1
|
DiPuma T, Kelley EH, Thabthimthong T, Bland A, Konczak K, Torma KJ, Mohammad TSH, Olsen KW, Becker DP. Synthesis of Pyrazole-Based Inhibitors of the Bacterial Enzyme N-Succinyl-l,l-2,6-Diaminopimelic Acid Desuccinylase (DapE) as Potential Antibiotics. Int J Mol Sci 2024; 26:22. [PMID: 39795881 PMCID: PMC11720106 DOI: 10.3390/ijms26010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Based on the inhibitory potencies from earlier reported tetrazole thioether analogs, we now describe the synthesis and inhibition of pyrazole-based inhibitors of N-succinyl-l,l-2,6-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae (HiDapE). The most potent pyrazole analog 7d bears an aminopyridine amide with an IC50 of 17.9 ± 8.0 μM, and the single enantiomer of ɑ-methyl analog 7q has an IC50 of 18.8 µM, with potency residing in the (R)-enantiomer. Thermal shift revealed strong stabilization upon binding inhibitor (R)-7q with Tm = 50.2 °C and a Ki of 17.3 ± 2.8 μM. Enzyme kinetic experiments confirm competitive inhibition, and docking reveals key active site interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Daniel P. Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, USA; (T.D.J.); (E.H.K.); (T.T.); (A.B.); (K.K.); (K.J.T.); (T.S.H.M.); (K.W.O.)
| |
Collapse
|
2
|
Terrazas-López M, González-Segura L, Díaz-Vilchis A, Aguirre-Mendez KA, Lobo-Galo N, Martínez-Martínez A, Díaz-Sánchez ÁG. The three-dimensional structure of DapE from Enterococcus faecium reveals new insights into DapE/ArgE subfamily ligand specificity. Int J Biol Macromol 2024; 270:132281. [PMID: 38740150 DOI: 10.1016/j.ijbiomac.2024.132281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
DapE is a Zn2+-metallohydrolase recognized as a drug target for bacterial control. It is a homodimer that requires the exchange of interface strands by an induced fit essential for catalysis. Identifying novel anti-DapE agents requires greater structural details. Most of the characterized DapEs are from the Gram-negative group. Here, two high-resolution DapE crystal structures from Enterococcus faecium are presented for the first time with novel aspects. A loosened enzyme intermediate between the open and closed conformations is observed. Substrates may bind to loose state, subsequently it closes, where hydrolysis occurs, and finally, the change to the open state leads to the release of the products. Mutation of His352 suggests a role, along with His194, in the oxyanion stabilization in the mono-metalated Zn2+ isoform, while in the di-metalated isoform, the metal center 2 complements it function. An aromatic-π box potentially involved in the interaction of DapE with other proteins, and a peptide flip could determine the specificity in the Gram-positive ArgE/DapE group. Finally, details of two extra-catalytic cavities whose geometry changes depending on the conformational state of the enzyme are presented. These cavities could be a target for developing non-competitive agents that trap the enzyme in an inactive state.
Collapse
Affiliation(s)
- Manuel Terrazas-López
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Lilian González-Segura
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Bioquímica, Ciudad Universitaria, Ciudad de México, 04510, Mexico.
| | - Adelaida Díaz-Vilchis
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Bioquímica, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Kelly Annecy Aguirre-Mendez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Naún Lobo-Galo
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Alejandro Martínez-Martínez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Ángel G Díaz-Sánchez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico.
| |
Collapse
|
3
|
Drouin P, da Silva ÉB, Tremblay J, Chevaux E, Apper E, Castex M. Inoculation with Lentilactobacillus buchneri alone or in combination with Lentilactobacillus hilgardii modifies gene expression, fermentation profile, and starch digestibility in high-moisture corn. Front Microbiol 2023; 14:1253588. [PMID: 37901805 PMCID: PMC10602787 DOI: 10.3389/fmicb.2023.1253588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Inoculants combining Lentilactobacillus buchneri and Lentilactobacillus hilgardii have been shown to improve the aerobic stability of high-moisture corn (HMC) and whole-plant corn silage, but the mode of action of this co-inoculation remains to be elucidated. This study used metatranscriptomics to evaluate the effects of inoculation with L. buchneri alone or combined with L. hilgardii on the bacterial community, gene expression, fermentation profile, and starch digestibility in HMC. High-moisture corn not inoculated (Control) or inoculated with L. buchneri NCIMB 40788 (LB) or L. buchneri NCIMB 40788 combined with L. hilgardii CNCM-I-4785 (Combo) was ensiled in mini silo bags for 30, 60, 120, and 180 days. The fermentation profile was evaluated at all time points. Metatranscriptomics was performed on samples collected on day 120. Combo had a greater alpha diversity richness index of contigs than LB and Control, and inoculation with Combo and LB modified the beta-diversity of contigs compared to Control. Out of 69 genes of interest, 20 were differentially expressed in LB compared to Control and 25 in Combo compared to Control. Of those differently expressed genes, 16 (10 of which were associated with carbohydrate metabolism and six with amino acid metabolism) were differently expressed in both LB and Combo compared to Control, and all those genes were upregulated in the inoculated silages. When we compared Combo and LB, we found seven genes expressed differently, four associated with carbohydrate metabolism and downregulated in Combo, and three associated with amino acid metabolism and upregulated in Combo. At day 120, the inoculated silages had more culturable lactic acid bacteria, higher Lactobacillus relative abundance, and lower Leuconostoc relative abundance than Control. The concentration of acetic acid remained low throughout ensiling in Control, but in LB and Combo, it increased up to day 60 and remained stable from day 60 to 180. The 1,2-propanediol was only detected in LB and Combo. Inoculation did not affect the concentration of starch, but starch digestibility was greater in Combo than in Control. Inoculation of HMC with Combo modified the gene expression and fermentation profile compared to Control and LB, improving starch digestibility compared to uninoculated HMC.
Collapse
Affiliation(s)
- Pascal Drouin
- Independent Researcher, Saint-Jean-sur-Richelieu, QC, Canada
| | | | - Julien Tremblay
- Energy, Mining, and Environment, National Research Council of Canada, Montréal, QC, Canada
| | | | | | | |
Collapse
|
4
|
Neuhaus D. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:62-105. [PMID: 36113918 PMCID: PMC7614390 DOI: 10.1016/j.pnmrs.2022.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Zinc fingers can be loosely defined as protein domains containing one or more tetrahedrally-co-ordinated zinc ions whose role is to stabilise the structure rather than to be involved in enzymatic chemistry; such zinc ions are often referred to as "structural zincs". Although structural zincs can occur in proteins of any size, they assume particular significance for very small protein domains, where they are often essential for maintaining a folded state. Such small structures, that sometimes have only marginal stability, can present particular difficulties in terms of sample preparation, handling and structure determination, and early on they gained a reputation for being resistant to crystallisation. As a result, NMR has played a more prominent role in structural studies of zinc finger proteins than it has for many other types of proteins. This review will present an overview of the particular issues that arise for structure determination of zinc fingers by NMR, and ways in which these may be addressed.
Collapse
Affiliation(s)
- David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
5
|
Chemical-genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy. Proc Natl Acad Sci U S A 2022; 119:e2201632119. [PMID: 35380903 PMCID: PMC9169745 DOI: 10.1073/pnas.2201632119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Efforts to improve tuberculosis therapy include optimizing multidrug regimens to take advantage of drug–drug synergies. However, the complex host environment has a profound effect on bacterial metabolic state and drug activity, making predictions of optimal drug combinations difficult. In this study, we leverage a newly developed library of conditional knockdown Mycobacterium tuberculosis mutants in which genetic depletion of essential genes mimics the effect of drug therapy. This tractable system allowed us to assess the effect of growth condition on predicted drug–drug interactions. We found that these interactions can be differentially sensitive to the metabolic state, and select in vitro–defined interactions can be leveraged to accelerate bacterial killing during infection. These findings suggest strategies for optimizing tuberculosis therapy. Current chemotherapy against Mycobacterium tuberculosis (Mtb), an important human pathogen, requires a multidrug regimen lasting several months. While efforts have been made to optimize therapy by exploiting drug–drug synergies, testing new drug combinations in relevant host environments remains arduous. In particular, host environments profoundly affect the bacterial metabolic state and drug efficacy, limiting the accuracy of predictions based on in vitro assays alone. In this study, we utilized conditional Mtb knockdown mutants of essential genes as an experimentally tractable surrogate for drug treatment and probe the relationship between Mtb carbon metabolism and chemical–genetic interactions (CGIs). We examined the antitubercular drugs isoniazid, rifampicin, and moxifloxacin and found that CGIs are differentially responsive to the metabolic state, defining both environment-independent and -dependent interactions. Specifically, growth on the in vivo–relevant carbon source, cholesterol, reduced rifampicin efficacy by altering mycobacterial cell surface lipid composition. We report that a variety of perturbations in cell wall synthesis pathways restore rifampicin efficacy during growth on cholesterol, and that both environment-independent and cholesterol-dependent in vitro CGIs could be leveraged to enhance bacterial clearance in the mouse infection model. Our findings present an atlas of chemical–genetic–environmental interactions that can be used to optimize drug–drug interactions, as well as provide a framework for understanding in vitro correlates of in vivo efficacy.
Collapse
|
6
|
Terrazas-López M, Lobo-Galo N, Aguirre-Reyes LG, Cuen-Andrade JL, de la Rosa LA, Alvarez-Parrilla E, Martínez-Martínez A, Díaz-Sánchez ÁG. Interaction of N-succinyl-diaminopimelate desuccinylase with flavonoids. Biochimie 2020; 177:198-212. [DOI: 10.1016/j.biochi.2020.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 12/27/2022]
|
7
|
Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, Bhakta S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles' heel for the TB-causing pathogen. FEMS Microbiol Rev 2020; 43:548-575. [PMID: 31183501 PMCID: PMC6736417 DOI: 10.1093/femsre/fuz016] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis, remains one of the leading causes of mortality across the world. There is an urgent requirement to build a robust arsenal of effective antimicrobials, targeting novel molecular mechanisms to overcome the challenges posed by the increase of antibiotic resistance in TB. Mycobacterium tuberculosis has a unique cell envelope structure and composition, containing a peptidoglycan layer that is essential for maintaining cellular integrity and for virulence. The enzymes involved in the biosynthesis, degradation, remodelling and recycling of peptidoglycan have resurfaced as attractive targets for anti-infective drug discovery. Here, we review the importance of peptidoglycan, including the structure, function and regulation of key enzymes involved in its metabolism. We also discuss known inhibitors of ATP-dependent Mur ligases, and discuss the potential for the development of pan-enzyme inhibitors targeting multiple Mur ligases.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Tulika Munshi
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Jess Healy
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Nicholas H Keep
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
8
|
Price MN, Deutschbauer AM, Arkin AP. GapMind: Automated Annotation of Amino Acid Biosynthesis. mSystems 2020; 5:e00291-20. [PMID: 32576650 PMCID: PMC7311316 DOI: 10.1128/msystems.00291-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/05/2020] [Indexed: 11/20/2022] Open
Abstract
GapMind is a Web-based tool for annotating amino acid biosynthesis in bacteria and archaea (http://papers.genomics.lbl.gov/gaps). GapMind incorporates many variant pathways and 130 different reactions, and it analyzes a genome in just 15 s. To avoid error-prone transitive annotations, GapMind relies primarily on a database of experimentally characterized proteins. GapMind correctly handles fusion proteins and split proteins, which often cause errors for best-hit approaches. To improve GapMind's coverage, we examined genetic data from 35 bacteria that grow in defined media without amino acids, and we filled many gaps in amino acid biosynthesis pathways. For example, we identified additional genes for arginine synthesis with succinylated intermediates in Bacteroides thetaiotaomicron, and we propose that Dyella japonica synthesizes tyrosine from phenylalanine. Nevertheless, for many bacteria and archaea that grow in minimal media, genes for some steps still cannot be identified. To help interpret potential gaps, GapMind checks if they match known gaps in related microbes that can grow in minimal media. GapMind should aid the identification of microbial growth requirements.IMPORTANCE Many microbes can make all of the amino acids (the building blocks of proteins). In principle, we should be able to predict which amino acids a microbe can make, and which it requires as nutrients, by checking its genome sequence for all of the necessary genes. However, in practice, it is difficult to check for all of the alternative pathways. Furthermore, new pathways and enzymes are still being discovered. We built an automated tool, GapMind, to annotate amino acid biosynthesis in bacterial and archaeal genomes. We used GapMind to list gaps: cases where a microbe makes an amino acid but a complete pathway cannot be identified in its genome. We used these gaps, together with data from mutants, to identify new pathways and enzymes. However, for most bacteria and archaea, we still do not know how they can make all of the amino acids.
Collapse
Affiliation(s)
- Morgan N Price
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Plant & Microbial Biology, University of California, Berkeley, California, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| |
Collapse
|
9
|
Imam HT, Blindauer CA. Differential reactivity of closely related zinc(II)-binding metallothioneins from the plant Arabidopsis thaliana. J Biol Inorg Chem 2018; 23:137-154. [PMID: 29218630 PMCID: PMC5756572 DOI: 10.1007/s00775-017-1516-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/12/2017] [Indexed: 12/04/2022]
Abstract
The dynamics of metal binding to and transfer from metalloproteins involved in metal homeostasis are important for understanding cellular distribution of metal ions. The dicotyledonous plant Arabidopsis thaliana has two type 4 seed-specific metallothionein homologues, MT4a and MT4b, with likely roles in zinc(II) homeostasis. These two metallothioneins are 84% identical, with full conservation of all metal-binding cysteine and histidine residues. Yet, differences in their spatial and temporal expression patterns suggested divergence in their biological roles. To investigate whether biological functions are reflected in molecular properties, we compare aspects of zinc(II)-binding dynamics of full-length MT4a and MT4b, namely the pH dependence of zinc(II) binding and protein folding, and zinc(II) transfer to the chelator EDTA. UV-Vis and NMR spectroscopies as well as native electrospray ionisation mass spectrometry consistently showed that transfer from Zn6MT4a is considerably faster than from Zn6MT4b, with pseudo-first-order rate constants for the fastest observed step of k obs = 2.8 × 10-4 s-1 (MT4b) and k obs = 7.5 × 10-4 s-1 (MT4a) (5 µM protein, 500 µM EDTA, 25 mM Tris buffer, pH 7.33, 298 K). 2D heteronuclear NMR experiments allowed locating the most labile zinc(II) ions in domain II for both proteins. 3D homology models suggest that reactivity of this domain is governed by the local environment around the mononuclear Cys2His2 site that is unique to type 4 MTs. Non-conservative amino acid substitutions in this region affect local electrostatics as well as whole-domain dynamics, with both effects rendering zinc(II) ions bound to MT4a more reactive in metal transfer reactions. Therefore, domain II of MT4a is well suited to rapidly release its bound zinc(II) ions, in broad agreement with a previously suggested role of MT4a in zinc(II) transport and delivery to other proteins.
Collapse
Affiliation(s)
- Hasan T Imam
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | | |
Collapse
|
10
|
Dutta D, Mishra S. Active Site Dynamics in Substrate Hydrolysis Catalyzed by DapE Enzyme and Its Mutants from Hybrid QM/MM-Molecular Dynamics Simulation. J Phys Chem B 2017; 121:7075-7085. [DOI: 10.1021/acs.jpcb.7b04431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debodyuti Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|