1
|
Pramoda K, Chithaiah P, Rao CNR. Rhombohedrally stacked layered transition metal dichalcogenides and their electrocatalytic applications. NANOSCALE 2024; 16:15909-15927. [PMID: 39145442 DOI: 10.1039/d4nr02021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Layered transition metal dichalcogenides (TMDCs) are extensively investigated as catalyst materials for a wide range of electrochemical applications due to their high surface area and versatile electronic and chemical properties. Bulk TMDCs are van der Waals solids that possess strong in-plane bonding and weak inter-layer interactions. In the few-layer 2D TMDCs, several polymorphic structures have been reported as each individual layer can either retain octahedral or trigonal prismatic coordination. Among them, 1T (tetragonal), 2H (hexagonal) and 3R (rhombohedral) phases are very common. These polymorphs can display discrepancies in their catalytic activity as their electronic structure diverges due to different d orbital filling states. The broken inversion symmetry and large exposed edge sites of some of the 3R-phase TMDCS such as MoS2, NbS2 and TaS2 appear to be advantageous for electrocatalytic water reduction and battery applications. We describe recent studies in phase engineering of 2D TMDCs, particularly aiming at the 3R polytype and their electrocatalytic properties. Redox ability primarily depends on a distinct polymorphic phase in which TMDCs are isolated, and hence, with rich polymorphic structures being reported, numerous new catalytic applications can be realized. Phase conversion from 2H to 3R phase in some TMDCs enhances structural integrity and establishes robustness under harsh chemical conditions.
Collapse
Affiliation(s)
- K Pramoda
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Pallellappa Chithaiah
- New Chemistry Unit, School of Advanced Materials and International Centre for Material Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru-560064, India.
| | - C N R Rao
- New Chemistry Unit, School of Advanced Materials and International Centre for Material Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru-560064, India.
| |
Collapse
|
2
|
Liang J, Yang D, Xiao Y, Chen S, Dadap JI, Rottler J, Ye Z. Shear Strain-Induced Two-Dimensional Slip Avalanches in Rhombohedral MoS 2. NANO LETTERS 2023; 23:7228-7235. [PMID: 37358360 DOI: 10.1021/acs.nanolett.3c01487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Slip avalanches are ubiquitous phenomena occurring in three-dimensional materials under shear strain, and their study contributes immensely to our understanding of plastic deformation, fragmentation, and earthquakes. So far, little is known about the role of shear strain in two-dimensional (2D) materials. Here we show some evidence of 2D slip avalanches in exfoliated rhombohedral MoS2, triggered by shear strain near the threshold level. Utilizing interfacial polarization in 3R-MoS2, we directly probe the stacking order in multilayer flakes and discover a wide variety of polarization domains with sizes following a power-law distribution. These findings suggest that slip avalanches can occur during the exfoliation of 2D materials, and the stacking orders can be changed via shear strain. Our observation has far-reaching implications for the development of new materials and technologies, where precise control over the atomic structure of these materials is essential for optimizing their properties as well as for our understanding of fundamental physical phenomena.
Collapse
Affiliation(s)
- Jing Liang
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dongyang Yang
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yunhuan Xiao
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sean Chen
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jerry I Dadap
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joerg Rottler
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ziliang Ye
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
Zhang Y, Zhou M, Yang M, Yu J, Li W, Li X, Feng S. Experimental Realization and Computational Investigations of B 2S 2 as a New 2D Material with Potential Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32330-32340. [PMID: 35796513 DOI: 10.1021/acsami.2c03762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A new two-dimensional material B2S2 has been successfully synthesized for the first time and validated using first-principles calculations, with fundamental properties analyzed in detail. B2S2 has a similar structure as transition-metal dichalcogenides (TMDs) such as MoS2, and the experimentally prepared free-standing B2S2 nanosheets show a uniform height profile lower than 1 nm. A thickness-modulated and unique oxidation-level dependent band gap of B2S2 is revealed by theoretical calculations, and vibration signatures are determined to offer a practical scheme for the characterization of B2S2. It is shown that the functionalized B2S2 is able to provide favorable sites for lithium adsorption with low diffusion barriers, and the prepared B2S2 shows a wide band photoluminescence response. These findings offer a feasible new and lighter member for the TMD-like 2D material family with potential for various aspects of applications, such as an anode material for Li-ion batteries and electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Yibo Zhang
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Ming Zhou
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Mingyang Yang
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jianwen Yu
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Wenming Li
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuyin Li
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Shijia Feng
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Xu M, Meng SS, Cai P, Tang WQ, Yin YD, Powell JA, Zhou HC, Gu ZY. Modulating the stacking modes of nanosized metal-organic frameworks by morphology engineering for isomer separation. Chem Sci 2021; 12:4104-4110. [PMID: 34163681 PMCID: PMC8179526 DOI: 10.1039/d0sc06747d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 11/21/2022] Open
Abstract
Modulating different stacking modes of nanoscale metal-organic frameworks (MOFs) introduces different properties and functionalities but remains a great challenge. Here, we describe a morphology engineering method to modulate the stacking modes of nanoscale NU-901. The nanoscale NU-901 is stacked through solvent removal after one-pot solvothermal synthesis, in which different morphologies from nanosheets (NS) to interpenetrated nanosheets (I-NS) and nanoparticles (NP) were obtained successfully. The stacked NU-901-NS, NU-901-I-NS, and NU-901-NP exhibited relatively aligned stacking, random stacking, and close packing, respectively. The three stacked nanoscale NU-901 exhibited different separation abilities and all showed better performance than bulk phase NU-901. Our work provides a new morphology engineering route for the modulation of the stacking modes of nano-sized MOFs and improves the separation abilities of MOFs.
Collapse
Affiliation(s)
- Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
- Department of Chemistry, Texas A&M University College Station TX 77843-3255 USA
| | - Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University College Station TX 77843-3255 USA
| | - Wen-Qi Tang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Yun-Dong Yin
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Joshua A Powell
- Department of Chemistry, Texas A&M University College Station TX 77843-3255 USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University College Station TX 77843-3255 USA
- Department of Materials Science and Engineering, Texas A&M University College Station Texas 77842 USA
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
5
|
Scuri G, Andersen TI, Zhou Y, Wild DS, Sung J, Gelly RJ, Bérubé D, Heo H, Shao L, Joe AY, Mier Valdivia AM, Taniguchi T, Watanabe K, Lončar M, Kim P, Lukin MD, Park H. Electrically Tunable Valley Dynamics in Twisted WSe_{2}/WSe_{2} Bilayers. PHYSICAL REVIEW LETTERS 2020; 124:217403. [PMID: 32530686 DOI: 10.1103/physrevlett.124.217403] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/06/2020] [Indexed: 05/25/2023]
Abstract
The twist degree of freedom provides a powerful new tool for engineering the electrical and optical properties of van der Waals heterostructures. Here, we show that the twist angle can be used to control the spin-valley properties of transition metal dichalcogenide bilayers by changing the momentum alignment of the valleys in the two layers. Specifically, we observe that the interlayer excitons in twisted WSe_{2}/WSe_{2} bilayers exhibit a high (>60%) degree of circular polarization (DOCP) and long valley lifetimes (>40 ns) at zero electric and magnetic fields. The valley lifetime can be tuned by more than 3 orders of magnitude via electrostatic doping, enabling switching of the DOCP from ∼80% in the n-doped regime to <5% in the p-doped regime. These results open up new avenues for tunable chiral light-matter interactions, enabling novel device schemes that exploit the valley degree of freedom.
Collapse
Affiliation(s)
- Giovanni Scuri
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Trond I Andersen
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - You Zhou
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Dominik S Wild
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jiho Sung
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ryan J Gelly
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Damien Bérubé
- Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
| | - Hoseok Heo
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Linbo Shao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Andrew Y Joe
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Andrés M Mier Valdivia
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Marko Lončar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Philip Kim
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Hongkun Park
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
6
|
Huang HH, Fan X, Singh DJ, Zheng WT. Recent progress of TMD nanomaterials: phase transitions and applications. NANOSCALE 2020; 12:1247-1268. [PMID: 31912836 DOI: 10.1039/c9nr08313h] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Transition metal dichalcogenides (TMDs) show wide ranges of electronic properties ranging from semiconducting, semi-metallic to metallic due to their remarkable structural differences. To obtain 2D TMDs with specific properties, it is extremely important to develop particular strategies to obtain specific phase structures. Phase engineering is a traditional method to achieve transformation from one phase to another controllably. Control of such transformations enables the control of properties and access to a range of properties, otherwise inaccessible. Then extraordinary structural, electronic and optical properties lead to a broad range of potential applications. In this review, we introduce the various electronic properties of 2D TMDs and their polymorphs, and strategies and mechanisms for phase transitions, and phase transition kinetics. Moreover, the potential applications of 2D TMDs in energy storage and conversion, including electro/photocatalysts, batteries/supercapacitors and electronic devices, are also discussed. Finally, opportunities and challenges are highlighted. This review may further promote the development of TMD phase engineering and shed light on other two-dimensional materials of fundamental interest and with potential ranges of applications.
Collapse
Affiliation(s)
- H H Huang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Xiaofeng Fan
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - David J Singh
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211-7010, USA and Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - W T Zheng
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130012, China. and State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
He W, Shi J, Zhao H, Wang H, Liu X, Shi X. Bandgap engineering of few-layered MoS2 with low concentrations of S vacancies. RSC Adv 2020; 10:15702-15706. [PMID: 35493677 PMCID: PMC9052433 DOI: 10.1039/d0ra01676d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/26/2020] [Indexed: 11/24/2022] Open
Abstract
Band-gap engineering of molybdenum disulfide (MoS2) by introducing vacancies is of particular interest owing to the potential optoelectronic applications. In this work, systematic density functional theory (DFT) calculations were carried out for few-layered 3R-MoS2 with different concentrations of S vacancies. All results revealed that the defect energy levels introduced on both sides of the Fermi level formed an intermediate band in the band gap. Both the edges of the intrinsic and intermediate bands of the structures with the same type of vacancies were generally closer to the Fermi level, and the gaps decreased as the number of layers increased from 2 to 4. The preferentially formed S vacancies at the top layer and the transition of defect types from point to line led to similar indirect band gaps for 2- and 4-layered 3R-MoS2 with a low bulk concentration (around 5%) of S vacancies. This is different from most reported results about transition metal dichalcogenide (TMD) materials that the indirect band gap decreases as the number of layers increases and the low concentrations of vacancies show negligible influence on the band gap value. Band-gap engineering of molybdenum disulfide (MoS2) by introducing vacancies is of particular interest owing to the potential optoelectronic applications.![]()
Collapse
Affiliation(s)
- Wen He
- School of Physics
- Beijing Institute of Technology
- Beijing 100081
- China
- Laboratory of Theoretical and Computational Nanoscience
| | - Jia Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Chinese Academy of Sciences
- Beijing 100190
| | - Hongkang Zhao
- School of Physics
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Chinese Academy of Sciences
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Chinese Academy of Sciences
- Beijing 100190
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Chinese Academy of Sciences
| |
Collapse
|
8
|
Ghadiyali M, Chacko S. Hydrogenated-Graphene-Encapsulated Graphene: A Versatile Material for Device Applications. ACS OMEGA 2019; 4:17494-17503. [PMID: 31656921 PMCID: PMC6812122 DOI: 10.1021/acsomega.9b02329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Graphene and its heterostructures exhibit interesting electronic properties and are explored for quantum spin Hall effect (QSHE) and magnetism-based device applications. In present work, we propose a heterostructure of graphene encapsulated by hydrogenated-graphene, which could be a promising candidate for a variety of device applications. We have carried out DFT calculations on this system to check its feasibility to be a versatile material. We found that electronic states of multilayer pristine graphene, especially the Dirac cone, an important feature to host QSHE, can be preserved by sandwiching it by fully hydrogenated graphene. The interference of electronic states of hydrogenated graphene was insignificant with those of graphene. States of graphene were also found to be stable upon application of an electric field up to ±2.5 V/nm. For device applications, multilayer graphene or its heterostructures are required to be deposited on a substrate, which interacts with the system opening up a gap at the Dirac cone making it less suitable for QSHE applications, and hydrogenated graphene can prevent it. Magnetization in these hydrogenated-graphene-sandwiched graphene systems may be induced by creating vacancies or distortions in hydrogenated graphene, which was found to have a minimal effect on graphene's electronic states, thus providing an additional degree of manipulation. We also performed a set of calculations to explore its applicability for detecting some molecules. Our results on trilayer graphene encapsulated by hydrogenated graphene indicate that all these observations can be generalized for systems with a larger number of graphene layers, indicating that multilayer graphene sandwiched between two hydrogenated graphene is a versatile material that can be used in QSHE and sensor devices.
Collapse
|
9
|
Park J, Yeu IW, Han G, Jang C, Kwak JY, Hwang CS, Choi JH. Optical control of the layer degree of freedom through Wannier-Stark states in polar 3R MoS 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:315502. [PMID: 31026843 DOI: 10.1088/1361-648x/ab1d0f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrons in two-dimensional layered crystals gain a discrete positional degree of freedom over layers. We propose the two-dimensional transition metal dichalcogenide homostructure with polar symmetry as a prototypical platform where the degrees of freedom for the layers and valleys can be independently controlled through an optical method. In 3R MoS2, a model system, the presence of the spontaneous polarization and built-in electric field along the stacking axis is theoretically proven by the density functional theory. The K valley states under the electric field exhibit Wannier-Stark type localization with atomic-scale confinement driven by double group symmetry. The simple interlayer-dynamics-selection rule of the valley carriers in 3R homostructure enables a binary operation, upward or downward motion, using visible and infrared light sources. Together with the valley-index, a 2 [Formula: see text] 2 states/cell device using a dual-frequency polarized light source is suggested.
Collapse
Affiliation(s)
- Jaehong Park
- Center for Electronic Materials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Hwang YH, Yun WS, Cha GB, Hong SC, Han SW. Thermally driven homonuclear-stacking phase of MoS 2 through desulfurization. NANOSCALE 2019; 11:11138-11144. [PMID: 31107488 DOI: 10.1039/c9nr01369e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Engineering phase transitions or finding new polymorphs offers tremendous opportunities for developing functional materials. We reveal that the thermally driven desulfurization of single-crystalline MoS2 samples improves transport properties by reducing the band gap and further induces metallization. Semi-desulfurization, i.e., removal of the topmost S layer, results in the placement of the exposed Mo layers directly on top of the following sub-layers, together with the bottom S layer of the top layer. This homonuclear (AA) stacking derived from the AA' stacking of the hexagonal (2H) phase is retained even after further desulfurization of the remaining bottom S layer, i.e., full desulfurization of the top layer. Our findings fundamentally explain why the 2H phase of TMDs is characterized by AA' stacking.
Collapse
Affiliation(s)
- Young Hun Hwang
- Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610, Republic of Korea.
| | | | | | | | | |
Collapse
|
11
|
Huang H, Fan X, Singh DJ, Zheng W. Modulation of Hydrogen Evolution Catalytic Activity of Basal Plane in Monolayer Platinum and Palladium Dichalcogenides. ACS OMEGA 2018; 3:10058-10065. [PMID: 31459134 PMCID: PMC6644723 DOI: 10.1021/acsomega.8b01414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/03/2018] [Indexed: 05/13/2023]
Abstract
With an appropriate catalyst, hydrogen evolution reaction (HER) by water splitting can be used to produce hydrogen gas. Recently, layered transition-metal dichalcogenides have been proposed as alternative HER catalysts. However, a significant challenge is how to obtain the high-density active sites. With first-principle calculations, we explore the possibility of defect engineering to trigger the HER catalytic activity of basal plane by analyzing monolayer PdSe2, PtSe2, PdTe2, and PtTe2. It is found that the double-vacancy DVSe (DVTe) and B-doping can modulate appropriately the interaction between H and basal plane and improve the HER activity of these transition-metal dichalcogenides. Especially, the B-doping with high concentration can increase enormously the density of active sites on basal plane.
Collapse
Affiliation(s)
- Haihua Huang
- Key Laboratory of Automobile Materials,
Ministry of Education, and
College of Materials Science and Engineering and State Key Laboratory of Automotive
Simulation and Control, Jilin University, Changchun 130012, China
| | - Xiaofeng Fan
- Key Laboratory of Automobile Materials,
Ministry of Education, and
College of Materials Science and Engineering and State Key Laboratory of Automotive
Simulation and Control, Jilin University, Changchun 130012, China
- E-mail:
| | - David J. Singh
- Department
of Physics and Astronomy, University of
Missouri, Columbia, Missouri 65211-7010, United States
| | - Weitao Zheng
- Key Laboratory of Automobile Materials,
Ministry of Education, and
College of Materials Science and Engineering and State Key Laboratory of Automotive
Simulation and Control, Jilin University, Changchun 130012, China
| |
Collapse
|
12
|
Cortés N, Rosales L, Orellana PA, Ayuela A, González JW. Stacking change in MoS 2 bilayers induced by interstitial Mo impurities. Sci Rep 2018; 8:2143. [PMID: 29391439 PMCID: PMC5794788 DOI: 10.1038/s41598-018-20289-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/15/2018] [Indexed: 12/02/2022] Open
Abstract
We use a theoretical approach to reveal the electronic and structural properties of molybdenum impurities between MoS2 bilayers. We find that interstitial Mo impurities are able to reverse the well-known stability order of the pristine bilayer, because the most stable form of stacking changes from AA’ (undoped) into AB’ (doped). The occurrence of Mo impurities in different positions shows their split electronic levels in the energy gap, following octahedral and tetrahedral crystal fields. The energy stability is related to the accommodation of Mo impurities compacted in hollow sites between layers. Other less stable configurations for Mo dopants have larger interlayer distances and band gaps than those for the most stable stacking. Our findings suggest possible applications such as exciton trapping in layers around impurities, and the control of bilayer stacking by Mo impurities in the growth process.
Collapse
Affiliation(s)
- Natalia Cortés
- Universidad Técnica Federico Santa María, Departamento de Física, Valparaíso, Casilla 110V, Chile.
| | - Luis Rosales
- Universidad Técnica Federico Santa María, Departamento de Física, Valparaíso, Casilla 110V, Chile
| | - Pedro A Orellana
- Universidad Técnica Federico Santa María, Departamento de Física, Valparaíso, Casilla 110V, Chile
| | - Andrés Ayuela
- Centro de Física de Materiales (CSIC-UPV/EHU)-Material Physics Center (MPC), Donostia International Physics Center (DIPC), Departamento de Física de Materiales, San Sebastián, 20018, Spain
| | - Jhon W González
- Centro de Física de Materiales (CSIC-UPV/EHU)-Material Physics Center (MPC), Donostia International Physics Center (DIPC), Departamento de Física de Materiales, San Sebastián, 20018, Spain
| |
Collapse
|