1
|
Frank SI, Mylavarapu RV, Widerstrom-Noga E, Vastano R. Early body representation EEG signals in cervical vs. thoracic spinal cord injuries with neuropathic pain. Brain Res 2025; 1858:149658. [PMID: 40286834 DOI: 10.1016/j.brainres.2025.149658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/21/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Spinal cord injury (SCI) not only causes severe sensorimotor impairments but also leads to disruptions in body representation, including body schema. While the neurological differences between cervical and thoracic injuries are well established, the impact of the level of injury on body schema is less understood. Deeper insights into how change in body schema is affected by injury severity may further individual rehabilitation strategies and outcomes for individuals with SCI. This study explores event-related potentials (ERPs) between individuals with cervical and thoracic injuries in response to body-related and non-body-related stimuli presented in two rotation angles (easy: 75° and difficult: 150°) while completing a laterality judgment task. Individuals with cervical injury showed reduced amplitudes of posterior P100 and anterior N100 compared to the thoracic group only when the body-related stimuli were presented in a difficult rotation angle. We discuss that the variations in early modulation of ERPs can be attributed to the underlying sensorimotor challenges associated with different levels of injury. This work enhances our understanding of cognitive processing in SCI populations to better inform rehabilitation strategies.
Collapse
Affiliation(s)
- Scott Ian Frank
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA.
| | - Ramanamurthy V Mylavarapu
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA.
| | - Eva Widerstrom-Noga
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA.
| | - Roberta Vastano
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA.
| |
Collapse
|
2
|
De Pastina R, Chiarella SG, Simione L, Raffone A, Pazzaglia M. The remapping of peripersonal space after stroke, spinal cord injury and amputation: A PRISMA systematic review. Neurosci Biobehav Rev 2025; 173:106168. [PMID: 40252881 DOI: 10.1016/j.neubiorev.2025.106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/24/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Peripersonal space (PPS) is the body-centered area where interactions occur and objects can be reached. Its boundaries are dynamic, modulated by ongoing sensorimotor experiences: limb immobilization shrinks PPS, whereas tool use expands it. However, consistent clinical information on PPS alterations remains limited due to methodological heterogeneity, varying types and severities of sensorimotor disorders, and diverse experimental paradigms. This review explores the causal mechanisms of PPS processing by integrating findings from brain-lesioned patients and individuals with body deafferentation, such as amputees and spinal cord injury (SCI) patients. By comparing the effects of brain lesions and sensorimotor deafferentation, it clarifies how PPS is encoded, maintained, and reorganized following central nervous system damage, bodily changes, and the use of assistive devices. A systematic search of Scopus, Web of Science, and PubMed identified 17 studies: 4 on stroke patients (N = 100), 6 on SCI patients (N = 104), and 7 on amputees (N = 65). Risk of bias was assessed using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Despite the limited number of studies and methodological variability, findings consistently show that sensorimotor changes significantly affect PPS. Notably, a contraction of PPS around the affected limb was observed in stroke, SCI patients, and amputees. Assistive devices were able to restore PPS after training, or even immediately in the case of prosthesis use. A shared neurophysiological mechanism across these conditions may underlie PPS as an online construct, continuously updated to reflect the body's current state and its interaction with the environment.
Collapse
Affiliation(s)
- Riccardo De Pastina
- Dipartimento di Psicologia, Università di Roma "Sapienza", Rome 00185, Italy.
| | - Salvatore Gaetano Chiarella
- International School for Advanced Studies (SISSA), Trieste 34136, Italy; Dipartimento di Scienze Umanistiche e Sociali Internazionali, UNINT, Università degli Studi Internazionali di Roma, Rome 00147, Italy
| | - Luca Simione
- Dipartimento di Scienze Umanistiche e Sociali Internazionali, UNINT, Università degli Studi Internazionali di Roma, Rome 00147, Italy; Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), Rome 00185, Italy
| | - Antonino Raffone
- Dipartimento di Psicologia, Università di Roma "Sapienza", Rome 00185, Italy
| | - Mariella Pazzaglia
- Dipartimento di Psicologia, Università di Roma "Sapienza", Rome 00185, Italy; Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome 00179, Italy
| |
Collapse
|
3
|
Gherri E, Garofalo G, O'Dowd A, Cudia A. The anticipatory effect of goal-directed action planning with a lower limb on peri-personal space. Cortex 2025; 185:170-183. [PMID: 40073715 DOI: 10.1016/j.cortex.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/12/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025]
Abstract
Recent studies have demonstrated that the representation of peri-personal space (PPS) can be strongly modulated by the intention to execute a spatially-directed hand-movement. However, the question of whether analogous motor-induced PPS modulations can be observed during the planning and execution of goal-directed lower limbs movements has been scarcely investigated. Here we asked whether changes in the visuo-tactile PPS maps occur during the planning of a goal directed foot-movement. We asked participants to respond to the location of a tactile stimulus delivered to the index finger (top) or the thumb (bottom) of the right hand while ignoring a visual distractor presented at congruent or incongruent elevations, either close to the foot or close to the goal of the foot movement. This version of the cross-modal congruency task was performed under two different experimental conditions, as a baseline (static task, no movement involved) and embedded into a dual-task in which participants also had to plan and execute a goal-directed foot movement (dynamic task). In the static task, comparable cross-modal congruency effects (CCE) were present near the foot and near the movement goal. In the dynamic task, the CCE near the foot shrank considerably, whereas a sizable CCE was present near the movement goal. This anticipatory reweighting of the multisensory representation of near-space demonstrates that PPS is modulated by the intention to perform a goal-directed foot movement, with a weakened representation of the space around the currently occupied foot location when a movement is imminent.
Collapse
Affiliation(s)
- Elena Gherri
- Department of Philosophy, University of Bologna, Italy.
| | | | - Alan O'Dowd
- Trinity Institute of Neurosciences, Trinity College Dublin, Ireland
| | | |
Collapse
|
4
|
Xiao Y, Gao Y, Bai H, Song G, Wang H, Rao JS, Hao A, Li X, Zheng J. Impact of an upper limb motion-driven virtual rehabilitation system on residual motor function in patients with complete spinal cord injury: a pilot study. J Neuroeng Rehabil 2025; 22:48. [PMID: 40045360 PMCID: PMC11881371 DOI: 10.1186/s12984-025-01587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Assessing residual motor function in motor complete spinal cord injury (SCI) patients using surface electromyography (sEMG) is clinically important. Due to the prolonged loss of motor control and peripheral sensory input, patients may struggle to effectively activate residual motor function during sEMG assessments. The study proposes using virtual reality (VR) technology to enhance embodiment, motor imagery (MI), and memory, aiming to improve the activation of residual motor function and increase the sensitivity of sEMG assessments. METHODS By Recruiting a sample of 12 patients with AIS A/B and capturing surface electromyographic signals before, druing and after VR training, RESULTS: Most patients showed significant electromyographic improvements in activation frequency and or 5-rank frequency during or after VR training. However, one patient with severe lower limb neuropathic pain did not exhibit volitional electromyographic activation, though their pain diminished during the VR training. CONCLUSIONS VR can enhance the activation of patients' residual motor function by improving body awareness and MI, thereby increasing the sensitivity of sEMG assessments.
Collapse
Affiliation(s)
- Yanqing Xiao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Yang Gao
- The State Key Laboratory of VR Technology and Systems, Unit of Virtual Body and Virtual Surgery (2019RU004), Beihang University, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Hongming Bai
- The State Key Laboratory of VR Technology and Systems, Unit of Virtual Body and Virtual Surgery (2019RU004), Beihang University, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Guiyun Song
- Department of Rehabilitation Evaluation, Rehabilitation Research Center, Beijing, China
| | - Hanming Wang
- Rehabilitation Treatment Center of Beijing Rehabilitation Hospital, Affiliated to Capital Medical University, Beijing, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Aimin Hao
- The State Key Laboratory of VR Technology and Systems, Unit of Virtual Body and Virtual Surgery (2019RU004), Beihang University, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China.
| | - Jia Zheng
- Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.
| |
Collapse
|
5
|
Frisco F, Frigione I, Montanaro M, Maravita A. Multisensory conflict affects body schema and reaching space. Sci Rep 2024; 14:17282. [PMID: 39068279 PMCID: PMC11283496 DOI: 10.1038/s41598-024-66724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Multisensory integration plays a crucial role in building the sense of body ownership, i.e., the perceptual status of one's body for which the body is perceived as belonging to oneself. Temporal and spatial mismatching of visual and tactile signals coming from one's body can reduce ownership feelings towards the body and its parts, i.e., produce disownership feelings. Here, we investigated whether visuo-tactile conflict also affects the sensorimotor representation of the body in space (i.e., body schema) and the perception of the space around the body in terms of action potentiality (i.e., reaching space). In two experiments, body schema (Experiment 1) and reaching space (Experiment 2) were assessed before and after either synchronous or asynchronous visuo-tactile stimulation. Results showed that the asynchronous condition, provoking multisensory conflict, caused disownership over one's hand and concurrently affected the body schema and the reaching space. These findings indicate that body schema and reaching space could be dynamically shaped by the multisensory regularities that build up the sense of body ownership.
Collapse
Affiliation(s)
- Francesca Frisco
- Department of Psychology, University of Milan-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy.
- Mind and Behavior Technological Center, University of Milan-Bicocca, Milan, Italy.
- Milan Center for Neuroscience, Milan, Italy.
| | - Ivana Frigione
- Department of Psychology, University of Milan-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
- Mind and Behavior Technological Center, University of Milan-Bicocca, Milan, Italy
| | - Massimo Montanaro
- Department of Psychology, University of Milan-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
- Mind and Behavior Technological Center, University of Milan-Bicocca, Milan, Italy
| | - Angelo Maravita
- Department of Psychology, University of Milan-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
- Mind and Behavior Technological Center, University of Milan-Bicocca, Milan, Italy
- Milan Center for Neuroscience, Milan, Italy
| |
Collapse
|
6
|
Scandola M, Beccherle M, Togni R, Caffini G, Ferrari F, Aglioti SM, Moro V. Topographic mapping of the sensorimotor qualities of empathic reactivity: A psychophysiological study in people with spinal cord injuries. Psychophysiology 2024; 61:e14547. [PMID: 38372443 DOI: 10.1111/psyp.14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/03/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024]
Abstract
The experience of empathy for pain is underpinned by sensorimotor and affective dimensions which, although interconnected, are at least in part behaviorally and neurally distinct. Spinal cord injuries (SCI) induce a massive, below-lesion level, sensorimotor body-brain disconnection. This condition may make it possible to test whether sensorimotor deprivation alters specific dimensions of empathic reactivity to observed pain. To explore this issue, we asked SCI people with paraplegia and healthy controls to observe videos of painful or neutral stimuli administered to a hand (intact) or a foot (deafferented). The stimuli were displayed by means of a virtual reality set-up and seen from a first person (1PP) or third person (3PP) visual perspective. A number of measures were recorded ranging from explicit behaviors like explicit verbal reports on the videos, to implicit measures of muscular activity (like EMG from the corrugator and zygomatic muscles that may represent a proxy of sensorimotor empathy) and of autonomic reactivity (like the electrodermal response and Respiratory Sinus Arrhythmia that may represent a general proxy of affective empathy). While no across group differences in explicit verbal reports about the pain stimuli were found, SCI people exhibited reduced facial muscle reactivity to the stimuli applied to the foot (but not the hand) seen from the 1PP. Tellingly, the corrugator activity correlated with SCI participants' neuropathic pain. There were no across group differences in autonomic reactivity suggesting that SCI lesions may affect sensorimotor dimensions connected to empathy for pain.
Collapse
Affiliation(s)
- Michele Scandola
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Verona, Italy
| | - Maddalena Beccherle
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Verona, Italy
- CLN2S@Sapienza, Istituto Italiano di Tecnologia, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Giulia Caffini
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Verona, Italy
| | | | - Salvatore Maria Aglioti
- CLN2S@Sapienza, Istituto Italiano di Tecnologia, Department of Psychology, Sapienza University of Rome, Rome, Italy
- Fondazione Santa Lucia, IRCCS Rome, Rome, Italy
| | - Valentina Moro
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Petrizzo I, Mikellidou K, Avraam S, Avraamides M, Arrighi R. Reshaping the peripersonal space in virtual reality. Sci Rep 2024; 14:2438. [PMID: 38286825 PMCID: PMC10824723 DOI: 10.1038/s41598-024-52383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024] Open
Abstract
Peripersonal space (PPS) is defined as the space that lies within reach. Previous research revealed that PPS can be dynamically reshaped with the use of tools extending the arm's reach. Here we investigated whether PPS reshaping depends on the kind of selected tool and/or the motor routine associated with its use. Participants carried out a visuo-tactile detection task in an immersive VR environment that allowed to measure the PPS size before and after a short period of tools use. In Experiment 1, participants had to pull or push objects towards or away from themselves using a shovel. In Experiment 2, they were required to either hammer or shoot an avatar placed in the Extrapersonal space. We found, for the first time in a VR environment, that a period of pull training was effective in enlarging the PPS, a result that replicates and expands previous findings carried out in real life conditions. However, no significant change in PPS size was achieved for training with other tools and motor routines. Our results suggest that the reshaping of PPS is a complex phenomenon in which the kind of interaction between the agent, the targets and the exploited motor routines all play a critical role.
Collapse
Affiliation(s)
- Irene Petrizzo
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50135, Florence, Italy
- Department of Management, CIIM Business School, University of Limassol, Limassol, Cyprus
| | - Kyriaki Mikellidou
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50135, Florence, Italy.
- Department of Management, CIIM Business School, University of Limassol, Limassol, Cyprus.
- Department of Psychology & Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus.
| | | | - Marios Avraamides
- Department of Psychology & Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
- CYENS Centre of Excellence, Nicosia, Cyprus
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50135, Florence, Italy
| |
Collapse
|
8
|
Moro V, Beccherle M, Scandola M, Aglioti SM. Massive body-brain disconnection consequent to spinal cord injuries drives profound changes in higher-order cognitive and emotional functions: A PRISMA scoping review. Neurosci Biobehav Rev 2023; 154:105395. [PMID: 37734697 DOI: 10.1016/j.neubiorev.2023.105395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
Spinal cord injury (SCI) leads to a massive disconnection between the brain and the body parts below the lesion level representing a unique opportunity to explore how the body influences a person's mental life. We performed a systematic scoping review of 59 studies on higher-order cognitive and emotional changes after SCI. The results suggest that fluid abilities (e.g. attention, executive functions) and emotional regulation (e.g. emotional reactivity and discrimination) are impaired in people with SCI, with progressive deterioration over time. Although not systematically explored, the factors that are directly (e.g. the severity and level of the lesion) and indirectly associated (e.g. blood pressure, sleeping disorders, medication) with the damage may play a role in these deficits. The inconsistency which was found in the results may derive from the various methods used and the heterogeneity of samples (i.e. the lesion completeness, the time interval since lesion onset). Future studies which are specifically controlled for methods, clinical and socio-cultural dimensions are needed to better understand the role of the body in cognition.
Collapse
Affiliation(s)
- Valentina Moro
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Lungadige Porta Vittoria, 17, 37129 Verona, Italy.
| | - Maddalena Beccherle
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Lungadige Porta Vittoria, 17, 37129 Verona, Italy; Department of Psychology, Sapienza University of Rome and cln2s@sapienza Istituto Italiano di Tecnologia, Italy.
| | - Michele Scandola
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Lungadige Porta Vittoria, 17, 37129 Verona, Italy
| | - Salvatore Maria Aglioti
- Department of Psychology, Sapienza University of Rome and cln2s@sapienza Istituto Italiano di Tecnologia, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| |
Collapse
|
9
|
Event-related potentials during mental rotation of body-related stimuli in spinal cord injury population. Neuropsychologia 2023; 179:108447. [PMID: 36521630 DOI: 10.1016/j.neuropsychologia.2022.108447] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/13/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
Mental rotations of body-related stimuli are known to engage the motor system and activate body schema. Sensorimotor deficits following spinal cord injury (SCI) alter the representation of the body with a negative impact on the performance during motor-related tasks, such as mental rotation of body parts. Here we investigated the relationship between event-related potentials in SCI participants and the difficulty in mentally rotating a body-part. Participants with SCI and healthy control subjects performed a laterality judgment task, in which left or right images of hands, feet or animals (as a control stimulus) were presented in two different orientation angles (75° and 150°), and participants reported the laterality of the stimulus. We found that reaction times of participants with SCI were slower for the rotation of body-related stimuli compared to non-body-related stimuli and healthy controls. At the brain level, we found that relative to healthy controls SCI participants show: 1) reduced amplitudes of the posterior P100 and anterior N100 and larger amplitudes of the anterior P200 for overall stimuli; 2) an absence of the modulation of the rotation related negativity by stimulus type and rotation angles. Our results show that body representation changes after SCI affecting both components of early stimulus processing and late components that process high-order cognitive aspects of body-representation and task complexity.
Collapse
|
10
|
Gherri E, Xu A, Ambron E, Sedda A. Peripersonal space around the upper and the lower limbs. Exp Brain Res 2022; 240:2039-2050. [PMID: 35727366 PMCID: PMC9288357 DOI: 10.1007/s00221-022-06387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Peripersonal space (PPS), the space closely surrounding the body, is typically characterised by enhanced multisensory integration. Neurophysiological and behavioural studies have consistently shown stronger visuo-tactile integration when a visual stimulus is presented close to the tactually stimulate body part in near space (within PPS) than in far space. However, in the majority of these studies, tactile stimuli were delivered to the upper limbs, torso and face. Therefore, it is not known whether the space surrounding the lower limbs is characterised by similar multisensory properties. To address this question, we asked participants to complete two versions of the classic visuo-tactile crossmodal congruency task in which they had to perform speeded elevation judgements of tactile stimuli presented to the dorsum of the hand and foot while a simultaneous visual distractor was presented at spatially congruent or incongruent locations either in near or far space. In line with existing evidence, when the tactile target was presented to the hand, the size of the crossmodal congruency effect (CCE) decreased in far as compared to near space, suggesting stronger visuo-tactile multisensory integration within PPS. In contrast, when the tactile target was presented to the foot, the CCE decreased for visual distractors in near than far space. These findings show systematic differences between the representation of PPS around upper and lower limbs, suggesting that the multisensory properties of the different body part-centred representations of PPS are likely to depend on the potential actions performed by the different body parts.
Collapse
Affiliation(s)
- Elena Gherri
- Department of Philosophy and Communication, University of Bologna, Via Azzo Gardino 23, 40122, Bologna, Italy. .,Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK.
| | - Aolong Xu
- Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Elisabetta Ambron
- Laboratory for Cognition and Neural Stimulation, Neurology Department, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Sedda
- Department of Psychology, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
11
|
What the study of spinal cord injured patients can tell us about the significance of the body in cognition. Psychon Bull Rev 2022; 29:2052-2069. [PMID: 35697914 DOI: 10.3758/s13423-022-02129-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
Although in the last three decades philosophers, psychologists and neuroscientists have produced numerous studies on human cognition, the debate concerning its nature is still heated and current views on the subject are somewhat antithetical. On the one hand, there are those who adhere to a view implying 'disembodiment' which suggests that cognition is based entirely on symbolic processes. On the other hand, a family of theories referred to as the Embodied Cognition Theories (ECT) postulate that creating and maintaining cognition is linked with varying degrees of inherence to somatosensory and motor representations. Spinal cord injury induces a massive body-brain disconnection with the loss of sensory and motor bodily functions below the lesion level but without directly affecting the brain. Thus, SCI may represent an optimal model for testing the role of the body in cognition. In this review, we describe post-lesional cognitive modifications in relation to body, space and action representations and various instances of ECT. We discuss the interaction between body-grounded and symbolic processes in adulthood with relevant modifications after body-brain disconnection.
Collapse
|
12
|
Vittersø AD, Halicka M, Buckingham G, Proulx MJ, Bultitude JH. The sensorimotor theory of pathological pain revisited. Neurosci Biobehav Rev 2022; 139:104735. [PMID: 35705110 DOI: 10.1016/j.neubiorev.2022.104735] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 01/31/2023]
Abstract
Harris (1999) proposed that pain can arise in the absence of tissue damage because changes in the cortical representation of the painful body part lead to incongruences between motor intention and sensory feedback. This idea, subsequently termed the sensorimotor theory of pain, has formed the basis for novel treatments for pathological pain. Here we review the evidence that people with pathological pain have changes to processes contributing to sensorimotor function: motor function, sensory feedback, cognitive representations of the body and its surrounding space, multisensory processing, and sensorimotor integration. Changes to sensorimotor processing are most evident in the form of motor deficits, sensory changes, and body representations distortions, and for Complex Regional Pain Syndrome (CRPS), fibromyalgia, and low back pain. Many sensorimotor changes are related to cortical processing, pain, and other clinical characteristics. However, there is very limited evidence that changes in sensorimotor processing actually lead to pain. We therefore propose that the theory is more appropriate for understanding why pain persists rather than how it arises.
Collapse
Affiliation(s)
- Axel D Vittersø
- Centre for Pain Research, University of Bath, Bath, Somerset, United Kingdom; Department of Psychology, University of Bath, Bath, Somerset, United Kingdom; Department of Sport & Health Sciences, University of Exeter, Exeter, Devon, United Kingdom; Department of Psychology, Oslo New University College, Oslo, Norway.
| | - Monika Halicka
- Centre for Pain Research, University of Bath, Bath, Somerset, United Kingdom; Department of Psychology, University of Bath, Bath, Somerset, United Kingdom
| | - Gavin Buckingham
- Department of Sport & Health Sciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Michael J Proulx
- Department of Psychology, University of Bath, Bath, Somerset, United Kingdom; Centre for Real and Virtual Environments Augmentation Labs, Department of Computer Science, University of Bath, Bath, Somerset, United Kingdom
| | - Janet H Bultitude
- Centre for Pain Research, University of Bath, Bath, Somerset, United Kingdom; Department of Psychology, University of Bath, Bath, Somerset, United Kingdom
| |
Collapse
|
13
|
Peripersonal Space from a multisensory perspective: the distinct effect of the visual and tactile components of Visuo-Tactile stimuli. Exp Brain Res 2022; 240:1205-1217. [PMID: 35178603 PMCID: PMC9015983 DOI: 10.1007/s00221-022-06324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/05/2022] [Indexed: 11/21/2022]
Abstract
Peripersonal Space (PPS) is defined as the space close to the body where all interactions between the individual and the environment take place. Behavioural experiments on PPS exploit multisensory integration, using Multisensory Visuo-Tactile stimuli (MVT), whose visual and tactile components target the same body part (i.e. the face, the hand, the foot). However, the effects of visual and tactile stimuli targeting different body parts on PPS representation are unknown, and the relationship with the RTs for Tactile-Only stimuli is unclear. In this study, we addressed two research questions: (1) if the MVT-RTs are independent of Tactile-Only-RTs and if the latter is influenced by time-dependency effects, and (2) if PPS estimations derived from MVT-RTs depend on the location of the Visual or Tactile component of MVTs. We studied 40 right-handed participants, manipulating the body location (right hand, cheek or foot) and the distance of administration. Visual and Tactile components targeted different or the same body parts and were delivered respectively at five distances. RTs to Tactile-Only trials showed a non-monotonic trend, depending on the delay of stimulus administration. Moreover, RTs to Multisensory Visuo-Tactile trials were found to be dependent on the Distance and location of the Visual component of the stimulus. In conclusion, our results show that Tactile-Only RTs should be removed from Visuo-Tactile RTs and that the Visual and Tactile components of Visuo-Tactile stimuli do not necessarily have to target the same body part. These results have a relevant impact on the study of PPS representations, providing new important methodological information.
Collapse
|
14
|
Vastano R, Costantini M, Widerstrom-Noga E. Maladaptive reorganization following SCI: The role of body representation and multisensory integration. Prog Neurobiol 2021; 208:102179. [PMID: 34600947 DOI: 10.1016/j.pneurobio.2021.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
In this review we focus on maladaptive brain reorganization after spinal cord injury (SCI), including the development of neuropathic pain, and its relationship with impairments in body representation and multisensory integration. We will discuss the implications of altered sensorimotor interactions after SCI with and without neuropathic pain and possible deficits in multisensory integration and body representation. Within this framework we will examine published research findings focused on the use of bodily illusions to manipulate multisensory body representation to induce analgesic effects in heterogeneous chronic pain populations and in SCI-related neuropathic pain. We propose that the development and intensification of neuropathic pain after SCI is partly dependent on brain reorganization associated with dysfunctional multisensory integration processes and distorted body representation. We conclude this review by suggesting future research avenues that may lead to a better understanding of the complex mechanisms underlying the sense of the body after SCI, with a focus on cortical changes.
Collapse
Affiliation(s)
- Roberta Vastano
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA.
| | - Marcello Costantini
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, ITAB, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Eva Widerstrom-Noga
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA.
| |
Collapse
|
15
|
Moro V, Corbella M, Ionta S, Ferrari F, Scandola M. Cognitive Training Improves Disconnected Limbs' Mental Representation and Peripersonal Space after Spinal Cord Injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189589. [PMID: 34574514 PMCID: PMC8470420 DOI: 10.3390/ijerph18189589] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022]
Abstract
Paraplegia following spinal cord injury (SCI) affects the mental representation and peripersonal space of the paralysed body parts (i.e., lower limbs). Physical rehabilitation programs can improve these aspects, but the benefits are mostly partial and short-lasting. These limits could be due to the absence of trainings focused on SCI-induced cognitive deficits combined with traditional physical rehabilitation. To test this hypothesis, we assessed in 15 SCI-individuals the effects of adding cognitive recovery protocols (motor imagery–MI) to standard physical rehabilitation programs (Motor + MI training) on mental body representations and space representations, with respect to physical rehabilitation alone (control training). Each training comprised at least eight sessions administered over two weeks. The status of participants’ mental body representation and peripersonal space was assessed at three time points: before the training (T0), after the training (T1), and in a follow-up assessment one month later (T2). The Motor + MI training induced short-term recovery of peripersonal space that however did not persist at T2. Body representation showed a slower neuroplastic recovery at T2, without differences between Motor and the Motor + MI. These results show that body and space representations are plastic after lesions, and open new rehabilitation perspectives.
Collapse
Affiliation(s)
- Valentina Moro
- NPSY-Lab.VR, Human Sciences Department, University of Verona, 37129 Verona, Italy;
- Correspondence: (V.M.); (M.S.)
| | - Michela Corbella
- NPSY-Lab.VR, Human Sciences Department, University of Verona, 37129 Verona, Italy;
- Department of Rehabilitation, IRCCS Sacro Cuore “Don Calabria” Hospital, Negrar, 37024 Verona, Italy;
| | - Silvio Ionta
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital-Fondation Asile des Aveugles, 1015 Lausanne, Switzerland;
| | - Federico Ferrari
- Department of Rehabilitation, IRCCS Sacro Cuore “Don Calabria” Hospital, Negrar, 37024 Verona, Italy;
| | - Michele Scandola
- NPSY-Lab.VR, Human Sciences Department, University of Verona, 37129 Verona, Italy;
- Correspondence: (V.M.); (M.S.)
| |
Collapse
|
16
|
Bogdanova OV, Bogdanov VB, Dureux A, Farnè A, Hadj-Bouziane F. The Peripersonal Space in a social world. Cortex 2021; 142:28-46. [PMID: 34174722 DOI: 10.1016/j.cortex.2021.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/27/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022]
Abstract
The PeriPersonal Space (PPS) has been defined as the space surrounding the body, where physical interactions with elements of the environment take place. As our world is social in nature, recent evidence revealed the complex modulation of social factors onto PPS representation. In light of the growing interest in the field, in this review we take a close look at the experimental approaches undertaken to assess the impact of social factors onto PPS representation. Our social world also influences the personal space (PS), a concept stemming from social psychology, defined as the space we keep between us and others to avoid discomfort. Here we analytically compare PPS and PS with the aim of understanding if and how they relate to each other. At the behavioral level, the multiplicity of experimental methodologies, whether well-established or novel, lead to somewhat divergent results and interpretations. Beyond behavior, we review physiological and neural signatures of PPS representation to discuss how interoceptive signals could contribute to PPS representation, as well as how these internal signals could shape the neural responses of PPS representation. In particular, by merging exteroceptive information from the environment and internal signals that come from the body, PPS may promote an integrated representation of the self, as distinct from the environment and the others. We put forward that integrating internal and external signals in the brain for perception of proximal environmental stimuli may also provide us with a better understanding of the processes at play during social interactions. Adopting such an integrative stance may offer novel insights about PPS representation in a social world. Finally, we discuss possible links between PPS research and social cognition, a link that may contribute to the understanding of intentions and feelings of others around us and promote appropriate social interactions.
Collapse
Affiliation(s)
- Olena V Bogdanova
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; INCIA, UMR 5287, CNRS, Université de Bordeaux, France.
| | - Volodymyr B Bogdanov
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; Ecole Nationale des Travaux Publics de l'Etat, Laboratoire Génie Civil et Bâtiment, Vaulx-en-Velin, France
| | - Audrey Dureux
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; Hospices Civils de Lyon, Neuro-Immersion Platform, Lyon, France; Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France.
| |
Collapse
|
17
|
Aggius-Vella E, Kolarik AJ, Gori M, Cirstea S, Campus C, Moore BCJ, Pardhan S. Comparison of auditory spatial bisection and minimum audible angle in front, lateral, and back space. Sci Rep 2020; 10:6279. [PMID: 32286362 PMCID: PMC7156409 DOI: 10.1038/s41598-020-62983-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/11/2020] [Indexed: 11/09/2022] Open
Abstract
Although vision is important for calibrating auditory spatial perception, it only provides information about frontal sound sources. Previous studies of blind and sighted people support the idea that azimuthal spatial bisection in frontal space requires visual calibration, while detection of a change in azimuth (minimum audible angle, MAA) does not. The influence of vision on the ability to map frontal, lateral and back space has not been investigated. Performance in spatial bisection and MAA tasks was assessed for normally sighted blindfolded subjects using bursts of white noise presented frontally, laterally, or from the back relative to the subjects. Thresholds for both tasks were similar in frontal space, lower for the MAA task than for the bisection task in back space, and higher for the MAA task in lateral space. Two interpretations of the results are discussed, one in terms of visual calibration and the use of internal representations of source location and the other based on comparison of the magnitude or direction of change of the available binaural cues. That bisection thresholds were increased in back space relative to front space, where visual calibration information is unavailable, suggests that an internal representation of source location was used for the bisection task.
Collapse
Affiliation(s)
- Elena Aggius-Vella
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS) Department, University of Genoa, Genoa, Italy.
| | - Andrew J Kolarik
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Monica Gori
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Silvia Cirstea
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom
- School of Computing and Information Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Claudio Campus
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Brian C J Moore
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Shahina Pardhan
- Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
18
|
Stone KD, Kornblad CAE, Engel MM, Dijkerman HC, Blom RM, Keizer A. Lower limb peripersonal space and the desire to amputate a leg. PSYCHOLOGICAL RESEARCH 2020; 85:1221-1233. [PMID: 32198609 PMCID: PMC8049934 DOI: 10.1007/s00426-020-01316-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/07/2020] [Indexed: 02/05/2023]
Abstract
Body integrity identity disorder (BIID) is a rare condition defined by a persistent desire to amputate or paralyze a healthy limb (usually one or both of the legs). This desire arises from experiencing a mismatch between the internal body model and the actual physical/functional boundaries of the body. People with BIID show an abnormal physiological response to stimuli approaching the affected (unwanted) but not the unaffected leg, which might suggest a retracted peripersonal space (PPS: a multisensory integration zone near the body) around the unwanted limb. Thus, using a visuo-tactile interaction task, we examined leg PPS in a group of healthy men and three men with BIID who desired unilateral leg amputation. PPS size (~ 70 cm) around the unwanted BIID legs did not differ from that of healthy controls. Although the leg feels foreign in BIID, it still seems to maintain a PPS, presumably to protect it and facilitate interactions within the surrounding environment.
Collapse
Affiliation(s)
- Kayla D Stone
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands.
| | - Clara A E Kornblad
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Manja M Engel
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - H Chris Dijkerman
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Rianne M Blom
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anouk Keizer
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
19
|
Scandola M, Aglioti SM, Lazzeri G, Avesani R, Ionta S, Moro V. Visuo-motor and interoceptive influences on peripersonal space representation following spinal cord injury. Sci Rep 2020; 10:5162. [PMID: 32198431 PMCID: PMC7083926 DOI: 10.1038/s41598-020-62080-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/02/2020] [Indexed: 02/08/2023] Open
Abstract
Peripersonal space (PPS) representation is modulated by information coming from the body. In paraplegic individuals, whose lower limb sensory-motor functions are impaired or completely lost, the representation of PPS around the feet is reduced. However, passive motion can have short-term restorative effects. What remains unclear is the mechanisms underlying this recovery, in particular with regard to the contribution of visual and motor feedback and of interoception. Using virtual reality technology, we dissociated the motor and visual feedback during passive motion in paraplegics with complete and incomplete lesions and in healthy controls. The results show that in the case of paraplegics, the presence of motor feedback was necessary for the recovery of PPS representation, both when the motor feedback was congruent and when it was incongruent with the visual feedback. In contrast, visuo-motor incongruence led to an inhibition of PPS representation in the control group. There were no differences in sympathetic responses between the three groups. Nevertheless, in individuals with incomplete lesions, greater interoceptive sensitivity was associated with a better representation of PPS around the feet in the visuo-motor incongruent conditions. These results shed new light on the modulation of PPS representation, and demonstrate the importance of residual motor feedback and its integration with other bodily information in maintaining space representation.
Collapse
Affiliation(s)
- Michele Scandola
- NPSY-Lab.VR, Department of Human Sciences, University of Verona, Verona, Italy. .,IRCCS, Fondazione Santa Lucia, Rome, Italy.
| | - Salvatore Maria Aglioti
- IRCCS, Fondazione Santa Lucia, Rome, Italy.,Department of Psychology, University of Rome "Sapienza", Rome, Italy.,Istituto Italiano di Tecnologia, Rome, Italy
| | | | - Renato Avesani
- Department of Rehabilitation, IRCSS Sacro Cuore - Don Calabria Hospital, Verona, Italy
| | - Silvio Ionta
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology-University of Lausanne, Jules Gonin Eye; Hospital-Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Valentina Moro
- NPSY-Lab.VR, Department of Human Sciences, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Scandola M, Canzano L, Avesani R, Leder M, Bertagnoli S, Gobbetto V, Aglioti SM, Moro V. Anosognosia for limb and bucco-facial apraxia as inferred from the recognition of gestural errors. J Neuropsychol 2020; 15:20-45. [PMID: 32080980 DOI: 10.1111/jnp.12203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/27/2020] [Indexed: 12/12/2022]
Abstract
Anosognosia is a multifaceted syndrome characterized by a lack of awareness of motor, cognitive, or emotional deficits. While most studies have focused on basic motor disorders such as hemiplegia, only recently, the issue of whether anosognosia also concerns higher-order motor disorders like apraxia has been addressed. Here, we explore the existence of a specific form of anosognosia for apraxia in forty patients with uni-hemispheric vascular lesions. The patients were requested to imitate actions involving upper limb or bucco-facial body parts and then judge their performance. Successively, they were also asked to observe video recordings of the same actions performed by themselves or by other patients and judge the accuracy of the displayed actions. The comparison of participants versus examiner judgement and between error recognition of others' versus self's actions was considered as an index of awareness deficit for the online and offline conditions, respectively. Evidence was found that awareness deficits occurred both immediately after action execution (online anosognosia) and in the video recording task (offline anosognosia). Moreover, bucco-facial and limb apraxic patients were specifically unaware of their errors in bucco-facial and limb actions, respectively, indicating for the first time a topographical organization of the syndrome. Our approach allowed us to distinguish awareness deficits from more general disorders in error recognition; indeed, anosognosic patients were able to identify errors when the same action was executed by another patient but not when the video showed their own actions. Finally, we provide evidence that anosognosia for apraxia might be associated with frontal cortical and subcortical networks.
Collapse
Affiliation(s)
- Michele Scandola
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Italy
| | | | - Renato Avesani
- IRCSS Sacro Cuore - Don Calabria Hospital, Verona, Italy
| | - Mara Leder
- IRCSS Sacro Cuore - Don Calabria Hospital, Verona, Italy
| | - Sara Bertagnoli
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Italy
| | - Valeria Gobbetto
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Italy.,Verona Memory Center, CEMS, Verona, Italy
| | - Salvatore M Aglioti
- IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Psychology, University "La Sapienza" of Rome and Istituto Italiano di Tecnologia, Italy
| | - Valentina Moro
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Italy.,Verona Memory Center, CEMS, Verona, Italy
| |
Collapse
|
21
|
Embodying their own wheelchair modifies extrapersonal space perception in people with spinal cord injury. Exp Brain Res 2019; 237:2621-2632. [DOI: 10.1007/s00221-019-05618-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/31/2019] [Indexed: 01/06/2023]
|
22
|
Patané I, Cardinali L, Salemme R, Pavani F, Farnè A, Brozzoli C. Action Planning Modulates Peripersonal Space. J Cogn Neurosci 2019; 31:1141-1154. [DOI: 10.1162/jocn_a_01349] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Peripersonal space is a multisensory representation relying on the processing of tactile and visual stimuli presented on and close to different body parts. The most studied peripersonal space representation is perihand space (PHS), a highly plastic representation modulated following tool use and by the rapid approach of visual objects. Given these properties, PHS may serve different sensorimotor functions, including guidance of voluntary actions such as object grasping. Strong support for this hypothesis would derive from evidence that PHS plastic changes occur before the upcoming movement rather than after its initiation, yet to date, such evidence is scant. Here, we tested whether action-dependent modulation of PHS, behaviorally assessed via visuotactile perception, may occur before an overt movement as early as the action planning phase. To do so, we probed tactile and visuotactile perception at different time points before and during the grasping action. Results showed that visuotactile perception was more strongly affected during the planning phase (250 msec after vision of the target) than during a similarly static but earlier phase (50 msec after vision of the target). Visuotactile interaction was also enhanced at the onset of hand movement, and it further increased during subsequent phases of hand movement. Such a visuotactile interaction featured interference effects during all phases from action planning onward as well as a facilitation effect at the movement onset. These findings reveal that planning to grab an object strengthens the multisensory interaction of visual information from the target and somatosensory information from the hand. Such early updating of the visuotactile interaction reflects multisensory processes supporting motor planning of actions.
Collapse
Affiliation(s)
- Ivan Patané
- INSERM U1028, CNRS U5292, Lyon, France
- University of Bologna
- University of Lyon 1
- Hospices Civils de Lyon
| | | | - Romeo Salemme
- INSERM U1028, CNRS U5292, Lyon, France
- University of Lyon 1
- Hospices Civils de Lyon
| | | | - Alessandro Farnè
- INSERM U1028, CNRS U5292, Lyon, France
- University of Lyon 1
- Hospices Civils de Lyon
- University of Trento
| | - Claudio Brozzoli
- INSERM U1028, CNRS U5292, Lyon, France
- University of Lyon 1
- Hospices Civils de Lyon
- Karolinska Institutet
| |
Collapse
|
23
|
Scandola M, Dodoni L, Lazzeri G, Arcangeli CA, Avesani R, Moro V, Ionta S. Neurocognitive Benefits of Physiotherapy for Spinal Cord Injury. J Neurotrauma 2019; 36:2028-2035. [DOI: 10.1089/neu.2018.6123] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Michele Scandola
- Laboratory of Neuropsychology Verona (NPSY-Lab.VR), Department of Human Sciences, University of Verona, Verona, Italy
| | - Luca Dodoni
- Department of Rehabilitation, Sacro Cuore–Don Calabria Hospital, Verona, Italy
| | | | | | - Renato Avesani
- Department of Rehabilitation, Sacro Cuore–Don Calabria Hospital, Verona, Italy
| | - Valentina Moro
- Laboratory of Neuropsychology Verona (NPSY-Lab.VR), Department of Human Sciences, University of Verona, Verona, Italy
| | - Silvio Ionta
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology–University of Lausanne, Jules Gonin Eye Hospital-Fondation Asile des Aveugles, Lausanne, Switzerland
| |
Collapse
|
24
|
Anticipation of wheelchair and rollerblade actions in spinal cord injured people, rollerbladers, and physiotherapists. PLoS One 2019; 14:e0213838. [PMID: 30875399 PMCID: PMC6420014 DOI: 10.1371/journal.pone.0213838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 03/03/2019] [Indexed: 01/24/2023] Open
Abstract
Embodied Cognition Theories (ECT) postulate that higher-order cognition is heavily influenced by sensorimotor signals. We explored the active role of somatosensory afferents and motor efferents in modulating the perception of actions in people who have suffered a massive body-brain disconnection because of spinal cord injury (SCI), which leads to sensory-motor loss below the lesion. We assessed whether the habitual use of a wheelchair enhances the capacity to anticipate the endings of tool-related actions, with respect to actions that have become impossible. In a Temporal Occlusion task, three groups of participants (paraplegics, rollerbladers and physiotherapists) observed two sets of videos depicting an actor who attempted to climb onto a platform using a wheelchair or rollerblades. Three different outcomes were possible, namely: a) success (the actor went up the step); b) fail (the actor stopped before the step without going up) and c) fall (the actor fell without going up). Each video set comprised 5 different durations increasing in complexity: in the shortest (600ms) only preparatory body movements were shown and in the longest (3000ms) the complete action was shown. The participants were requested to anticipate the outcome (success, fail, fall). The main result showed that the SCI group performed better with the wheelchair videos and poorer with rollerblade videos than both groups, even if the physiotherapists group never used rollerblades. In line with the ECT, this suggests that the action anticipation skills are not only influenced by motor expertise, but also by motor connection.
Collapse
|
25
|
Burin D, Kilteni K, Rabuffetti M, Slater M, Pia L. Body ownership increases the interference between observed and executed movements. PLoS One 2019; 14:e0209899. [PMID: 30605454 PMCID: PMC6317814 DOI: 10.1371/journal.pone.0209899] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/13/2018] [Indexed: 01/30/2023] Open
Abstract
When we successfully achieve willed actions, the feeling that our moving body parts belong to the self (i.e., body ownership) is barely required. However, how and to what extent the awareness of our own body contributes to the neurocognitive processes subserving actions is still debated. Here we capitalized on immersive virtual reality in order to examine whether and how body ownership influences motor performance (and, secondly, if it modulates the feeling of voluntariness). Healthy participants saw a virtual body either from a first or a third person perspective. In both conditions, they had to draw continuously straight vertical lines while seeing the virtual arm doing the same action (i.e., drawing lines) or deviating from them (i.e., drawing ellipses). Results showed that when there was a mismatch between the intended and the seen movements (i.e., participants had to draw lines but the avatar drew ellipses), motor performance was strongly "attracted" towards the seen (rather than the performed) movement when the avatar's body part was perceived as own (i.e., first person perspective). In support of previous studies, here we provide direct behavioral evidence that the feeling of body ownership modulates the interference of seen movements to the performed movements.
Collapse
Affiliation(s)
- Dalila Burin
- Smart Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Konstantina Kilteni
- EVENT LAB- Experimental Virtual Environments for Neuroscience and Technology Laboratory, Department of Clinical Psychology and Psychobiology, Universitat de Barcelona, Barcelona, Spain
| | - Marco Rabuffetti
- Biomedical Technology Department, IRCCS Don Carlo Gnocchi Foundation, Milan, Italy
| | - Mel Slater
- EVENT LAB- Experimental Virtual Environments for Neuroscience and Technology Laboratory, Department of Clinical Psychology and Psychobiology, Universitat de Barcelona, Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Computer Science, University College London, London, United Kingdom
| | - Lorenzo Pia
- SAMBA- SpAtial Motor and Bodily Awareness research group- Department of Psychology, University of Turin, Turin, Italy
- NIT- Neuroscience Institute of Turin, Orbassano- Turin, Italy
| |
Collapse
|
26
|
Hunley SB, Lourenco SF. What is peripersonal space? An examination of unresolved empirical issues and emerging findings. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2018; 9:e1472. [PMID: 29985555 DOI: 10.1002/wcs.1472] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/07/2022]
Abstract
Findings from diverse fields of study, including neuroscience, psychology, zoology, and sociology, demonstrate that human and non-human primates maintain a representation of the space immediately surrounding the body, known as peripersonal space (PPS). However, progress in this field has been hampered by the lack of an agreed upon definition of PPS. Since the beginning of its formal study, scientists have argued that PPS plays a crucial role in both defensive and non-defensive actions. Yet consensus is lacking about the cognitive and neural instantiation of these functions. In particular, researchers have begun to ask whether a single, unified system of spatial-attentional resources supports both the defensive and non-defensive functions of PPS or, rather, whether there are multiple, independent systems. Moreover, there are open questions about the specificity of PPS. For example: Does PPS dissociate from other well-known phenomena such as personal space and the body schema? Finally, emerging research has brought attention to important questions about individual differences in the flexibility of PPS and the distribution of PPS in front compared to behind the body. In this advanced review, we shed light on questions about the nature of PPS, offering answers when the research permits or providing recommendations for achieving answers in future research. In so doing, we lay the groundwork for a comprehensive definition of PPS. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Psychology > Attention Psychology > Perception and Psychophysics Neuroscience > Plasticity.
Collapse
Affiliation(s)
- Samuel B Hunley
- Department of Psychology, Emory University, Atlanta, Georgia
| | | |
Collapse
|
27
|
Aggius-Vella E, Campus C, Gori M. Different audio spatial metric representation around the body. Sci Rep 2018; 8:9383. [PMID: 29925849 PMCID: PMC6010478 DOI: 10.1038/s41598-018-27370-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 05/14/2018] [Indexed: 11/10/2022] Open
Abstract
Vision seems to have a pivotal role in developing spatial cognition. A recent approach, based on sensory calibration, has highlighted the role of vision in calibrating hearing in spatial tasks. It was shown that blind individuals have specific impairments during audio spatial bisection tasks. Vision is available only in the frontal space, leading to a "natural" blindness in the back. If vision is important for audio space calibration, then the auditory frontal space should be better represented than the back auditory space. In this study, we investigated this point by comparing frontal and back audio spatial metric representations. We measured precision in the spatial bisection task, for which vision seems to be fundamental to calibrate audition, in twenty-three sighted subjects. Two control tasks, a minimum audible angle and a temporal bisection were employed in order to evaluate auditory precision in the different regions considered. While no differences were observed between frontal and back space in the minimum audible angle (MAA) and temporal bisection task, a significant difference was found in the spatial bisection task, where subjects performed better in the frontal space. Our results are in agreement with the idea that vision is important in developing auditory spatial metric representation in sighted individuals.
Collapse
Affiliation(s)
- Elena Aggius-Vella
- U-VIP: Unit for Visually Impaired people, Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Claudio Campus
- U-VIP: Unit for Visually Impaired people, Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Monica Gori
- U-VIP: Unit for Visually Impaired people, Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
28
|
Stone KD, Keizer A, Dijkerman HC. The influence of vision, touch, and proprioception on body representation of the lower limbs. Acta Psychol (Amst) 2018; 185:22-32. [PMID: 29407242 DOI: 10.1016/j.actpsy.2018.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 09/27/2017] [Accepted: 01/16/2018] [Indexed: 11/25/2022] Open
Abstract
Numerous studies have shown that the representation of the hand is distorted. When participants are asked to localize unseen points on the hand (e.g. the knuckle), it is perceived to be wider and shorter than its physical dimensions. Similar distortions occur when people are asked to judge the distance between two tactile points on the hand; estimates made in the longitudinal direction are perceived as significantly shorter than those made in the transverse direction. Yet, when asked to visually compare the shape and size of one's own hand to a template hand, individuals are accurate at estimating the size of their own hands. Thus, it seems that body representations are, at least in part, a function of the most prominent underlying sensory modality used to perceive the body part. Yet, it remains unknown if the representations of other body parts are similarly distorted. The lower limbs, for example, are structurally and functionally very different from the hands, yet their representation(s) are seldom studied. What does the body representation for the leg look like? And is leg representation dependent on which sense is probed when making judgments about its shape and size? In the current study, we investigated what the representation of the leg looks like in visually-, tactually-, and proprioceptively-guided tasks. Results revealed that the leg, like the hand, is distorted in a highly systematic manner. Distortions seem to rely, at least partly, on sensory input. This is the first study, to our knowledge, to systematically investigate leg representation in healthy individuals.
Collapse
|
29
|
Sedda A, Ambrosini E, Dirupo G, Tonin D, Valsecchi L, Redaelli T, Spinelli M, Costantini M, Bottini G. Affordances after spinal cord injury. J Neuropsychol 2018; 13:354-369. [PMID: 29453783 DOI: 10.1111/jnp.12151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/13/2017] [Indexed: 11/29/2022]
Abstract
Spinal cord injury can cause cognitive impairments even when no cerebral lesion is appreciable. As patients are forced to explore the environment in a non-canonical position (i.e., seated on a wheelchair), a modified relation with space can explain motor-related cognitive differences compared to non-injured individuals. Peripersonal space is encoded in motor terms, that is, in relation to the representation of action abilities and is strictly related to the affordance of reachability. In turn, affordances, the action possibilities suggested by relevant properties of the environment, are related to the perceiver's peripersonal space and motor abilities. One might suppose that these motor-related cognitive abilities are compromised when an individual loses the ability to move. We shed light on this issue in 10 patients with paraplegia and 20 matched controls. All have been administered an affordances-related reachability judgement task adapted from Costantini, Ambrosini, Tieri, Sinigaglia, and Committeri (2010, Experimental Brain Research, 207, 95) and neuropsychological tests. Our findings demonstrate that patients and controls show the same level of accuracy in estimating the location of their peripersonal space boundaries, but only controls show the typical overestimation of reaching range. Secondly, patients show a higher variability in their judgements than controls. Importantly, this finding is related to the patients' ability to perform everyday tasks. Finally, patients are not faster in making their judgements on reachability in peripersonal space, while controls are. Our results suggest that not moving freely or as usual in the environment impact decoding of action-related properties even when the upper limbs are not compromised.
Collapse
Affiliation(s)
- Anna Sedda
- Psychology - School of Social Sciences - Heriot Watt University, Edinburgh, UK
| | | | - Giada Dirupo
- Faculty of Psychology and Educational Sciences (FAPSE), University of Geneva, Switzerland
| | - Diana Tonin
- School of Psychology, University of East Anglia, Norwich, UK
| | - Laura Valsecchi
- Unipolar Spinal Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Tiziana Redaelli
- Unipolar Spinal Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Michele Spinelli
- Unipolar Spinal Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Gabriella Bottini
- Cognitive Neuropsychology Centre, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Italy.,NeuroMi, Milan Center for Neuroscience, Italy
| |
Collapse
|
30
|
Abanoz Y, Abanoz Y, Gündüz A, Uludağ M, Örnek Nİ, Uzun N, Ünalan H, Kızıltan M. Pattern of startle reflex to somatosensory stimuli changes after spinal cord injury. J Spinal Cord Med 2018; 41:36-41. [PMID: 27576910 PMCID: PMC5810804 DOI: 10.1080/10790268.2016.1211580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) may cause functional changes at various levels in central and peripheral nervous systems. One of these changes is increased excitability above the lesion such as enhanced auditory startle responses (ASR). Startle response may also be obtained after somatosensory stimulus (startle reflex to somatosensory stimuli, SSS). In this study, we investigated changes of both ASR and SSS in SCI. METHOD We examined ASR and SSS in 14 patients with SCI and 18 age-matched healthy volunteers. SSS responses were recorded from orbicularis oculi (O.oc), sternocleidomastoid (SCM) and biceps brachii (BB) muscles by electrical stimulation of median nerve at the wrist. ASR was evoked by binaural auditory stimuli and recorded from O.oc, masseter, SCM and BB muscles. Probability, latency, amplitude and duration of responses were compared between two groups for each muscle. RESULTS Presence of response over O.oc after somatosensory stimuli was decreased in patients compared to controls (P = 0.004). There were no differences in SSS responses of other muscles. ASR latency was shorter in masseter, SCM and BB in patients with SCI, but only BB had significantly reduced latency (P = 0.033). The duration of O.oc response was longer and the amplitude of SCM was larger in patients with SCI (P = 0.037 and P = 0.015, respectively). CONCLUSION ASR is enhanced after SCI whereas SSS of eye muscles is hypoactive and pattern of SSS after median stimulation changes in SCI.
Collapse
Affiliation(s)
- Yasin Abanoz
- Department of Neurology, Cerrahpaşa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Yeşim Abanoz
- Department of Neurology, Cerrahpaşa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Ayşegül Gündüz
- Department of Neurology, Cerrahpaşa School of Medicine, Istanbul University, Istanbul, Turkey,Correspondence to: Ayşegül Gündüz, Department of Neurology, I.U. Cerrahpasa School of Medicine, Cerrahpasa Medical Faculty, 34098, K.M.Pasa, Istanbul, Turkey.
| | - Murat Uludağ
- Department of Physical Medicine and Rehabilitation, Cerrahpaşa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Nurettin İrem Örnek
- Department of Physical Medicine and Rehabilitation, Cerrahpaşa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Nurten Uzun
- Department of Neurology, Cerrahpaşa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Halil Ünalan
- Department of Physical Medicine and Rehabilitation, Cerrahpaşa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Meral Kızıltan
- Department of Neurology, Cerrahpaşa School of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
31
|
Aggius-Vella E, Campus C, Finocchietti S, Gori M. Audio Motor Training at the Foot Level Improves Space Representation. Front Integr Neurosci 2017; 11:36. [PMID: 29326564 PMCID: PMC5741674 DOI: 10.3389/fnint.2017.00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/05/2017] [Indexed: 11/26/2022] Open
Abstract
Spatial representation is developed thanks to the integration of visual signals with the other senses. It has been shown that the lack of vision compromises the development of some spatial representations. In this study we tested the effect of a new rehabilitation device called ABBI (Audio Bracelet for Blind Interaction) to improve space representation. ABBI produces an audio feedback linked to body movement. Previous studies from our group showed that this device improves the spatial representation of space in early blind adults around the upper part of the body. Here we evaluate whether the audio motor feedback produced by ABBI can also improve audio spatial representation of sighted individuals in the space around the legs. Forty five blindfolded sighted subjects participated in the study, subdivided into three experimental groups. An audio space localization (front-back discrimination) task was performed twice by all groups of subjects before and after different kind of training conditions. A group (experimental) performed an audio-motor training with the ABBI device placed on their foot. Another group (control) performed a free motor activity without audio feedback associated with body movement. The other group (control) passively listened to the ABBI sound moved at foot level by the experimenter without producing any body movement. Results showed that only the experimental group, which performed the training with the audio-motor feedback, showed an improvement in accuracy for sound discrimination. No improvement was observed for the two control groups. These findings suggest that the audio-motor training with ABBI improves audio space perception also in the space around the legs in sighted individuals. This result provides important inputs for the rehabilitation of the space representations in the lower part of the body.
Collapse
Affiliation(s)
- Elena Aggius-Vella
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Claudio Campus
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Sara Finocchietti
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Monica Gori
- Unit for Visually Impaired People (U-VIP), Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
32
|
Aggius-Vella E, Campus C, Finocchietti S, Gori M. Audio Spatial Representation Around the Body. Front Psychol 2017; 8:1932. [PMID: 29249999 PMCID: PMC5715385 DOI: 10.3389/fpsyg.2017.01932] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/19/2017] [Indexed: 11/13/2022] Open
Abstract
Studies have found that portions of space around our body are differently coded by our brain. Numerous works have investigated visual and auditory spatial representation, focusing mostly on the spatial representation of stimuli presented at head level, especially in the frontal space. Only few studies have investigated spatial representation around the entire body and its relationship with motor activity. Moreover, it is still not clear whether the space surrounding us is represented as a unitary dimension or whether it is split up into different portions, differently shaped by our senses and motor activity. To clarify these points, we investigated audio localization of dynamic and static sounds at different body levels. In order to understand the role of a motor action in auditory space representation, we asked subjects to localize sounds by pointing with the hand or the foot, or by giving a verbal answer. We found that the audio sound localization was different depending on the body part considered. Moreover, a different pattern of response was observed when subjects were asked to make actions with respect to the verbal responses. These results suggest that the audio space around our body is split in various spatial portions, which are perceived differently: front, back, around chest, and around foot, suggesting that these four areas could be differently modulated by our senses and our actions.
Collapse
Affiliation(s)
- Elena Aggius-Vella
- Unit for Visually Impaired People, Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Claudio Campus
- Unit for Visually Impaired People, Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Sara Finocchietti
- Unit for Visually Impaired People, Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Monica Gori
- Unit for Visually Impaired People, Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
33
|
Peripersonal space boundaries around the lower limbs. Exp Brain Res 2017; 236:161-173. [DOI: 10.1007/s00221-017-5115-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/27/2017] [Indexed: 11/26/2022]
|
34
|
Scandola M, Aglioti SM, Avesani R, Bertagnoni G, Marangoni A, Moro V. Corporeal illusions in chronic spinal cord injuries. Conscious Cogn 2017; 49:278-290. [DOI: 10.1016/j.concog.2017.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/01/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022]
|