1
|
Launay R, Chobert SC, Abby SS, Pierrel F, André I, Esque J. Structural Reconstruction of E. coli Ubi Metabolon Using an AlphaFold2-Based Computational Framework. J Chem Inf Model 2024; 64:5175-5193. [PMID: 38710096 DOI: 10.1021/acs.jcim.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Ubiquinone (UQ) is a redox polyisoprenoid lipid found in the membranes of bacteria and eukaryotes that has important roles, notably one in respiratory metabolism, which sustains cellular bioenergetics. In Escherichia coli, several steps of the UQ biosynthesis take place in the cytosol. To perform these reactions, a supramolecular assembly called Ubi metabolon is involved. This latter is composed of seven proteins (UbiE, UbiG, UbiF, UbiH, UbiI, UbiJ, and UbiK), and its structural organization is unknown as well as its protein stoichiometry. In this study, a computational framework has been designed to predict the structure of this macromolecular assembly. In several successive steps, we explored the possible protein interactions as well as the protein stoichiometry, to finally obtain a structural organization of the complex. The use of AlphaFold2-based methods combined with evolutionary information enabled us to predict several models whose quality and confidence were further analyzed using different metrics and scores. Our work led to the identification of a "core assembly" that will guide functional and structural characterization of the Ubi metabolon.
Collapse
Affiliation(s)
- Romain Launay
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Sophie-Carole Chobert
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Sophie S Abby
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Jérémy Esque
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| |
Collapse
|
2
|
Yin F, Qin Z. Long-Chain Molecules with Agro-Bioactivities and Their Applications. Molecules 2023; 28:5880. [PMID: 37570848 PMCID: PMC10421526 DOI: 10.3390/molecules28155880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Long-chain molecules play a vital role in agricultural production and find extensive use as fungicides, insecticides, acaricides, herbicides, and plant growth regulators. This review article specifically addresses the agricultural biological activities and applications of long-chain molecules. The utilization of long-chain molecules in the development of pesticides is an appealing avenue for designing novel pesticide compounds. By offering valuable insights, this article serves as a useful reference for the design of new long-chain molecules for pesticide applications.
Collapse
Affiliation(s)
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
3
|
Wang S, Jain A, Novales NA, Nashner AN, Tran F, Clarke CF. Predicting and Understanding the Pathology of Single Nucleotide Variants in Human COQ Genes. Antioxidants (Basel) 2022; 11:antiox11122308. [PMID: 36552517 PMCID: PMC9774615 DOI: 10.3390/antiox11122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Coenzyme Q (CoQ) is a vital lipid that functions as an electron carrier in the mitochondrial electron transport chain and as a membrane-soluble antioxidant. Deficiencies in CoQ lead to metabolic diseases with a wide range of clinical manifestations. There are currently few treatments that can slow or stop disease progression. Primary CoQ10 deficiency can arise from mutations in any of the COQ genes responsible for CoQ biosynthesis. While many mutations in these genes have been identified, the clinical significance of most of them remains unclear. Here we analyzed the structural and functional impact of 429 human missense single nucleotide variants (SNVs) that give rise to amino acid substitutions in the conserved and functional regions of human genes encoding a high molecular weight complex known as the CoQ synthome (or Complex Q), consisting of the COQ3-COQ7 and COQ9 gene products. Using structures of COQ polypeptides, close homologs, and AlphaFold models, we identified 115 SNVs that are potentially pathogenic. Further biochemical characterizations in model organisms such as Saccharomyces cerevisiae are required to validate the pathogenicity of the identified SNVs. Collectively, our results will provide a resource for clinicians during patient diagnosis and guide therapeutic efforts toward combating primary CoQ10 deficiency.
Collapse
|
4
|
Jiang X, Zhang L, Teng M, Li X. Antibiotic binding releases autoinhibition of the TipA multidrug-resistance transcriptional regulator. J Biol Chem 2020; 295:17865-17876. [PMID: 33454020 PMCID: PMC7762955 DOI: 10.1074/jbc.ra120.016295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/21/2020] [Indexed: 11/29/2022] Open
Abstract
Investigations of bacterial resistance strategies can aid in the development of new antimicrobial drugs as a countermeasure to the increasing worldwide prevalence of bacterial antibiotic resistance. One such strategy involves the TipA class of transcription factors, which constitute minimal autoregulated multidrug resistance (MDR) systems against diverse antibiotics. However, we have insufficient information regarding how antibiotic binding induces transcriptional activation to design molecules that could interfere with this process. To learn more, we determined the crystal structure of SkgA from Caulobacter crescentus as a representative TipA protein. We identified an unexpected spatial orientation and location of the antibiotic-binding TipAS effector domain in the apo state. We observed that the α6–α7 region of the TipAS domain, which is canonically responsible for forming the lid of antibiotic-binding cleft to tightly enclose the bound antibiotic, is involved in the dimeric interface and stabilized via interaction with the DNA-binding domain in the apo state. Further structural and biochemical analyses demonstrated that the unliganded TipAS domain sterically hinders promoter DNA binding but undergoes a remarkable conformational shift upon antibiotic binding to release this autoinhibition via a switch of its α6–α7 region. Hence, the promoters for MDR genes including tipA and RNA polymerases become available for transcription, enabling efficient antibiotic resistance. These insights into the molecular mechanism of activation of TipA proteins advance our understanding of TipA proteins, as well as bacterial MDR systems, and may provide important clues to block bacterial resistance.
Collapse
Affiliation(s)
- Xuguang Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, China; Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | - Linjuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
5
|
Fortuin S, Nel AJM, Blackburn JM, Soares NC. Comparison between the proteome of Escherichia coli single colony and during liquid culture. J Proteomics 2020; 228:103929. [PMID: 32800795 DOI: 10.1016/j.jprot.2020.103929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Most bacterial proteomic studies done to date utilise bacterial cells harvested from liquid culture media. However, it is widely accepted that many important determinants associated with virulence and host cell adhesion are exclusively expressed during growth on solid media, as a crude mimic of true biofilms. Here, we compare the observed proteome of Escherichia coli K12 from isolated single colonies on solid media with those observed at different growth phases in liquid culture; i.e. early-log, mid-log, early-, mid- and late-stationary growth phases. A total of 2044 protein groups covering approximately 47% of the total proteome were identified across all studied conditions, including 1650 proteins identified from single colonies and 1679 proteins from liquid cultured cells. Label-free quantitative analysis revealed that the E. coli proteome of single colonies on a solid agar differs from that observed in liquid culture. Notably, the presence of proteins in the Suf-operon that are involved in iron mobilisation and swarming motility was associated exclusively with single colony profiles, whereas proteins involved in motility such as motA, motB, fliH, flip, fliD and fliJ were associated exclusively with cells grown in liquid culture. The data presented here provide a valuable resource for understanding the role of key proteins within microenvironments surrounding E. coli single colonies. SIGNIFICANCE: To date, most proteomics studies have used E. coli cells harvested from liquid culture media even though many important determinants associated with virulence and host cell adhesion are exclusively expressed during growth on solid media. In this study, we compare the observed proteome of E. coli K12 from isolated single colonies on solid media with those observed at different growth phases in liquid culture; i.e. early-log, mid-log, early-, mid- and late-stationary growth phases. By using label-free quantitative analysis we demonstrate that the E. coli proteome of single colonies on a solid agar differs from that observed in liquid culture with an overlap of 68% of proteins between the two culture conditions. Our analysis further reveal the presence of proteins in the Suf-operon that are involved in iron mobilisation and swarming motility was associated exclusively with single colony profiles. While those proteins involved in motility such as motA, motB, fliH, flip, fliD and fliJ were associated exclusively with cells grown in liquid culture. By comparison to E. coli proteomic data available on liquid culture and solid media, this research represents a first effort to describe the differential expression of key E. coli proteins within microenvironments surrounding single colonies.
Collapse
Affiliation(s)
- Suereta Fortuin
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town. Cape Town, South Africa
| | - Andrew J M Nel
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town. Cape Town, South Africa
| | - Jonathan M Blackburn
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town. Cape Town, South Africa; Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town. Cape Town, South Africa.
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
6
|
Abby SS, Kazemzadeh K, Vragniau C, Pelosi L, Pierrel F. Advances in bacterial pathways for the biosynthesis of ubiquinone. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148259. [PMID: 32663475 DOI: 10.1016/j.bbabio.2020.148259] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Ubiquinone is an important component of the electron transfer chains in proteobacteria and eukaryotes. The biosynthesis of ubiquinone requires multiple steps, most of which are common to bacteria and eukaryotes. Whereas the enzymes of the mitochondrial pathway that produces ubiquinone are highly similar across eukaryotes, recent results point to a rather high diversity of pathways in bacteria. This review focuses on ubiquinone in bacteria, highlighting newly discovered functions and detailing the proteins that are known to participate to its biosynthetic pathways. Novel results showing that ubiquinone can be produced by a pathway independent of dioxygen suggest that ubiquinone may participate to anaerobiosis, in addition to its well-established role for aerobiosis. We also discuss the supramolecular organization of ubiquinone biosynthesis proteins and we summarize the current understanding of the evolution of the ubiquinone pathways relative to those of other isoprenoid quinones like menaquinone and plastoquinone.
Collapse
Affiliation(s)
- Sophie Saphia Abby
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France
| | - Katayoun Kazemzadeh
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France
| | - Charles Vragniau
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France.
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France.
| |
Collapse
|