1
|
Matsuki T, Tabata H, Ueda M, Ito H, Nagata KI, Tsuneura Y, Eda S, Kasai K, Nakayama A. The MCPH7 Gene Product STIL Is Essential for Dendritic Spine Formation. Cells 2025; 14:62. [PMID: 39851490 PMCID: PMC11764357 DOI: 10.3390/cells14020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Dendritic spine formation/maintenance is highly dependent on actin cytoskeletal dynamics, which is regulated by small GTPases Rac1 and Cdc42 through their downstream p21-activated kinase/LIM-kinase-I/cofilin pathway. ARHGEF7, also known as ß-PIX, is a guanine nucleotide exchange factor for Rac1 and Cdc42, thereby activating Rac1/Cdc42 and the downstream pathway, leading to the upregulation of spine formation/maintenance. We found that STIL, one of the primary microcephaly gene products, is associated with ARHGEF7 in dendritic spines and that knockdown of Stil resulted in a significant reduction in dendritic spines in neurons both in vitro and in vivo. Rescue experiments indicated that the STIL requirement for spine formation/maintenance depended on its coiled coil domain that mediates the association with ARHGEF7. The overexpression of Rac1/Cdc42 compensated for the spine reduction caused by STIL knockdown. FRET experiments showed that Rac activation is impaired in STIL knockdown neurons. Chemical long-term potentiation, which triggers Rac activation, promoted STIL accumulation in the spine and its association with ARHGEF7. The dynamics of these proteins further supported their coordinated involvement in spine formation/maintenance. Based on these findings, we concluded that the centrosomal protein STIL is a novel regulatory factor essential for spine formation/maintenance by activating Rac and its downstream pathway, possibly through the association with ARHGEF7.
Collapse
Affiliation(s)
- Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan (S.E.)
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan; (H.T.); (K.-i.N.)
| | - Masashi Ueda
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan (S.E.)
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute 480-1195, Aichi, Japan (K.K.)
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan; (H.T.); (K.-i.N.)
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Yumi Tsuneura
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan (S.E.)
| | - Shima Eda
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan (S.E.)
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute 480-1195, Aichi, Japan (K.K.)
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan (S.E.)
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| |
Collapse
|
2
|
Shamir M, Martin FJO, Woolfson DN, Friedler A. Molecular Mechanism of STIL Coiled-Coil Domain Oligomerization. Int J Mol Sci 2023; 24:14616. [PMID: 37834064 PMCID: PMC10572602 DOI: 10.3390/ijms241914616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Coiled-coil domains (CCDs) play key roles in regulating both healthy cellular processes and the pathogenesis of various diseases by controlling protein self-association and protein-protein interactions. Here, we probe the mechanism of oligomerization of a peptide representing the CCD of the STIL protein, a tetrameric multi-domain protein that is over-expressed in several cancers and associated with metastatic spread. STIL tetramerization is mediated both by an intrinsically disordered domain (STIL400-700) and a structured CCD (STIL CCD718-749). Disrupting STIL oligomerization via the CCD inhibits its activity in vivo. We describe a comprehensive biophysical and structural characterization of the concentration-dependent oligomerization of STIL CCD peptide. We combine analytical ultracentrifugation, fluorescence and circular dichroism spectroscopy to probe the STIL CCD peptide assembly in solution and determine dissociation constants of both the dimerization, (KD = 8 ± 2 µM) and tetramerization (KD = 68 ± 2 µM) of the WT STIL CCD peptide. The higher-order oligomers result in increased thermal stability and cooperativity of association. We suggest that this complex oligomerization mechanism regulates the activated levels of STIL in the cell and during centriole duplication. In addition, we present X-ray crystal structures for the CCD containing destabilising (L736E) and stabilising (Q729L) mutations, which reveal dimeric and tetrameric antiparallel coiled-coil structures, respectively. Overall, this study offers a basis for understanding the structural molecular biology of the STIL protein, and how it might be targeted to discover anti-cancer reagents.
Collapse
Affiliation(s)
- Mai Shamir
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904, Israel;
| | - Freddie J. O. Martin
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK;
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK;
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Bristol BioDesign Institute, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904, Israel;
| |
Collapse
|
3
|
The interaction between LC8 and LCA5 reveals a novel oligomerization function of LC8 in the ciliary-centrosome system. Sci Rep 2022; 12:15623. [PMID: 36114230 PMCID: PMC9481538 DOI: 10.1038/s41598-022-19454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Dynein light chain LC8 is a small dimeric hub protein that recognizes its partners through short linear motifs and is commonly assumed to drive their dimerization. It has more than 100 known binding partners involved in a wide range of cellular processes. Recent large-scale interaction studies suggested that LC8 could also play a role in the ciliary/centrosome system. However, the cellular function of LC8 in this system remains elusive. In this work, we characterized the interaction of LC8 with the centrosomal protein lebercilin (LCA5), which is associated with a specific form of ciliopathy. We showed that LCA5 binds LC8 through two linear motifs. In contrast to the commonly accepted model, LCA5 forms dimers through extensive coiled coil formation in a LC8-independent manner. However, LC8 enhances the oligomerization ability of LCA5 that requires a finely balanced interplay of coiled coil segments and both binding motifs. Based on our results, we propose that LC8 acts as an oligomerization engine that is responsible for the higher order oligomer formation of LCA5. As LCA5 shares several common features with other centrosomal proteins, the presented LC8 driven oligomerization could be widespread among centrosomal proteins, highlighting an important novel cellular function of LC8.
Collapse
|
4
|
Steinacker TL, Wong SS, Novak ZA, Saurya S, Gartenmann L, van Houtum EJ, Sayers JR, Lagerholm BC, Raff JW. Centriole growth is limited by the Cdk/Cyclin-dependent phosphorylation of Ana2/STIL. J Cell Biol 2022; 221:e202205058. [PMID: 35861803 PMCID: PMC9442473 DOI: 10.1083/jcb.202205058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Centrioles duplicate once per cell cycle, but it is unclear how daughter centrioles assemble at the right time and place and grow to the right size. Here, we show that in Drosophila embryos the cytoplasmic concentrations of the key centriole assembly proteins Asl, Plk4, Ana2, Sas-6, and Sas-4 are low, but remain constant throughout the assembly process-indicating that none of them are limiting for centriole assembly. The cytoplasmic diffusion rate of Ana2/STIL, however, increased significantly toward the end of S-phase as Cdk/Cyclin activity in the embryo increased. A mutant form of Ana2 that cannot be phosphorylated by Cdk/Cyclins did not exhibit this diffusion change and allowed daughter centrioles to grow for an extended period. Thus, the Cdk/Cyclin-dependent phosphorylation of Ana2 seems to reduce the efficiency of daughter centriole assembly toward the end of S-phase. This helps to ensure that daughter centrioles stop growing at the correct time, and presumably also helps to explain why centrioles cannot duplicate during mitosis.
Collapse
Affiliation(s)
| | - Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Zsofia A. Novak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Judith R. Sayers
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Jordan W. Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Takumi K, Kitagawa D. Experimental and Natural Induction of de novo Centriole Formation. Front Cell Dev Biol 2022; 10:861864. [PMID: 35445021 PMCID: PMC9014216 DOI: 10.3389/fcell.2022.861864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 01/11/2023] Open
Abstract
In cycling cells, new centrioles are assembled in the vicinity of pre-existing centrioles. Although this canonical centriole duplication is a tightly regulated process in animal cells, centrioles can also form in the absence of pre-existing centrioles; this process is termed de novo centriole formation. De novo centriole formation is triggered by the removal of all pre-existing centrioles in the cell in various manners. Moreover, overexpression of polo-like kinase 4 (Plk4), a master regulatory kinase for centriole biogenesis, can induce de novo centriole formation in some cell types. Under these conditions, structurally and functionally normal centrioles can be formed de novo. While de novo centriole formation is normally suppressed in cells with intact centrioles, depletion of certain suppressor proteins leads to the ectopic formation of centriole-related protein aggregates in the cytoplasm. It has been shown that de novo centriole formation also occurs naturally in some species. For instance, during the multiciliogenesis of vertebrate epithelial cells, massive de novo centriole amplification occurs to form numerous motile cilia. In this review, we summarize the previous findings on de novo centriole formation, particularly under experimental conditions, and discuss its regulatory mechanisms.
Collapse
Affiliation(s)
- Kasuga Takumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Kantsadi AL, Hatzopoulos GN, Gönczy P, Vakonakis I. Structures of SAS-6 coiled coil hold implications for the polarity of the centriolar cartwheel. Structure 2022; 30:671-684.e5. [PMID: 35240058 DOI: 10.1016/j.str.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/22/2022]
Abstract
Centrioles are eukaryotic organelles that template the formation of cilia and flagella, as well as organize the microtubule network and the mitotic spindle in animal cells. Centrioles have proximal-distal polarity and a 9-fold radial symmetry imparted by a likewise symmetrical central scaffold, the cartwheel. The spindle assembly abnormal protein 6 (SAS-6) self-assembles into 9-fold radially symmetric ring-shaped oligomers that stack via an unknown mechanism to form the cartwheel. Here, we uncover a homo-oligomerization interaction mediated by the coiled-coil domain of SAS-6. Crystallographic structures of Chlamydomonas reinhardtii SAS-6 coiled-coil complexes suggest this interaction is asymmetric, thereby imparting polarity to the cartwheel. Using a cryoelectron microscopy (cryo-EM) reconstitution assay, we demonstrate that amino acid substitutions disrupting this asymmetric association also impair SAS-6 ring stacking. Our work raises the possibility that the asymmetric interaction inherent to SAS-6 coiled-coil provides a polar element for cartwheel assembly, which may assist the establishment of the centriolar proximal-distal axis.
Collapse
Affiliation(s)
| | - Georgios N Hatzopoulos
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1005 Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1005 Lausanne, Switzerland.
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
7
|
Tian Y, Yan Y, Fu J. Nine-fold symmetry of centriole: The joint efforts of its core proteins. Bioessays 2022; 44:e2100262. [PMID: 34997615 DOI: 10.1002/bies.202100262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022]
Abstract
The centriole is a widely conserved organelle required for the assembly of centrosomes, cilia, and flagella. Its striking feature - the nine-fold symmetrical structure, was discovered over 70 years ago by transmission electron microscopy, and since elaborated mostly by cryo-electron microscopy and super-resolution microscopy. Here, we review the discoveries that led to the current understanding of how the nine-fold symmetrical structure is built. We focus on the recent findings of the centriole structure in high resolution, its assembly pathways, and its nine-fold distributed components. We propose a model that the assembly of the nine-fold symmetrical centriole depends on the concerted efforts of its core proteins.
Collapse
Affiliation(s)
- Yuan Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuxuan Yan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingyan Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Park JE, Meng L, Ryu EK, Nagashima K, Baxa U, Bang JK, Lee KS. Autophosphorylation-induced self-assembly and STIL-dependent reinforcement underlie Plk4's ring-to-dot localization conversion around a human centriole. Cell Cycle 2020; 19:3419-3436. [PMID: 33323015 DOI: 10.1080/15384101.2020.1843772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Polo-like kinase 4 (Plk4) is a key regulator of centriole biogenesis. Studies have shown that Plk4 undergoes dynamic relocalization from a ring-like pattern around a centriole to a dot-like morphology at the procentriole assembly site and this event is central for inducing centriole biogenesis. However, the detailed mechanisms underlying Plk4's capacity to drive its symmetry-breaking ring-to-dot relocalization remain largely unknown. Here, we showed that Plk4 self-initiates this process in an autophosphorylation-dependent manner and that STIL, its downstream target, is not required for this event. Time-dependent analyses with mEOS-fused photoconvertible Plk4 revealed that a portion of ring-state Plk4 acquires a capacity, presumably through autophosphorylation, to linger around a centriole, ultimately generating a dot-state morphology. Interestingly, Plk4 WT, but not its catalytically inactive mutant, showed the ability to form a nanoscale spherical assembly in the cytosol of human cells or heterologous E. coli, demonstrating its autophosphorylation-dependent self-organizing capacity. At the biochemical level, Plk4 - unlike its N-terminal βTrCP degron motif - robustly autophosphorylated the PC3 SSTT motif within its C-terminal cryptic polo-box, an event critical for inducing its physical clustering. Additional in vivo experiments showed that although STIL was not required for Plk4's initial ring-to-dot conversion, coexpressed STIL greatly enhanced Plk4's ability to generate a spherical condensate and recruit Sas6, a major component of the centriolar cartwheel structure. We propose that Plk4's autophosphorylation-induced clustering is sufficient to induce its ring-to-dot localization conversion and that subsequently recruited STIL potentiates this process to generate a procentriole assembly body critical for Plk4-dependent centriole biogenesis.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Lingjun Meng
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute , Cheongju, Republic of Korea
| | - Kunio Nagashima
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research , Frederick, MD, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research , Frederick, MD, USA
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute , Cheongju, Republic of Korea
| | - Kyung S Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
9
|
Gartenmann L, Vicente CC, Wainman A, Novak ZA, Sieber B, Richens JH, Raff JW. Drosophila Sas-6, Ana2 and Sas-4 self-organise into macromolecular structures that can be used to probe centriole and centrosome assembly. J Cell Sci 2020; 133:jcs244574. [PMID: 32409564 PMCID: PMC7328145 DOI: 10.1242/jcs.244574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/24/2020] [Indexed: 01/02/2023] Open
Abstract
Centriole assembly requires a small number of conserved proteins. The precise pathway of centriole assembly has been difficult to study, as the lack of any one of the core assembly proteins [Plk4, Ana2 (the homologue of mammalian STIL), Sas-6, Sas-4 (mammalian CPAP) or Asl (mammalian Cep152)] leads to the absence of centrioles. Here, we use Sas-6 and Ana2 particles (SAPs) as a new model to probe the pathway of centriole and centrosome assembly. SAPs form in Drosophila eggs or embryos when Sas-6 and Ana2 are overexpressed. SAP assembly requires Sas-4, but not Plk4, whereas Asl helps to initiate SAP assembly but is not required for SAP growth. Although not centrioles, SAPs recruit and organise many centriole and centrosome components, nucleate microtubules, organise actin structures and compete with endogenous centrosomes to form mitotic spindle poles. SAPs require Asl to efficiently recruit pericentriolar material (PCM), but Spd-2 (the homologue of mammalian Cep192) can promote some PCM assembly independently of Asl. These observations provide new insights into the pathways of centriole and centrosome assembly.
Collapse
Affiliation(s)
- Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Catarina C Vicente
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Zsofi A Novak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Boris Sieber
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Jennifer H Richens
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| |
Collapse
|
10
|
Busch JMC, Erat MC, Blank ID, Musgaard M, Biggin PC, Vakonakis I. A dynamically interacting flexible loop assists oligomerisation of the Caenorhabditis elegans centriolar protein SAS-6. Sci Rep 2019; 9:3526. [PMID: 30837637 PMCID: PMC6401066 DOI: 10.1038/s41598-019-40294-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/11/2019] [Indexed: 01/12/2023] Open
Abstract
Centrioles are conserved organelles fundamental for the organisation of microtubules in animal cells. Oligomerisation of the spindle assembly abnormal protein 6 (SAS-6) is an essential step in the centriole assembly process and may act as trigger for the formation of these organelles. SAS-6 oligomerisation is driven by two independent interfaces, comprising an extended coiled coil and a dimeric N-terminal globular domain. However, how SAS-6 oligomerisation is controlled remains unclear. Here, we show that in the Caenorhabditis elegans SAS-6, a segment of the N-terminal globular domain, unresolved in crystallographic structures, comprises a flexible loop that assists SAS-6 oligomerisation. Atomistic molecular dynamics simulations and nuclear magnetic resonance experiments suggest that transient interactions of this loop across the N-terminal dimerisation interface stabilise the SAS-6 oligomer. We discuss the possibilities presented by such flexible SAS-6 segments for the control of centriole formation.
Collapse
Affiliation(s)
- Julia M C Busch
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
| | - Michèle C Erat
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
- University of Warwick, Mathematical Institute, Coventry, CV4 7AL, United Kingdom
| | - Iris D Blank
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
| | - Maria Musgaard
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
- University of Ottawa, Department of Chemistry and Biomolecular Sciences, Ottawa, ON, K1N 6N5, Canada
| | - Philip C Biggin
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
| | - Ioannis Vakonakis
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
11
|
Comprehensive review on the molecular genetics of autosomal recessive primary microcephaly (MCPH). Genet Res (Camb) 2018; 100:e7. [PMID: 30086807 DOI: 10.1017/s0016672318000046] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Primary microcephaly (MCPH) is an autosomal recessive sporadic neurodevelopmental ailment with a trivial head size characteristic that is below 3-4 standard deviations. MCPH is the smaller upshot of an architecturally normal brain; a significant decrease in size is seen in the cerebral cortex. At birth MCPH presents with non-progressive mental retardation, while secondary microcephaly (onset after birth) presents with and without other syndromic features. MCPH is a neurogenic mitotic syndrome nevertheless pretentious patients demonstrate normal neuronal migration, neuronal apoptosis and neural function. Eighteen MCPH loci (MCPH1-MCPH18) have been mapped to date from various populations around the world and contain the following genes: Microcephalin, WDR62, CDK5RAP2, CASC5, ASPM, CENPJ, STIL, CEP135, CEP152, ZNF335, PHC1, CDK6, CENPE, SASS6, MFSD2A, ANKLE2, CIT and WDFY3, clarifying our understanding about the molecular basis of microcephaly genetic disorder. It has previously been reported that phenotype disease is caused by MCB gene mutations and the causes of this phenotype are disarrangement of positions and organization of chromosomes during the cell cycle as a result of mutated DNA, centriole duplication, neurogenesis, neuronal migration, microtubule dynamics, transcriptional control and the cell cycle checkpoint having some invisible centrosomal process that can manage the number of neurons that are produced by neuronal precursor cells. Furthermore, researchers inform us about the clinical management of families that are suffering from MCPH. Establishment of both molecular understanding and genetic advocating may help to decrease the rate of this ailment. This current review study examines newly identified genes along with previously identified genes involved in autosomal recessive MCPH.
Collapse
|
12
|
Bianchi S, Rogala KB, Dynes NJ, Hilbert M, Leidel SA, Steinmetz MO, Gönczy P, Vakonakis I. Interaction between the Caenorhabditis elegans centriolar protein SAS-5 and microtubules facilitates organelle assembly. Mol Biol Cell 2018; 29:722-735. [PMID: 29367435 PMCID: PMC6003225 DOI: 10.1091/mbc.e17-06-0412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Centrioles are microtubule-based organelles that organize the microtubule network and seed the formation of cilia and flagella. New centrioles assemble through a stepwise process dependent notably on the centriolar protein SAS-5 in Caenorhabditis elegans SAS-5 and its functional homologues in other species form oligomers that bind the centriolar proteins SAS-6 and SAS-4, thereby forming an evolutionarily conserved structural core at the onset of organelle assembly. Here, we report a novel interaction of SAS-5 with microtubules. Microtubule binding requires SAS-5 oligomerization and a disordered protein segment that overlaps with the SAS-4 binding site. Combined in vitro and in vivo analysis of select mutants reveals that the SAS-5-microtubule interaction facilitates centriole assembly in C. elegans embryos. Our findings lead us to propose that the interdependence of SAS-5 oligomerization and microtubule binding reflects an avidity mechanism, which also strengthens SAS-5 associations with other centriole components and, thus, promotes organelle assembly.
Collapse
Affiliation(s)
- Sarah Bianchi
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Kacper B Rogala
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Nicola J Dynes
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), 1015 Lausanne, Switzerland
| | - Manuel Hilbert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Sebastian A Leidel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), 1015 Lausanne, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne), 1015 Lausanne, Switzerland
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
13
|
Patwardhan D, Mani S, Passemard S, Gressens P, El Ghouzzi V. STIL balancing primary microcephaly and cancer. Cell Death Dis 2018; 9:65. [PMID: 29352115 PMCID: PMC5833631 DOI: 10.1038/s41419-017-0101-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/04/2017] [Accepted: 10/23/2017] [Indexed: 11/25/2022]
Abstract
Cell division and differentiation are two fundamental physiological processes that need to be tightly balanced to achieve harmonious development of an organ or a tissue without jeopardizing its homeostasis. The role played by the centriolar protein STIL is highly illustrative of this balance at different stages of life as deregulation of the human STIL gene expression has been associated with either insufficient brain development (primary microcephaly) or cancer, two conditions resulting from perturbations in cell cycle and chromosomal segregation. This review describes the recent advances on STIL functions in the control of centriole duplication and mitotic spindle integrity, and discusses how pathological perturbations of its finely tuned expression result in chromosomal instability in both embryonic and postnatal situations, highlighting the concept that common key factors are involved in developmental steps and tissue homeostasis.
Collapse
Affiliation(s)
- Dhruti Patwardhan
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for Neuroscience, IISC Bangalore, India
| | - Shyamala Mani
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Curadev Pharma, B 87, Sector 83, Noida, UP, 201305,, India
| | - Sandrine Passemard
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- AP HP, Hôpital Robert Debré, Service de Génétique Clinique, Paris, France
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Vincent El Ghouzzi
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
14
|
Banterle N, Gönczy P. Centriole Biogenesis: From Identifying the Characters to Understanding the Plot. Annu Rev Cell Dev Biol 2017; 33:23-49. [PMID: 28813178 DOI: 10.1146/annurev-cellbio-100616-060454] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The centriole is a beautiful microtubule-based organelle that is critical for the proper execution of many fundamental cellular processes, including polarity, motility, and division. Centriole biogenesis, the making of this miniature architectural wonder, has emerged as an exemplary model to dissect the mechanisms governing the assembly of a eukaryotic organelle. Centriole biogenesis relies on a set of core proteins whose contributions to the assembly process have begun to be elucidated. Here, we review current knowledge regarding the mechanisms by which these core characters function in an orderly fashion to assemble the centriole. In particular, we discuss how having the correct proteins at the right place and at the right time is critical to first scaffold, then initiate, and finally execute the centriole assembly process, thus underscoring fundamental principles governing organelle biogenesis.
Collapse
Affiliation(s)
- Niccolò Banterle
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland;
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland;
| |
Collapse
|
15
|
The PLK4-STIL-SAS-6 module at the core of centriole duplication. Biochem Soc Trans 2017; 44:1253-1263. [PMID: 27911707 PMCID: PMC5095913 DOI: 10.1042/bst20160116] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/09/2016] [Accepted: 06/24/2016] [Indexed: 11/17/2022]
Abstract
Centrioles are microtubule-based core components of centrosomes and cilia. They are duplicated exactly once during S-phase progression. Central to formation of each new (daughter) centriole is the formation of a nine-fold symmetrical cartwheel structure onto which microtubule triplets are deposited. In recent years, a module comprising the protein kinase polo-like kinase 4 (PLK4) and the two proteins STIL and SAS-6 have been shown to stay at the core of centriole duplication. Depletion of any one of these three proteins blocks centriole duplication and, conversely, overexpression causes centriole amplification. In this short review article, we summarize recent insights into how PLK4, STIL and SAS-6 co-operate in space and time to form a new centriole. These advances begin to shed light on the very first steps of centriole biogenesis.
Collapse
|
16
|
Cottee MA, Johnson S, Raff JW, Lea SM. A key centriole assembly interaction interface between human PLK4 and STIL appears to not be conserved in flies. Biol Open 2017; 6:381-389. [PMID: 28202467 PMCID: PMC5374404 DOI: 10.1242/bio.024661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A small number of proteins form a conserved pathway of centriole duplication. In
humans and flies, the binding of PLK4/Sak to STIL/Ana2 initiates
daughter centriole assembly. In humans, this interaction is mediated by an
interaction between the Polo-Box-3 (PB3) domain of PLK4 and the coiled-coil
domain of STIL (HsCCD). We showed previously that the
Drosophila Ana2 coiled-coil domain (DmCCD) is essential for
centriole assembly, but it forms a tight parallel tetramer in
vitro that likely precludes an interaction with PB3. Here, we show
that the isolated HsCCD and HsPB3 domains form a mixture of homo-multimers
in vitro, but these readily dissociate when mixed to form
the previously described 1:1 HsCCD:HsPB3 complex. In contrast, although
Drosophila PB3 (DmPB3) adopts a canonical polo-box fold, it
does not detectably interact with DmCCD in vitro. Thus,
surprisingly, a key centriole assembly interaction interface appears to differ
between humans and flies. Summary: PLK4 and STIL/Ana2 proteins interact to promote centriole
duplication. We show that these proteins may homo-multimerise in multiple ways,
and that their interaction is likely complex and may differ between species.
Collapse
Affiliation(s)
- Matthew A Cottee
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|