1
|
Xu Y, Wang W, Zhang Q, Han S, Wang J, Wu S, Gao H. Complexation of CcmB with CcmACD safeguards heme translocation for cytochrome c maturation. MLIFE 2025; 4:29-44. [PMID: 40026579 PMCID: PMC11868835 DOI: 10.1002/mlf2.12150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/15/2024] [Accepted: 07/17/2024] [Indexed: 03/05/2025]
Abstract
Cytochrome c maturation (CCM), a posttranslational modification involving covalent attachment of heme to polypeptides (apocyt c), is essential for the activity and cellular function of cytochromes c. Here, we identify and substantiate CcmB as heme translocase in bacteria. When in excess, CcmB expels intracellular heme into the periplasm and thus is detrimental to the cell. We then show that complexation with CcmACD ensures heme translocated by CcmB to be used for CCM only. Moreover, structural analysis and atomistic molecular dynamics simulations reveal that CcmB absorbs heme from the membrane to a heme pocket formed in the dimer interface of the transmembrane helix-bundles. These data, collectively by providing detailed insights into the conformational landscape of CcmB during heme entry, fill in the missing link in our understanding of the heme translocation for CCM.
Collapse
Affiliation(s)
- Yuanyou Xu
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Wei Wang
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Qianrou Zhang
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Sirui Han
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Jiahao Wang
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Shihua Wu
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Haichun Gao
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
2
|
Zhang J, Li F, Liu D, Liu Q, Song H. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chem Soc Rev 2024; 53:1375-1446. [PMID: 38117181 DOI: 10.1039/d3cs00537b] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The excessive consumption of fossil fuels causes massive emission of CO2, leading to climate deterioration and environmental pollution. The development of substitutes and sustainable energy sources to replace fossil fuels has become a worldwide priority. Bio-electrochemical systems (BESs), employing redox reactions of electroactive microorganisms (EAMs) on electrodes to achieve a meritorious combination of biocatalysis and electrocatalysis, provide a green and sustainable alternative approach for bioremediation, CO2 fixation, and energy and chemicals production. EAMs, including exoelectrogens and electrotrophs, perform extracellular electron transfer (EET) (i.e., outward and inward EET), respectively, to exchange energy with the environment, whose rate determines the efficiency and performance of BESs. Therefore, we review the synthetic biology strategies developed in the last decade for engineering EAMs to enhance the EET rate in cell-electrode interfaces for facilitating the production of electricity energy and value-added chemicals, which include (1) progress in genetic manipulation and editing tools to achieve the efficient regulation of gene expression, knockout, and knockdown of EAMs; (2) synthetic biological engineering strategies to enhance the outward EET of exoelectrogens to anodes for electricity power production and anodic electro-fermentation (AEF) for chemicals production, including (i) broadening and strengthening substrate utilization, (ii) increasing the intracellular releasable reducing equivalents, (iii) optimizing c-type cytochrome (c-Cyts) expression and maturation, (iv) enhancing conductive nanowire biosynthesis and modification, (v) promoting electron shuttle biosynthesis, secretion, and immobilization, (vi) engineering global regulators to promote EET rate, (vii) facilitating biofilm formation, and (viii) constructing cell-material hybrids; (3) the mechanisms of inward EET, CO2 fixation pathway, and engineering strategies for improving the inward EET of electrotrophic cells for CO2 reduction and chemical production, including (i) programming metabolic pathways of electrotrophs, (ii) rewiring bioelectrical circuits for enhancing inward EET, and (iii) constructing microbial (photo)electrosynthesis by cell-material hybridization; (4) perspectives on future challenges and opportunities for engineering EET to develop highly efficient BESs for sustainable energy and chemical production. We expect that this review will provide a theoretical basis for the future development of BESs in energy harvesting, CO2 fixation, and chemical synthesis.
Collapse
Affiliation(s)
- Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Dingyuan Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Ford KC, TerAvest MA. The electron transport chain of Shewanella oneidensis MR-1 can operate bidirectionally to enable microbial electrosynthesis. Appl Environ Microbiol 2024; 90:e0138723. [PMID: 38117056 PMCID: PMC10807441 DOI: 10.1128/aem.01387-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Extracellular electron transfer is a process by which bacterial cells can exchange electrons with a redox-active material located outside of the cell. In Shewanella oneidensis, this process is natively used to facilitate respiration using extracellular electron acceptors such as Fe(III) or an anode. Previously, it was demonstrated that this process can be used to drive the microbial electrosynthesis (MES) of 2,3-butanediol (2,3-BDO) in S. oneidensis exogenously expressing butanediol dehydrogenase (BDH). Electrons taken into the cell from a cathode are used to generate NADH, which in turn is used to reduce acetoin to 2,3-BDO via BDH. However, generating NADH via electron uptake from a cathode is energetically unfavorable, so NADH dehydrogenases couple the reaction to proton motive force. We therefore need to maintain the proton gradient across the membrane to sustain NADH production. This work explores accomplishing this task by bidirectional electron transfer, where electrons provided by the cathode go to both NADH formation and oxygen (O2) reduction by oxidases. We show that oxidases use trace dissolved oxygen in a microaerobic bioelectrical chemical system (BES), and the translocation of protons across the membrane during O2 reduction supports 2,3-BDO generation. Interestingly, this process is inhibited by high levels of dissolved oxygen in this system. In an aerated BES, O2 molecules react with the strong reductant (cathode) to form reactive oxygen species, resulting in cell death.IMPORTANCEMicrobial electrosynthesis (MES) is increasingly employed for the generation of specialty chemicals, such as biofuels, bioplastics, and cancer therapeutics. For these systems to be viable for industrial scale-up, it is important to understand the energetic requirements of the bacteria to mitigate unnecessary costs. This work demonstrates sustained production of an industrially relevant chemical driven by a cathode. Additionally, it optimizes a previously published system by removing any requirement for phototrophic energy, thereby removing the additional cost of providing a light source. We also demonstrate the severe impact of oxygen intrusion into bioelectrochemical systems, offering insight to future researchers aiming to work in an anaerobic environment. These studies provide insight into both the thermodynamics of electrosynthesis and the importance of the bioelectrochemical systems' design.
Collapse
Affiliation(s)
- Kathryne C. Ford
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Michaela A. TerAvest
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Han S, Guo K, Wang W, Tao YJ, Gao H. Bacterial TANGO2 homologs are heme-trafficking proteins that facilitate biosynthesis of cytochromes c. mBio 2023; 14:e0132023. [PMID: 37462360 PMCID: PMC10470608 DOI: 10.1128/mbio.01320-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 09/02/2023] Open
Abstract
Heme, an essential molecule for virtually all living organisms, acts primarily as a cofactor in a large number of proteins. However, how heme is mobilized from the site of synthesis to the locations where hemoproteins are assembled remains largely unknown in cells, especially bacterial ones. In this study, with Shewanella oneidensis as the model, we identified HtpA (SO0126) as a heme-trafficking protein and homolog of TANGO2 proteins found in eukaryotes. We showed that HtpA homologs are widely distributed in all domains of living organisms and have undergone parallel evolution. In its absence, the cytochrome (cyt) c content and catalase activity decreased significantly. We further showed that both HtpA and representative TANGO2 proteins bind heme with 1:1 stoichiometry and a relatively low dissociation constant. Protein interaction analyses substantiated that HtpA directly interacts with the cytochrome c maturation system. Our findings shed light on cross-membrane transport of heme in bacteria and extend the understanding of TANGO2 proteins. IMPORTANCE The intracellular trafficking of heme, an essential cofactor for hemoproteins, remains underexplored even in eukaryotes, let alone bacteria. Here we developed a high-throughput method by which HtpA, a homolog of eukaryotic TANGO2 proteins, was identified to be a heme-binding protein that enhances cytochrome c biosynthesis and catalase activity in Shewanella oneidensis. HtpA interacts with the cytochrome c biosynthesis system directly, supporting that this protein, like TANGO2, functions in intracellular heme trafficking. HtpA homologs are widely distributed, but a large majority of them were found to be non-exchangeable, likely a result of parallel evolution. By substantiating the heme-trafficking nature of HtpA and its eukaryotic homologs, our findings provide general insight into the heme-trafficking process and highlight the functional conservation along evolution in all living organisms.
Collapse
Affiliation(s)
- Sirui Han
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kailun Guo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhi J. Tao
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
A Common Target of Nitrite and Nitric Oxide for Respiration Inhibition in Bacteria. Int J Mol Sci 2022; 23:ijms232213841. [PMID: 36430319 PMCID: PMC9697910 DOI: 10.3390/ijms232213841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Nitrite and nitric oxide (NO) are well-known bacteriostatic agents with similar biochemical properties. However, many studies have demonstrated that inhibition of bacterial growth by nitrite is independent of NO. Here, with Shewanella oneidensis as the research model because of its unusually high cytochrome (cyt) c content, we identify a common mechanism by which nitrite and NO compromise cyt c biosynthesis in bacteria, and thereby inhibit respiration. This is achieved by eliminating the inference of the cyclic adenosine monophosphate-catabolite repression protein (cAMP-Crp), a primary regulatory system that controls the cyt c content and whose activity is subjected to the repression of nitrite. Both nitrite and NO impair the CcmE of multiple bacteria, an essential heme chaperone of the System I cyt c biosynthesis apparatus. Given that bacterial targets of nitrite and NO differ enormously and vary even in the same genus, these observations underscore the importance of cyt c biosynthesis for the antimicrobial actions of nitrite and NO.
Collapse
|
6
|
Pleiotropic Effects of Hfq on the Cytochrome c Content and Pyomelanin Production in Shewanella oneidensis. Appl Environ Microbiol 2022; 88:e0128922. [PMID: 36073941 PMCID: PMC9499022 DOI: 10.1128/aem.01289-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis is the best understood model microorganism for the study of diverse cytochromes (cytos) c that support its unparallel respiratory versatility. Although RNA chaperone Hfq has been implicated in regulation of cyto c production, little is known about the biological pathways that it affects in this bacterium. In this study, from a spontaneous mutant that secretes pyomelanin and has a lowered cyto c content, we identified Hfq to be the regulator that critically associates with both phenotypes in S. oneidensis. We found that expression of the key genes in biosynthesis and degradation of heme is differentially affected by Hfq at under- and overproduced levels, and through modulating heme levels, Hfq influences the cyto c content. Although Hfq in excess results in overproduction of the enzymes responsible for both generation and removal of homogentisic acid (HGA), the precursor of pyomelanin, it is compromised activity of HmgA that leads to excretion and polymerization of HGA to form pyomelanin. We further show that Hfq mediates HmgA activity by lowering intracellular iron content because HmgA is an iron-dependent enzyme. Overall, our work highlights the significance of Hfq-mediated posttranscriptional regulation in the physiology of S. oneidensis, unraveling unexpected mechanisms by which Hfq affects cyto c biosynthesis and pyomelanin production. IMPORTANCE In bacteria, Hfq has been implicated in regulation of diverse biological processes posttranslationally. In S. oneidensis, Hfq affects the content of cytos c that serve as the basis of its respiratory versatility and potential application in bioenergy and bioremediation. In this study, we found that Hfq differentially regulates heme biosynthesis and degradation, leading to altered cyto c contents. Hfq in excess causes a synthetic effect on HmgA, an enzyme responsible for pyomelanin formation. Overall, the data presented manifest that the biological processes in a given bacterium regulated by Hfq are highly complex, amounting to required coordination among multiple physiological aspects to allow cells to respond to environmental changes promptly.
Collapse
|
7
|
Sun W, Lin Z, Yu Q, Cheng S, Gao H. Promoting Extracellular Electron Transfer of Shewanella oneidensis MR-1 by Optimizing the Periplasmic Cytochrome c Network. Front Microbiol 2021; 12:727709. [PMID: 34675900 PMCID: PMC8524038 DOI: 10.3389/fmicb.2021.727709] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
The low efficiency of extracellular electron transfer (EET) is a major bottleneck for Shewanella oneidensis MR-1 acting as an electroactive biocatalyst in bioelectrochemical systems. Although it is well established that a periplasmic c-type cytochrome (c-Cyt) network plays a critical role in regulating EET efficiency, the understanding of the network in terms of structure and electron transfer activity is obscure and partial. In this work, we attempted to systematically investigate the impacts of the network components on EET in their absence and overproduction individually in microbial fuel cell (MFC). We found that overexpression of c-Cyt CctA leads to accelerated electron transfer between CymA and the Mtr system, which function as the primary quinol oxidase and the outer-membrane (OM) electron hub in EET. In contrast, NapB, FccA, and TsdB in excess severely impaired EET, reducing EET capacity in MFC by more than 50%. Based on the results from both strategies, a series of engineered strains lacking FccA, NapB, and TsdB in combination while overproducing CctA were tested for a maximally optimized c-Cyt network. A strain depleted of all NapB, FccA, and TsdB with CctA overproduction achieved the highest maximum power density in MFCs (436.5 mW/m2), ∼3.62-fold higher than that of wild type (WT). By revealing that optimization of periplasmic c-Cyt composition is a practical strategy for improving EET efficiency, our work underscores the importance in understanding physiological and electrochemical characteristics of c-Cyts involved in EET.
Collapse
Affiliation(s)
- Weining Sun
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhufan Lin
- Department of Energy Engineering, State Key Laboratory of Clean Energy, Zhejiang University, Hangzhou, China
| | - Qingzi Yu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shaoan Cheng
- Department of Energy Engineering, State Key Laboratory of Clean Energy, Zhejiang University, Hangzhou, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Yu Q, Sun W, Gao H. Thiosulfate oxidation in sulfur-reducing Shewanella oneidensis and its unexpected influences on the cytochrome c content. Environ Microbiol 2021; 23:7056-7072. [PMID: 34664382 DOI: 10.1111/1462-2920.15807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/04/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Thiosulfate, an important form of sulfur compounds, can serve as both electron donor and acceptor in various microorganisms. In Shewanella oneidensis, a bacterium renowned for respiratory versatility, thiosulfate reduction has long been recognized but whether it can catalyse thiosulfate oxidation remains elusive. In this study, we discovered that S. oneidensis is capable of thiosulfate oxidation, a process specifically catalysed by two periplasmic cytochrome c (cyt c) proteins, TsdA and TsdB, which act as the catalytic subunit and the electron transfer subunit respectively. In the presence of oxygen, oxidation of thiosulfate has priority over reduction. Intriguingly, thiosulfate oxidation negatively regulates the cyt c content in S. oneidensis cells, largely by reducing intracellular levels of cAMP, which as the cofactor modulates activity of global regulator Crp required for transcription of many cyt c genes. This unexpected finding provides an additional dimension to interplays between the respiration regulator and the respiratory pathways in S. oneidensis. Moreover, the data presented here identified S. oneidensis as the first bacterium known to date owning both functional thiosulfate reductase and dehydrogenase, and importantly, genomics analyses suggested that the number of bacterial species possessing this feature is rather limited.
Collapse
Affiliation(s)
- Qingzi Yu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Weining Sun
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| |
Collapse
|
9
|
Bertling K, Banerjee A, Saffarini D. Aerobic Respiration and Its Regulation in the Metal Reducer Shewanella oneidensis. Front Microbiol 2021; 12:723835. [PMID: 34566926 PMCID: PMC8458880 DOI: 10.3389/fmicb.2021.723835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Shewanella oneidensis MR-1 is a facultative anaerobe known for its ability to reduce metal oxides. Anaerobic respiration, especially metal reduction, has been the subject of extensive research. In contrast, S. oneidensis aerobic respiration has received less attention. S. oneidensis expresses cbb3- and aa3-type cytochrome c oxidases and a bd-type quinol oxidase. The aa3-type oxidase, which in other bacteria is the major oxygen reductase under oxygen replete conditions, does not appear to contribute to aerobic respiration and growth in S. oneidensis. Our results indicated that although the aa3-type oxidase does not play a role in aerobic growth on lactate, the preferred carbon source for S. oneidensis, it is involved in growth on pyruvate or acetate. These results highlight the importance of testing multiple carbon and energy sources when attempting to identify enzyme activities and mutant phenotypes. Several regulatory proteins contribute to the regulation of aerobic growth in S. oneidensis including CRP and ArcA. The 3',5'-cAMP phosphodiesterase (CpdA) appears to play a more significant role in aerobic growth than either CRP or ArcA, yet the deficiency does not appear to be the result of reduced oxidase genes expression. Interestingly, the ∆cpdA mutant was more deficient in aerobic respiration with several carbon sources tested compared to ∆crp, which was moderately deficient only in the presence of lactate. To identify the reason for ∆cpdA aerobic growth deficiency, we isolated a suppressor mutant with transposon insertion in SO_3550. Inactivation of this gene, which encodes an anti-sigma factor, restored aerobic growth in the cpdA mutant to wild-type levels. Inactivation of SO_3550 in wild-type cells, however, did not affect aerobic growth. The S. oneidensis genome encodes two additional CRP-like proteins that we designated CrpB and CrpC. Mutants that lack crpB and crpC were deficient in aerobic growth, but this deficiency was not due to the loss of oxidase gene expression.
Collapse
Affiliation(s)
- Kristen Bertling
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Areen Banerjee
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Daad Saffarini
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
10
|
Xie P, Wang J, Liang H, Gao H. Shewanella oneidensis arcA Mutation Impairs Aerobic Growth Mainly by Compromising Translation. Life (Basel) 2021; 11:life11090926. [PMID: 34575075 PMCID: PMC8470723 DOI: 10.3390/life11090926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Arc (anoxic redox control), one of the most intensely investigated two-component regulatory systems in γ-proteobacteria, plays a major role in mediating the metabolic transition from aerobiosis to anaerobiosis. In Shewanella oneidensis, a research model for respiratory versatility, Arc is crucial for aerobic growth. However, how this occurs remains largely unknown. In this study, we demonstrated that the loss of the response regulator ArcA distorts the correlation between transcription and translation by inhibiting the ribosome biosynthesis. This effect largely underlies the growth defect because it concurs with the effect of chloramphenicol, which impairs translation. Reduced transcription of ArcA-dependent ribosomal protein S1 appears to have a significant impact on ribosome assembly. We further show that the lowered translation efficiency is not accountable for the envelope defect, another major defect resulting from the ArcA loss. Overall, our results suggest that although the arcA mutation impairs growth through multi-fold complex impacts in physiology, the reduced translation efficacy appears to be a major cause for the phenotype, demonstrating that Arc is a primary system that coordinates proteomic resources with metabolism in S. oneidensis.
Collapse
|
11
|
Yin J, Zhang T, Cai J, Lou J, Cheng D, Zhou W, Xu C, Liu Y, Gao H, Yu Z. PBP1a glycosyltransferase and transpeptidase activities are both required for maintaining cell morphology and envelope integrity in Shewanella oneidensis. FEMS Microbiol Lett 2021; 367:5731804. [PMID: 32037461 DOI: 10.1093/femsle/fnaa026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
Abstract
In rod-shaped Gram-negative bacteria, penicillin binding protein 1a (PBP1a) and 1b (PBP1b) form peptidoglycan-synthesizing complexes with the outer membrane lipoprotein LpoA and LpoB, respectively. Escherichia coli mutants lacking PBP1b/LpoB are sicker than those lacking PBP1a/LpoA. However, we previously found that mutants lacking PBP1a/LpoA but not PBP1b/LpoB are deleterious in Shewanella oneidensis. Here, we show that S. oneidensis PBP1a (SoPBP1a) contains conserved signature motifs with its E. coli counterpart, EcPBP1a. Although EcPBP1a play a less prominent role in E. coli, it is capable of substituting for the SoPBP1a in a manner dependent on SoLpoA. In S. oneidensis, expression of PBP1b is lower than PBP1a, and therefore the additional expression of SoPBP1b at low levels can functionally compensate for the absence of SoPBP1a. Importantly, S. oneidensis PBP1a variants lacking either glycosyltransferase (GTase) or transpeptidase (TPase) activity fail to maintain normal morphology and cell envelope integrity. Similarly, SoPBP1b variants also fail to compensate for the loss of SoPBP1a. Furthermore, overproduction of variants of SoPBP1a, but not SoPBP1b, has detrimental effects on cell morphology in S. oneidensis wild type cells. Overall, our results indicate that the combined enzymatic activities of SoPBP1a are essential for cell wall homeostasis.
Collapse
Affiliation(s)
- Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Ting Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Jingxiao Cai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Jie Lou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Dan Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Weifeng Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Chaoyi Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Yanqiu Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Haichun Gao
- College of Life sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang Province, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| |
Collapse
|
12
|
Liu L, Feng X, Wang W, Chen Y, Chen Z, Gao H. Free Rather Than Total Iron Content Is Critically Linked to the Fur Physiology in Shewanella oneidensis. Front Microbiol 2020; 11:593246. [PMID: 33329474 PMCID: PMC7732582 DOI: 10.3389/fmicb.2020.593246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2020] [Indexed: 11/30/2022] Open
Abstract
Ferric uptake regulator (Fur) is a transcriptional regulator playing a central role in iron homeostasis of many bacteria, and Fur inactivation commonly results in pleiotropic phenotypes. In Shewanella oneidensis, a representative of dissimilatory metal-reducing γ-proteobacteria capable of respiring a variety of chemicals as electron acceptors (EAs), Fur loss substantially impairs respiration. However, to date the mechanism underlying the physiological phenomenon remains obscure. This investigation reveals that Fur loss compromises activity of iron proteins requiring biosynthetic processes for their iron cofactors, heme in particular. We then show that S. oneidensis Fur is critical for maintaining heme homeostasis by affecting both its biosynthesis and decomposition of the molecule. Intriguingly, the abundance of iron-containing proteins controlled by H2O2-responding regulator OxyR increases in the fur mutant because the Fur loss activates OxyR. By comparing suppression of membrane-impermeable, membrane-permeable, and intracellular-only iron chelators on heme deficiency and elevated H2O2 resistance, our data suggest that the elevation of the free iron content by the Fur loss is likely to be the predominant factor for the Fur physiology. Overall, these results provide circumstantial evidence that Fur inactivation disturbs bacterial iron homeostasis by altering transcription of its regulon members, through which many physiological processes, such as respiration and oxidative stress response, are transformed.
Collapse
Affiliation(s)
| | | | | | | | | | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Liang H, Zhang Y, Wang S, Gao H. Mutual interplay between ArcA and σ E orchestrates envelope stress response in Shewanella oneidensis. Environ Microbiol 2020; 23:652-668. [PMID: 32372525 DOI: 10.1111/1462-2920.15060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/03/2020] [Indexed: 01/15/2023]
Abstract
To survive and thrive in harsh and ever-changing environments, intricate mechanisms have evolved for bacterial cells to monitor perturbations impacting the integrity of their envelope and to mount an appropriate response to contain or repair the damage. In this study, we report in Shewanella oneidensis a previously undescribed mechanism for the envelope defect resulting from the loss of Arc, a two-component transcriptional regulatory system crucial for respiration. We uncovered σE , a master regulator establishing and maintaining the integrity of the cell envelope in γ-proteobacteria, as the determining factor for the cell envelope defect of the arcA mutant. When ArcA is depleted, σE activity is compromised by enhanced production of anti-σE protein RseA. Surprisingly, S. oneidensis σE is not essential for viability, but becomes so in the absence of ArcA. Furthermore, we demonstrated that there is an interplay between these two regulators as arcA expression is affected by availability of σE . Overall, our results underscore functional interplay of regulatory systems for envelope stress response: although each of the systems may respond to perturbation of particular components of the envelope, they are functionally intertwined, working together to form an interconnected safety net.
Collapse
Affiliation(s)
- Huihui Liang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Yongting Zhang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Sijing Wang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| |
Collapse
|
14
|
Cheng ZH, Xiong JR, Min D, Cheng L, Liu DF, Li WW, Jin F, Yang M, Yu HQ. Promoting bidirectional extracellular electron transfer of Shewanella oneidensis MR-1 for hexavalent chromium reduction via elevating intracellular cAMP level. Biotechnol Bioeng 2020; 117:1294-1303. [PMID: 32048726 DOI: 10.1002/bit.27305] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 12/29/2022]
Abstract
The bioreduction capacity of Cr(VI) by Shewanella is mainly governed by its bidirectional extracellular electron transfer (EET). However, the low bidirectional EET efficiency restricts its wider applications in remediation of the environments contaminated by Cr(VI). Cyclic adenosine 3',5'-monophosphate (cAMP) commonly exists in Shewanella strains and cAMP-cyclic adenosine 3',5'-monophosphate receptor protein (CRP) system regulates multiple bidirectional EET-related pathways. This inspires us to strengthen the bidirectional EET through elevating the intracellular cAMP level in Shewanella strains. In this study, an exogenous gene encoding adenylate cyclase from the soil bacterium Beggiatoa sp. PS is functionally expressed in Shewanella oneidensis MR-1 (the strain MR-1/pbPAC) and a MR-1 mutant lacking all endogenous adenylate cyclase encoding genes (the strain Δca/pbPAC). The engineered strains exhibit the enhanced bidirectional EET capacities in microbial electrochemical systems compared with their counterparts. Meanwhile, a three times more rapid reduction rate of Cr(VI) is achieved by the strain MR-1/pbPAC than the control in batch experiments. Furthermore, a higher Cr(VI) reduction efficiency is also achieved by the strain MR-1/pbPAC in the Cr(VI)-reducing biocathode experiments. Such a bidirectional enhancement is attributed to the improved production of cAMP-CRP complex, which upregulates the expression levels of the genes encoding the c-type cytochromes and flavins synthetic pathways. Specially, this strategy could be used as a broad-spectrum approach for the other Shewanella strains. Our results demonstrate that elevating the intracellular cAMP levels could be an efficient strategy to enhance the bidirectional EET of Shewanella strains and improve their pollutant transformation capacity.
Collapse
Affiliation(s)
- Zhou-Hua Cheng
- School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Jia-Rui Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China
| | - Lei Cheng
- School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China
| | - Fan Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China
| |
Collapse
|
15
|
Complex Oxidation of Apocytochromes c during Bacterial Cytochrome c Maturation. Appl Environ Microbiol 2019; 85:AEM.01989-19. [PMID: 31585997 DOI: 10.1128/aem.01989-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
c-Type cytochromes (cyts c) are proteins that contain covalently bound heme and that thus require posttranslational modification for activity, a process carried out by the cytochrome c (cyt c) maturation system (referred to as the Ccm system) in many Gram-negative bacteria. It has been established that during cyt c maturation (CCM), two cysteine thiols of the heme binding motif (CXXCH) within apocytochromes c (apocyts c) are first oxidized largely by DsbA to form a disulfide bond, which is later reduced through a thio-reductive pathway involving DsbD. However, the physiological impacts of DsbA proteins on CCM in fact vary significantly among bacteria. In this work, we used the cyt c-rich Gram-negative bacterium Shewanella oneidensis as the research model to clarify the roles of DsbA proteins in CCM. We show that in terms of the oxidation of apocyts c, DsbA proteins are an important but not critical factor, and, strikingly, oxygen is not either. By exploiting the DsbD-independent pathway, we identify DsbA1, DsbA2, and DsbA3 as oxidants contributing to the oxidation of apocyts c and reductants, such as cysteine, to be an effective antagonist against DsbA-independent oxidation. We further show that DsbB proteins are partially responsible for the reoxidization of reduced DsbA proteins. Overall, our results indicate that the DsbA-DsbB redox pair has a limited role in CCM, challenging the established notion that it is the main oxidant for apocyts c IMPORTANCE DsbA is a powerful oxidase that functions in the bacterial periplasm to introduce disulfide bonds in many proteins, including apocytochromes c It has been well established that although DsbA is not essential, it plays a primary role in cytochrome c maturation, based on studies in bacteria hosting several cyts c Here, with cyt c-rich S. oneidensis as a research model, we show that this is not always the case. Moreover, we demonstrate that DsbB is also not essential for cytochrome c maturation. These results underscore the need to identify oxidants other than DsbA/DsbB that are crucial in the oxidation of apocyts c in bacteria.
Collapse
|
16
|
Hirose A, Kasai T, Koga R, Suzuki Y, Kouzuma A, Watanabe K. Understanding and engineering electrochemically active bacteria for sustainable biotechnology. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0245-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
17
|
Cytochromes c Constitute a Layer of Protection against Nitric Oxide but Not Nitrite. Appl Environ Microbiol 2018; 84:AEM.01255-18. [PMID: 29934335 DOI: 10.1128/aem.01255-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/20/2018] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) is a radical gas that reacts with various biological molecules in complex ways to inhibit growth as a bacteriostatic agent. NO is nearly ubiquitous because it can be generated both biotically and abiotically. To protect the cell from NO damage, bacteria have evolved many strategies, with the production of detoxifying enzymatic systems being the most efficient. Here, we report that c-type cytochromes (cytochromes c) constitute a primary NO protection system in Shewanella oneidensis, a Gram-negative environmental bacterium renowned for respiratory versatility due to its high cytochrome c content. By using mutants producing cytochromes c at varying levels, we found that the content of these proteins is inversely correlated with the growth inhibition imposed by NO, whereas the effect of each individual cytochrome c is negligible. This NO-protecting system has no effect on nitrite inhibition. In the absence of cytochromes c, other NO targets and protective proteins, such as NnrS, emerge to show physiological influences during the NO stress. We further demonstrate that cytochromes c also play a similar role in Escherichia coli, albeit only modestly. Our data thus identify the in vivo function of an important group of proteins in alleviating NO stress.IMPORTANCE It is widely accepted that the antibacterial effects of nitrite are attributable to nitric oxide (NO) formation, suggesting a correlation of bacterial susceptibilities to these two chemicals. However, compared to E. coli, S. oneidensis is highly sensitive to nitrite but resistant to NO, implying the presence of robust NO-protective systems. Here, we show that c-type cytochromes (cytochromes c) play a main role in protecting S. oneidensis against damages from NO but not from nitrite. In their absence, impacts of proteins that promote NO tolerance and that are targets of NO inhibition become evident. Our data thus reveal the specific activity of cytochromes c in alleviating the stress caused by NO but not nitrite.
Collapse
|
18
|
Dissociation between Iron and Heme Biosyntheses Is Largely Accountable for Respiration Defects of Shewanella oneidensis fur Mutants. Appl Environ Microbiol 2018; 84:AEM.00039-18. [PMID: 29427425 DOI: 10.1128/aem.00039-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 11/20/2022] Open
Abstract
Iron, a major protein cofactor, is essential for most organisms but can simultaneously be toxic. Iron homeostasis thus has to be effectively maintained under a range of iron regimes. This may be particularly true with Shewanella oneidensis, a representative of dissimilatory metal-reducing bacteria (DMRB), which are capable of respiring a variety of chemicals as electron acceptors (EAs), including iron ores. Although iron respiration and its regulation have been extensively studied in this bacterium, how iron homeostasis is maintained remains largely unknown. Here, we report that the loss of the iron homeostasis master regulator Fur negatively affects the respiration of all EAs tested. This defect appears mainly to be a result of reduced cytochrome c (cyt c) production, despite a decrease in the expression of reductases that are under the direct control of Fur. We also show that S. oneidensis Fur interacts with canonical Fur box motifs in F-F-x-R configuration rather than the palindromic motif proposed before. The fur mutant has lowered total iron and increased free iron contents. Under iron-rich conditions, overproduction of the major iron storage protein Bfr elevates the total iron levels of the fur mutant over those of the wild-type but does not affect free iron levels. Intriguingly, such an operation only marginally improves cyt c production by affecting heme b biosynthesis. It is established that iron dictates heme b/cyt c biosynthesis in S. oneidensis fur + strains, but the fur mutation annuls the dependence of heme b/cyt c biosynthesis on iron. Overall, our results suggest that Fur has a profound impact on the iron homeostasis of S. oneidensis, through which many physiological processes, especially respiration, are transformed.IMPORTANCE Iron reduction is a signature of S. oneidensis, and this process relies on a large number of type c cytochromes, which per se are iron-containing proteins. Thus, iron plays an essential and special role in iron respiration, but to date, the nature of iron metabolism and regulation of the bacterium remains largely unknown. In this study, we investigated impacts of Fur, the master regulator of iron homeostasis, on respiration. The loss of Fur causes a general defect in respiration, a result of impaired cyt c production rather than specific regulation. Additionally, the fur mutant is unresponsive to iron, resulting in imbalanced iron homeostasis and dissociation between iron and cyt c production. These findings provide important insights into the iron biology of DMRB.
Collapse
|
19
|
Partially Reciprocal Replacement of FlrA and FlrC in Regulation of Shewanella oneidensis Flagellar Biosynthesis. J Bacteriol 2018; 200:JB.00796-17. [PMID: 29358496 DOI: 10.1128/jb.00796-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022] Open
Abstract
In some bacteria with a polar flagellum, an established regulatory hierarchy controlling stepwise assembly of the organelle consists of four regulators: FlrA, σ54, FlrBC, and σ28 Because all of these regulators mediate the expression of multiple targets, they are essential to the assembly of a functional flagellum and therefore to motility. However, this is not the case for the gammaproteobacterium Shewanella oneidensis: cells lacking FlrB, FlrC, or both remain flagellated and motile. In this study, we unravel the underlying mechanism, showing that FlrA and FlrC are partially substitutable for each other in regulating flagellar assembly. While both regulators are bacterial enhancer binding proteins (bEBPs) for σ54, FlrA differs from FlrC in its independence of σ54 for its own transcription and its inability to activate the flagellin gene flaA These differences largely account for the distinct phenotypes resulting from the loss or overproduction of FlrA and FlrC.IMPORTANCE The assembly of a polar flagellum in bacteria has been characterized as relying on four regulators, FlrA, σ54, FlrBC, and σ28, in a hierarchical manner. They all are essential to the process and therefore to motility, except in S. oneidensis, in which FlrB, FlrC, or both together are not essential. Here we show that FlrA and FlrC, as bEBPs, are partially reciprocal in functionality in this species. As a consequence, the presence of one allows flagellar assembly and motility in the other's absence. Despite this, there are significant differences in the physiological roles played by these two regulators: FlrA is the master regulator of flagellar assembly, whereas FlrC fine-tunes motility. These intriguing observations open up a new avenue to further exploration of the regulation of flagellar assembly.
Collapse
|
20
|
Kasai T, Kouzuma A, Watanabe K. CpdA is involved in amino acid metabolism in Shewanella oneidensis MR-1. Biosci Biotechnol Biochem 2017; 82:166-172. [PMID: 29235426 DOI: 10.1080/09168451.2017.1413326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyclic 3',5'-adenosine monophosphate (cAMP) phosphodiesterase (CPD) is an enzyme that catalyzes the hydrolysis of cAMP, a signaling molecule affecting diverse cellular and metabolic processes in bacteria. Some CPDs are also known to function in cAMP-independent manners, while their physiological roles remain largely unknown. Here, we investigated physiological roles of CPD in Shewanella oneidensis MR-1, a model environmental bacterium, and report that CPD is involved in amino-acid metabolism. We found that a CPD-deficient mutant of MR-1 (ΔcpdA) showed decreased expression of genes for the synthesis of methionine, S-adenosylmethionine, and histidine and required these three compounds to grow in minimal media. Interestingly, deletion of adenylate cyclases in ΔcpdA did not restore the ability to grow in minimal media, indicating that the amino acid requirements were not due to the accumulation of cAMP. These results suggest that CPD is involved in the regulation of amino acid metabolism in MR-1 in a cAMP-independent manner.
Collapse
Affiliation(s)
- Takuya Kasai
- a School of Life Sciences , Tokyo University of Pharmacy and Life Sciences , Tokyo , Japan
| | - Atsushi Kouzuma
- a School of Life Sciences , Tokyo University of Pharmacy and Life Sciences , Tokyo , Japan
| | - Kazuya Watanabe
- a School of Life Sciences , Tokyo University of Pharmacy and Life Sciences , Tokyo , Japan
| |
Collapse
|
21
|
Dong Z, Guo S, Fu H, Gao H. Investigation of a spontaneous mutant reveals novel features of iron uptake in Shewanella oneidensis. Sci Rep 2017; 7:11788. [PMID: 28924168 PMCID: PMC5603553 DOI: 10.1038/s41598-017-11987-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/30/2017] [Indexed: 12/03/2022] Open
Abstract
Shewanella oneidensis is among the first and the best studied bacteria capable of respiring minerals as terminal electron acceptors (EAs), including a variety of iron ores. This respiration process relies on a large number of c-type cytochromes, which per se are iron-containing proteins. Thus, iron plays an essential and special role in iron respiration of S. oneidensis, prompting extensive investigations into iron physiology. Despite this, we still know surprisingly little about the components and characteristics of iron transport in this bacterium. Here, we report that TonB-dependent receptor PutA (SO_3033) is specific to the siderophore-mediated iron uptake. Although homologs of PutA are abundant, none of them can function as a replacement. In the absence of PutA, S. oneidensis suffers from an iron shortage, which leads to a severe defect in production of cytochrome c. However, proteins requiring other types of cytochromes, such as b and d, do not appear to be significantly impacted. Intriguingly, lactate, but not other carbon sources that are routinely used to support growth, is able to promote iron uptake when PutA is missing. We further show that the lactate-mediated iron import is independent of lactate permeases. Overall, our results suggest that in S. oneidensis the siderophore-dependent pathway plays a key role in iron uptake when iron is limited, but many alternative routes exist.
Collapse
Affiliation(s)
- Ziyang Dong
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shupan Guo
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huihui Fu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
22
|
Kasai T, Kouzuma A, Watanabe K. CRP Regulates D-Lactate Oxidation in Shewanella oneidensis MR-1. Front Microbiol 2017; 8:869. [PMID: 28559887 PMCID: PMC5432575 DOI: 10.3389/fmicb.2017.00869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/28/2017] [Indexed: 01/11/2023] Open
Abstract
Shewanella oneidensis MR-1 is a heterotrophic facultative anaerobe that respires using various organic and inorganic compounds. This organism has served as a model to study bacterial metabolic and regulatory systems that facilitate their survival in redox-stratified environments. The expression of many anaerobic respiratory genes in MR-1, including those for the reduction of fumarate, dimethyl sulfoxide, and metal oxides, is regulated by cyclic AMP receptor protein (CRP). However, relatively little is known about how this organism regulates the expression of catabolic enzymes catalyzing the oxidation of organic compounds, including lactate. Here, we investigated transcriptional mechanisms for the lldP (SO_1522) and dld (SO_1521) genes, which encode putative lactate permease and D-lactate dehydrogenase, respectively, and demonstrate that CRP regulates their expression in MR-1. We found that a crp-deletion mutant of MR-1 (Δcrp) showed impaired growth on D-lactate. Complementary expression of dld in Δcrp restored the ability to grow on D-lactate, indicating that the deficient growth of Δcrp on D-lactate is attributable to decreased expression of dld. In vivo transcription and in vitro electrophoretic mobility shift assays reveal that CRP positively regulates the expression of the lldP and dld genes by directly binding to an upstream region of lldP. Taken together, these results indicate that CRP is a global transcriptional regulator that coordinately regulates the expression of catabolic and respiratory pathways in MR-1, including D-lactate dehydrogenase and anaerobic terminal reductases.
Collapse
Affiliation(s)
- Takuya Kasai
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences,Hachioji, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences,Hachioji, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences,Hachioji, Japan
| |
Collapse
|
23
|
Loss of OxyR reduces efficacy of oxygen respiration in Shewanella oneidensis. Sci Rep 2017; 7:42609. [PMID: 28195212 PMCID: PMC5307378 DOI: 10.1038/srep42609] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/11/2017] [Indexed: 02/02/2023] Open
Abstract
In many bacteria, OxyR is the major regulator controlling cellular response to H2O2. A common phenotype resulting from OxyR loss is reduced growth rate, but the underlying mechanism is unknown. We demonstrated in Shewanella oneidensis, an important research model for applied and environmental microbes, that the defect is primarily due to an electron shortage to major terminal oxidase cytochrome cbb3. The loss of OxyR leads to enhanced production of electron carriers that compete for electrons against cytochrome cbb3, cytochrome bd in particular. We further showed that the oxyR mutation also results in increased production of menaquinone, an additional means to lessen electrons to cytochrome cbb3. Although regulation of OxyR on these biological processes appears to be indirect, these data indicate that the regulator plays a previously underappreciated role in mediating respiration.
Collapse
|
24
|
NapB in excess inhibits growth of Shewanella oneidensis by dissipating electrons of the quinol pool. Sci Rep 2016; 6:37456. [PMID: 27857202 PMCID: PMC5114592 DOI: 10.1038/srep37456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023] Open
Abstract
Shewanella, a group of ubiquitous bacteria renowned for respiratory versatility, thrive in environments where various electron acceptors (EAs) of different chemical and physiological characteristics coexist. Despite being extensively studied, we still know surprisingly little about strategies by which multiple EAs and their interaction define ecophysiology of these bacteria. Previously, we showed that nitrite inhibits growth of the genus representative Shewanella oneidensis on fumarate and presumably some other CymA (quinol dehydrogenase)-dependent EAs by reducing cAMP production, which in turn leads to lowered expression of nitrite and fumarate reductases. In this study, we demonstrated that inhibition of fumarate growth by nitrite is also attributable to overproduction of NapB, the cytochrome c subunit of nitrate reductase. Further investigations revealed that excessive NapB per se inhibits growth on all EAs tested, including oxygen. When overproduced, NapB acts as an electron shuttle to dissipate electrons of the quinol pool, likely to extracellullar EAs, because the Mtr system, the major electron transport pathway for extracellular electron transport, is implicated. The study not only sheds light on mechanisms by which certain EAs, especially toxic ones, impact the bacterial ecophysiology, but also provides new insights into how electron shuttle c-type cytochromes regulate multi-branched respiratory networks.
Collapse
|
25
|
Suppression of fabB Mutation by fabF1 Is Mediated by Transcription Read-through in Shewanella oneidensis. J Bacteriol 2016; 198:3060-3069. [PMID: 27573012 DOI: 10.1128/jb.00463-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/20/2016] [Indexed: 12/19/2022] Open
Abstract
As type II fatty acid synthesis is essential for the growth of Escherichia coli, its many components are regarded as potential targets for novel antibacterial drugs. Among them, β-ketoacyl-acyl carrier protein (ACP) synthase (KAS) FabB is the exclusive factor for elongation of the cis-3-decenoyl-ACP (cis-3-C10-ACP). In our previous study, we presented evidence to suggest that this may not be the case in Shewanella oneidensis, an emerging model gammaproteobacterium renowned for its respiratory versatility. Here, we identified FabF1, another KAS, as a functional replacement for FabB in S. oneidensis In fabB+ or desA+ (encoding a desaturase) cells, which are capable of making unsaturated fatty acids (UFA), FabF1 is barely produced. However, UFA auxotroph mutants devoid of both fabB and desA genes can be spontaneously converted to suppressor strains, which no longer require exogenous UFAs for growth. Suppression is caused by a TGTTTT deletion in the region upstream of the fabF1 gene, resulting in enhanced FabF1 production. We further demonstrated that the deletion leads to transcription read-through of the terminator for acpP, an acyl carrier protein gene immediately upstream of fabF1 There are multiple tandem repeats in the region covering the terminator, and the TGTTTT deletion, as well as others, compromises the terminator efficacy. In addition, FabF2 also shows an ability to complement the FabB loss, albeit substantially less effectively than FabF1. IMPORTANCE It has been firmly established that FabB for UFA synthesis via type II fatty acid synthesis in FabA-containing bacteria such as E. coli is essential. However, S. oneidensis appears to be an exception. In this bacterium, FabF1, when sufficiently expressed, is able to fully complement the FabB loss. Importantly, such a capability can be obtained by spontaneous mutations, which lead to transcription read-through. Therefore, our data, by identifying the functional overlap between FabB and FabFs, provide new insights into the current understanding of KAS and help reveal novel ways to block UFA synthesis for therapeutic purposes.
Collapse
|
26
|
Jin M, Fu H, Yin J, Yuan J, Gao H. Molecular Underpinnings of Nitrite Effect on CymA-Dependent Respiration in Shewanella oneidensis. Front Microbiol 2016; 7:1154. [PMID: 27493647 PMCID: PMC4954811 DOI: 10.3389/fmicb.2016.01154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022] Open
Abstract
Shewanella exhibit a remarkable versatility of respiration, with a diverse array of electron acceptors (EAs). In environments where these bacteria thrive, multiple EAs are usually present. However, we know little about strategies by which these EAs and their interaction affect ecophysiology of Shewanella. In this study, we demonstrate in the model strain, Shewanella oneidensis MR-1, that nitrite, not through nitric oxide to which it may convert, inhibits respiration of fumarate, and probably many other EAs whose reduction depends on quinol dehydrogenase CymA. This is achieved via the repression of cyclic adenosine monophosphate (cAMP) production, a second messenger required for activation of cAMP-receptor protein (Crp) which plays a primary role in regulation of respiration. If nitrite is not promptly removed, intracellular cAMP levels drop, and this impairs Crp activity. As a result, the production of nitrite reductase NrfA, CymA, and fumarate reductase FccA is substantially reduced. In contrast, nitrite can be simultaneously respired with trimethylamine N-oxide, resulting in enhanced biomass.
Collapse
Affiliation(s)
- Miao Jin
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Huihui Fu
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Jianhua Yin
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Jie Yuan
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|