1
|
Vílchez S. Making 3D-Cry Toxin Mutants: Much More Than a Tool of Understanding Toxins Mechanism of Action. Toxins (Basel) 2020; 12:toxins12090600. [PMID: 32948025 PMCID: PMC7551160 DOI: 10.3390/toxins12090600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
3D-Cry toxins, produced by the entomopathogenic bacterium Bacillus thuringiensis, have been extensively mutated in order to elucidate their elegant and complex mechanism of action necessary to kill susceptible insects. Together with the study of the resistant insects, 3D-Cry toxin mutants represent one of the pillars to understanding how these toxins exert their activity on their host. The principle is simple, if an amino acid is involved and essential in the mechanism of action, when substituted, the activity of the toxin will be diminished. However, some of the constructed 3D-Cry toxin mutants have shown an enhanced activity against their target insects compared to the parental toxins, suggesting that it is possible to produce novel versions of the natural toxins with an improved performance in the laboratory. In this report, all mutants with an enhanced activity obtained by accident in mutagenesis studies, together with all the variants obtained by rational design or by directed mutagenesis, were compiled. A description of the improved mutants was made considering their historical context and the parallel development of the protein engineering techniques that have been used to obtain them. This report demonstrates that artificial 3D-Cry toxins made in laboratories are a real alternative to natural toxins.
Collapse
Affiliation(s)
- Susana Vílchez
- Institute of Biotechnology, Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
2
|
Florez AM, Suarez-Barrera MO, Morales GM, Rivera KV, Orduz S, Ochoa R, Guerra D, Muskus C. Toxic Activity, Molecular Modeling and Docking Simulations of Bacillus thuringiensis Cry11 Toxin Variants Obtained via DNA Shuffling. Front Microbiol 2018; 9:2461. [PMID: 30386315 PMCID: PMC6199390 DOI: 10.3389/fmicb.2018.02461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/25/2018] [Indexed: 11/23/2022] Open
Abstract
The Cry11 family belongs to a large group of δ-endotoxins that share three distinct structural domains. Among the dipteran-active toxins referred to as three-domain Cry11 toxins, the Cry11Aa protein from Bacillus thuringiensis subsp. israelensis (Bti) has been the most extensively studied. Despite the potential of Bti as an effective biological control agent, the understanding of Cry11 toxins remains incomplete. In this study, five Cry11 variants obtained via DNA shuffling displayed toxic activity against Aedes aegypti and Culex quinquefasciatus. Three of these Cry11 variants (8, 23, and 79) were characterized via 3D modeling and analysis of docking with ALP1. The relevant mutations in these variants, such as deletions, insertions and point mutations, are discussed in relation to their structural domains, toxic activities and toxin-receptor interactions. Importantly, deletion of the N-terminal segment in domain I was not associated with any change in toxic activity, and domain III exhibited higher sequence variability than domains I and II. Variant 8 exhibited up to 3.78- and 6.09-fold higher toxicity to A. aegypti than Cry11Bb and Cry11Aa, respectively. Importantly, variant 79 showed an α-helix conformation at the C-terminus and formed crystals retaining toxic activity. These findings indicate that five Cry11 variants were preferentially reassembled from the cry11Aa gene during DNA shuffling. The mutations described in loop 2 and loop 3 of domain II provide valuable information regarding the activity of Cry11 toxins against A. aegypti and C. quinquefasciatus larvae and reveal new insights into the application of directed evolution strategies to study the genetic variability of specific domains in cry11 family genes.
Collapse
Affiliation(s)
- Alvaro Mauricio Florez
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Microbiomas Foundation, Chía, Colombia
| | - Miguel Orlando Suarez-Barrera
- Laboratorio de Biología Molecular y Biotecnología, Universidad de Santander, Bucaramanga, Colombia.,Escuela de Medicina, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Gloria M Morales
- Laboratorio de Biología Molecular y Biotecnología, Universidad de Santander, Bucaramanga, Colombia
| | - Karen Viviana Rivera
- Laboratorio de Biología Molecular y Biotecnología, Universidad de Santander, Bucaramanga, Colombia
| | - Sergio Orduz
- Grupo Biologa Funcional, Laboratorio de Prospección y Diseo de Biomoléculas, Escuela de Biociencias, Universidad Nacional, Sede Medellín, Colombia
| | - Rodrigo Ochoa
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Unidad de Biologa Molecular y Computacional-UBMC, Universidad de Antioquía, Medellín, Colombia
| | - Diego Guerra
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Unidad de Biologa Molecular y Computacional-UBMC, Universidad de Antioquía, Medellín, Colombia
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Unidad de Biologa Molecular y Computacional-UBMC, Universidad de Antioquía, Medellín, Colombia
| |
Collapse
|
3
|
Bratulic S, Badran AH. Modern methods for laboratory diversification of biomolecules. Curr Opin Chem Biol 2017; 41:50-60. [PMID: 29096324 PMCID: PMC6062405 DOI: 10.1016/j.cbpa.2017.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/03/2017] [Accepted: 10/08/2017] [Indexed: 11/29/2022]
Abstract
Genetic variation fuels Darwinian evolution, yet spontaneous mutation rates are maintained at low levels to ensure cellular viability. Low mutation rates preclude the exhaustive exploration of sequence space for protein evolution and genome engineering applications, prompting scientists to develop methods for efficient and targeted diversification of nucleic acid sequences. Directed evolution of biomolecules relies upon the generation of unbiased genetic diversity to discover variants with desirable properties, whereas genome-engineering applications require selective modifications on a genomic scale with minimal off-targets. Here, we review the current toolkit of mutagenesis strategies employed in directed evolution and genome engineering. These state-of-the-art methods enable facile modifications and improvements of single genes, multicomponent pathways, and whole genomes for basic and applied research, while simultaneously paving the way for genome editing therapeutic interventions.
Collapse
Affiliation(s)
- Sinisa Bratulic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ahmed H Badran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Shu C, Zhang F, Chen G, Joseph L, Barqawi A, Evans J, Song F, Li G, Zhang J, Crickmore N. A natural hybrid of a Bacillus thuringiensis Cry2A toxin implicates Domain I in specificity determination. J Invertebr Pathol 2017; 150:35-40. [PMID: 28888766 DOI: 10.1016/j.jip.2017.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 11/26/2022]
Abstract
A PCR-RFLP method was used to identify cry2A toxin genes in a collection of 300 strains of Bacillus thuringiensis. From 81 genes identified, the vast majority appeared to be cry2Aa or cry2Ab, however three showed a different pattern and were subsequently cloned and sequenced. The gene cloned from strain HD395 was named cry2Ba2. Since the proteins encoded by the genes cloned from LS5115-3 and DS415 shared >95% sequence identity with existing toxins their genes were named cry2Aa17 and cry2Ab29 respectively by the toxin nomenclature committee. Despite this overall similarity these two toxins resembled natural hybrids, with Cry2Ab29 resembling Cry2Ab for the majority of the protein but then showing identity to Cry2Aa for the last 66 amino acids. For Cry2Aa17, Domains II and III most closely resembled Cry2Aa (99% identity) whilst Domain I was identical to that of Cry2Ab. The toxicity of the recombinant toxins was tested against Aedes aegypti and Spodoptera exigua, and it was found that the toxicity profile of Cry2Aa17 more closely matched the profile of Cry2Ab than that of Cry2Aa, thus implicating Domain I in specificity determination. This association of Domain I with toxicity was confirmed when hybrids were made between Cry2Aa and Cry2Ab.
Collapse
Affiliation(s)
- Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fengjiao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Guihua Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lazarus Joseph
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Aminah Barqawi
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Jacob Evans
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Guoxun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|