogen of rice bacterial streak disease. In the genome of Xoc strain GX01, it has been annotated 110 TCSs genes encoding 54 response regulators (RRs), 36 orthodox histidine kinase (HKs) and 20 hybrid histidine kinase (HyHKs). To evaluate the involvement of TCSs in the stress adaptation and virulence of Xoc, we mutated 50 annotated RR genes in Xoc GX01 by homologous vector integration mutagenesis and assessed their phenotypes in given conditions and tested their virulence on host rice. 17 RR genes were identified to be likely involved in virulence of Xoc, of which 10 RR genes are novel virulence genes in Xanthomonas, including three novel virulence genes for bacteria. Of the novel candidate virulence genes, some of which may be involved in the general stress adaptation, exopolysaccharide production, extracellular protease secretion and swarming motility of Xoc. Our results will facilitate further studies on revealing the biological functions of TCS genes in this phytopathogenic bacterium.
Collapse
Affiliation(s)
- Zheng-Chun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.,College of Agronomy, Guangxi University, Nanning, China
| | - Min Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Li-Dan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiang-Na Niu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Hong-Ping Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yi-Ming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Mei-Lin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zhong-Wei Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xia Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Guang-Hui Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wei Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Huang D, Shao ZZ, Yu Y, Cai MM, Zheng LY, Li GY, Yu ZN, Yi XF, Zhang JB, Hao FH. Identification, Characteristics and Mechanism of 1-Deoxy-N-acetylglucosamine from Deep-Sea Virgibacillus dokdonensis MCCC 1A00493. Mar Drugs 2018; 16:md16020052. [PMID: 29414856 PMCID: PMC5852480 DOI: 10.3390/md16020052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/25/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae, which causes rice bacterial blight, is one of the most destructive pathogenic bacteria. Biological control against plant pathogens has recently received increasing interest. 1-Deoxy-N-acetylglucosamine (1-DGlcNAc) was extracted from the supernatant of Virgibacillus dokdonensis MCCC 1A00493 fermentation through antibacterial bioassay-guided isolation. Its structure was elucidated by LC/MS, NMR, chemical synthesis and time-dependent density functional theory (TD-DFT) calculations. 1-DGlcNAc specifically suppressed X. oryzae pv. oryzae PXO99A (MIC was 23.90 μg/mL), but not other common pathogens including Xanthomonas campestris pv. campestris str.8004 and Xanthomonas oryzae pv. oryzicola RS105. However, its diastereomer (2-acetamido-1,5-anhydro-2-deoxy-d-mannitol) also has no activity to X. oryzae pv. oryzae. This result suggested that activity of 1-DGlcNAc was related to the difference in the spatial conformation of the 2-acetamido moiety, which might be attributed to their different interactions with a receptor. Eighty-four unique proteins were found in X. oryzae pv. oryzae PXO99A compared with the genome of strains8004 and RS105 by blastp. There may be unique interactions between 1-DGlcNAc and one or more of these unique proteins in X. oryzae pv. oryzae. Quantitative real-time PCR and the pharmMapper server indicated that proteins involved in cell division could be the targets in PXO99A. This research suggested that specificity of active substance was based on the active group and spatial conformation selection, and these unique proteins could help to reveal the specific mechanism of action of 1-DGlcNAc against PXO99A.
Collapse
Affiliation(s)
- Dian Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zong-Ze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Yi Yu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430070, China.
| | - Min-Min Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Long-Yu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guang-Yu Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Zi-Niu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xian-Feng Yi
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Ji-Bin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbe Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fu-Hua Hao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
14
|
Wang B, Wu G, Zhang Y, Qian G, Liu F. Dissecting the virulence-related functionality and cellular transcription mechanism of a conserved hypothetical protein in Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2018; 19:1859-1872. [PMID: 29392817 PMCID: PMC6638143 DOI: 10.1111/mpp.12664] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 05/09/2023]
Abstract
Hypothetical proteins without defined functions are largely distributed in all sequenced bacterial genomes. Understanding their potent functionalities is a basic demand for bacteriologists. Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight of rice, is one of the model systems for the study of molecular plant pathology. One-quarter of proteins in the genome of this bacterium are defined as hypothetical proteins, but their roles in Xoo pathogenicity are unknown. Here, we generated in-frame deletions for six hypothetical proteins selected from strain PXO99A and found that one of them (PXO_03177) is required for the full virulence of this strain. PXO_03177 is conserved in Xanthomonas, and is predicted to contain two domains relating to polysaccharide synthesis. However, we found that mutation of this gene did not affect the production or modification of extracellular polysaccharides (EPSs) and lipopolysaccharides (LPSs), two major polysaccharides produced by Xoo relating to its infection. Interestingly, we found that inactivation of PXO_03177 significantly impaired biofilm formation and tolerance to sodium dodecyl sulfate (SDS), both of which are considered to play key roles during Xoo infection in rice leaves. These findings thus enable us to define a function for PXO_03177 in the virulence of Xoo. Furthermore, we also found that the global regulator Clp controls the transcription of PXO_03177 by direct binding to its promoter region, presenting the first cellular regulatory pathway for the modulation of expression of this hypothetical protein gene. Our results provide reference information for PXO_03177 homologues in Xanthomonas.
Collapse
Affiliation(s)
- Bo Wang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
| | - Guichun Wu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
| | - Yuqiang Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
| | - Guoliang Qian
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
| | - Fengquan Liu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
- Institute of Plant Protection, Jiangsu Academy of Agricultural SciencesNanjing 210014China
| |
Collapse
|
15
|
Wu G, Su P, Wang B, Zhang Y, Qian G, Liu F. Novel Insights into Tat Pathway in Xanthomonas oryzae pv. oryzae Stress Adaption and Virulence: Identification and Characterization of Tat-Dependent Translocation Proteins. PHYTOPATHOLOGY 2017; 107:1011-1021. [PMID: 28699375 DOI: 10.1094/phyto-02-17-0053-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Xanthomonas oryzae pv. oryzae, an economically important bacterium, causes a serious disease in rice production worldwide called bacterial leaf blight. How X. oryzae pv. oryzae infects rice and causes symptoms remains incompletely understood. Our earlier works demonstrated that the twin-arginine translocation (Tat) pathway plays an vital role in X. oryzae pv. oryzae fitness and virulence but the underlying mechanism is unknown. In this study, we used strain PXO99A as a working model, and identified 15 potential Tat-dependent translocation proteins (TDTP) by using comparative proteomics and bioinformatics analyses. Combining systematic mutagenesis, phenotypic characterization, and gene expression, we found that multiple TDTP play key roles in X. oryzae pv. oryzae adaption or virulence. In particular, four TDTP (PXO_02203, PXO_03477, PXO_02523, and PXO_02951) were involved in virulence, three TDTP (PXO_02203, PXO_03477, and PXO_02523) contributed to colonization in planta, one TDTP (PXO_02671) had a key role in attachment to leaf surface, four TDTP (PXO_02523, PXO_02951, PXO_03132, and PXO_03841) were involved in tolerance to multiple stresses, and two TDTP (PXO_02523 and PXO_02671) were required for full swarming motility. These findings suggest that multiple TDTP may have differential contributions to involvement of the Tat pathway in X. oryzae pv. oryzae adaption, physiology, and pathogenicity.
Collapse
Affiliation(s)
- Guichun Wu
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Panpan Su
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Bo Wang
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Yuqiang Zhang
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Guoliang Qian
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Fengquan Liu
- All authors: Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, P.R. China; and sixth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| |
Collapse
|
16
|
An Essential Regulatory System Originating from Polygenic Transcriptional Rewiring of PhoP-PhoQ of Xanthomonas campestris. Genetics 2017; 206:2207-2223. [PMID: 28550013 DOI: 10.1534/genetics.117.200204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/22/2017] [Indexed: 01/06/2023] Open
Abstract
How essential, regulatory genes originate and evolve is intriguing because mutations of these genes not only lead to lethality in organisms, but also have pleiotropic effects since they control the expression of multiple downstream genes. Therefore, the evolution of essential, regulatory genes is not only determined by genetic variations of their own sequences, but also by the biological function of downstream genes and molecular mechanisms of regulation. To understand the origin of essential, regulatory genes, experimental dissection of the complete regulatory cascade is needed. Here, we provide genetic evidences to reveal that PhoP-PhoQ is an essential two-component signal transduction system in the gram-negative bacterium Xanthomonas campestris, but that its orthologs in other bacteria belonging to Proteobacteria are nonessential. Mutational, biochemical, and chromatin immunoprecipitation together with high-throughput sequencing analyses revealed that phoP and phoQ of X. campestris and its close relative Pseudomonas aeruginosa are replaceable, and that the consensus binding motifs of the transcription factor PhoP are also highly conserved. PhoP Xcc in X. campestris regulates the transcription of a number of essential, structural genes by directly binding to cis-regulatory elements (CREs); however, these CREs are lacking in the orthologous essential, structural genes in P. aeruginosa, and thus the regulatory relationships between PhoP Pae and these downstream essential genes are disassociated. Our findings suggested that the recruitment of regulatory proteins by critical structural genes via transcription factor-CRE rewiring is a driving force in the origin and functional divergence of essential, regulatory genes.
Collapse
|