1
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Ghataora JS, Gebhard S, Reeksting BJ. Chimeric MerR-Family Regulators and Logic Elements for the Design of Metal Sensitive Genetic Circuits in Bacillus subtilis. ACS Synth Biol 2023; 12:735-749. [PMID: 36629785 PMCID: PMC10028694 DOI: 10.1021/acssynbio.2c00545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Whole-cell biosensors are emerging as promising tools for monitoring environmental pollutants such as heavy metals. These sensors constitute a genetic circuit comprising a sensing module and an output module, such that a detectable signal is produced in the presence of the desired analyte. The MerR family of metal-responsive regulators offers great potential for the construction of metal sensing circuits, due to their high sensitivity, tight transcription control, and large diversity in metal-specificity. However, the sensing diversity is broadest in Gram-negative systems, while chassis organisms are often selected from Gram-positive species, particularly sporulating bacilli. This can be problematic, because Gram-negative biological parts, such as promoters, are frequently observed to be nonfunctional in Gram-positive hosts. Herein, we combined construction of synthetic genetic circuits and chimeric MerR regulators, supported by structure-guided design, to generate metal-sensitive biosensor modules that are functional in the biotechnological work-horse species Bacillus subtilis. These chimeras consist of a constant Gram-positive derived DNA-binding domain fused to variable metal binding domains of Gram-negative origins. To improve the specificity of the whole-cell biosensor, we developed a modular "AND gate" logic system based on the B. subtilis two-subunit σ-factor, SigO-RsoA, designed to maximize future use for synthetic biology applications in B. subtilis. This work provides insights into the use of modular regulators, such as the MerR family, in the design of synthetic circuits for the detection of heavy metals, with potentially wider applicability of the approach to other systems and genetic backgrounds.
Collapse
Affiliation(s)
- Jasdeep S Ghataora
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Susanne Gebhard
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Bianca J Reeksting
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
3
|
Webb AJ, Allan F, Kelwick RJR, Beshah FZ, Kinung’hi SM, Templeton MR, Emery AM, Freemont PS. Specific Nucleic AcId Ligation for the detection of Schistosomes: SNAILS. PLoS Negl Trop Dis 2022; 16:e0010632. [PMID: 35881651 PMCID: PMC9355235 DOI: 10.1371/journal.pntd.0010632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/05/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Schistosomiasis, also known as bilharzia or snail fever, is a debilitating neglected tropical disease (NTD), caused by parasitic trematode flatworms of the genus Schistosoma, that has an annual mortality rate of 280,000 people in sub-Saharan Africa alone. Schistosomiasis is transmitted via contact with water bodies that are home to the intermediate host snail which shed the infective cercariae into the water. Schistosome lifecycles are complex, and while not all schistosome species cause human disease, endemic regions also typically feature animal-infecting schistosomes that can have broader economic and/or food security implications. Therefore, the development of species-specific Schistosoma detection technologies may help to inform evidence-based local environmental, food security and health systems policy making. Crucially, schistosomiasis disproportionally affects low- and middle-income (LMIC) countries and for that reason, environmental screening of water bodies for schistosomes may aid with the targeting of water, sanitation, and hygiene (WASH) interventions and preventive chemotherapy to regions at highest risk of schistosomiasis transmission, and to monitor the effectiveness of such interventions at reducing the risk over time. To this end, we developed a DNA-based biosensor termed Specific Nucleic AcId Ligation for the detection of Schistosomes or ‘SNAILS’. Here we show that ‘SNAILS’ enables species-specific detection from genomic DNA (gDNA) samples that were collected from the field in endemic areas. Schistosomiasis is a neglected tropical disease, caused by the parasitic trematodes of the genus Schistosoma. Schistosomiasis is endemic to regions within Africa, Asia and South America with at least 250 million people infected and a further 779 million at risk of infection. The lifecycle of schistosomes are complex and involve specific freshwater intermediate snail hosts which shed infective cercariae into the waterbodies they inhabit. Schistosomiasis is subsequently transmitted to humans or animals that contact cercariae contaminated water. In Africa, human disease is largely caused by Schistosoma mansoni and Schistosoma haematobium. However, endemic regions also typically feature animal-infecting schistosomes that can have broader economic and/or food security implications. Therefore, the development of species-specific Schistosoma detection technologies may help to inform local environmental, food security and health programmes. To this end, we re-purposed a nucleic acid detection technology to enable the detection of different schistosome species. Our DNA-biosensor, abbreviated as ‘SNAILS’, employs carefully designed probes that recognise species-specific DNA sequences, coupled with enzymatic amplification steps, and a fluorescent signal-dye to indicate a positive detection. ‘SNAILS’ successfully differentiates between S. mansoni and S. haematobium samples and could conceivably be employed within future global health programmes.
Collapse
Affiliation(s)
- Alexander James Webb
- Section of Structural and Synthetic biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Richard J. R. Kelwick
- Section of Structural and Synthetic biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Feleke Zewge Beshah
- College of Natural and Computational Sciences, Addis Ababa University, Arat Kilo, Addis Ababa, Ethiopia
| | | | - Michael R. Templeton
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Aidan Mark Emery
- Department of Life Sciences, Natural History Museum, London, United Kingdom
- * E-mail: (AME); (PSF)
| | - Paul S. Freemont
- Section of Structural and Synthetic biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
- The London Biofoundry, Imperial College Translation and Innovation Hub, White City Campus, London, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, London, United Kingdom
- * E-mail: (AME); (PSF)
| |
Collapse
|
4
|
Tamiev D, Lantz A, Vezeau G, Salis H, Reuel NF. Controlling Heterogeneity and Increasing Titer from Riboswitch-Regulated Bacillus subtilis Spores for Time-Delayed Protein Expression Applications. ACS Synth Biol 2019; 8:2336-2346. [PMID: 31490060 DOI: 10.1021/acssynbio.9b00163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sporulated cells have potential as time-delayed expression chassis of proteins for applications such as "on-demand" biologics production, whole cell biosensors, or oral vaccines. However, the desired attributes of high expression rates and low product variances are difficult to maintain from germinated spores. In this work, we study the effect of an integrating vs theta-replicating plasmid in a wild-type Bacillus subtilis and two PolY mutants. The cells were engineered to produce a fluorescent reporter protein (RFP) under the control of a riboswitch activated by theophylline. This allowed for greater sensitivity to point mutations. The fluorescence and cell-growth curves were fit with a custom kinetic model, and a peak kinetic rate (LKPmax) was extracted for each clonal population (n = 30 for all cell, vector, and growth combinations). Plasmid-based expression yields higher (8.7×) expression rates because of an increased copy number of the expression cassette (10× over integrated). The variance of LKPmax values increased 2.1× after sporulation for the wild-type strain. This increase in variance from sporulation is very similar to what is observed with UV exposure. This effect can be partially mitigated by the use of PolY knockouts observed in suspended cell growths and adherent biofilms.
Collapse
Affiliation(s)
- Denis Tamiev
- Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Alyssa Lantz
- Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Grace Vezeau
- Department of Chemical Engineering, Agricultural and Biological Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Howard Salis
- Department of Chemical Engineering, Agricultural and Biological Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Nigel F. Reuel
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
5
|
Synthetic biology applied in the agrifood sector: Public perceptions, attitudes and implications for future studies. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Kylilis N, Riangrungroj P, Lai HE, Salema V, Fernández LÁ, Stan GBV, Freemont PS, Polizzi KM. Whole-Cell Biosensor with Tunable Limit of Detection Enables Low-Cost Agglutination Assays for Medical Diagnostic Applications. ACS Sens 2019; 4:370-378. [PMID: 30623662 DOI: 10.1021/acssensors.8b01163] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Whole-cell biosensors can form the basis of affordable, easy-to-use diagnostic tests that can be readily deployed for point-of-care (POC) testing, but to date the detection of analytes such as proteins that cannot easily diffuse across the cell membrane has been challenging. Here we developed a novel biosensing platform based on cell agglutination using an E. coli whole-cell biosensor surface-displaying nanobodies which bind selectively to a target protein analyte. As a proof-of-concept, we show the feasibility of this design to detect a model analyte at nanomolar concentrations. Moreover, we show that the design architecture is flexible by building assays optimized to detect a range of model analyte concentrations using straightforward design rules and a mathematical model. Finally, we re-engineer our whole-cell biosensor for the detection of a medically relevant biomarker by the display of two different nanobodies against human fibrinogen and demonstrate a detection limit as low as 10 pM in diluted human plasma. Overall, we demonstrate that our agglutination technology fulfills the requirement of POC testing by combining low-cost nanobody production, customizable detection range and low detection limits. This technology has the potential to produce affordable diagnostics for field-testing in the developing world, emergency or disaster relief sites, as well as routine medical testing and personalized medicine.
Collapse
Affiliation(s)
- Nicolas Kylilis
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Pinpunya Riangrungroj
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hung-En Lai
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Valencio Salema
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Cantoblanco UAM, 28049 Madrid, Spain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Cantoblanco UAM, 28049 Madrid, Spain
| | - Guy-Bart V. Stan
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul S. Freemont
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Karen M. Polizzi
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
7
|
Sha Y, Zhang Y, Qiu Y, Xu Z, Li S, Feng X, Wang M, Xu H. Efficient Biosynthesis of Low-Molecular-Weight Poly-γ-glutamic Acid by Stable Overexpression of PgdS Hydrolase in Bacillus amyloliquefaciens NB. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:282-290. [PMID: 30543111 DOI: 10.1021/acs.jafc.8b05485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Low-molecular-weight poly-γ-glutamic acid (LMW-γ-PGA) has attracted much attention owing to its great potential in food, agriculture, medicine, and cosmetics. Current methods of LMW-γ-PGA production, including enzymatic hydrolysis, are associated with low operational stability. Here, an efficient method for stable biosynthesis of LMW-γ-PGA was conceived by overexpression of γ-PGA hydrolase in Bacillus amyloliquefaciens NB. To establish stable expression of γ-PGA hydrolase (PgdS) during fermentation, a novel plasmid pNX01 was constructed with a native replicon from endogenous plasmid p2Sip, showing a loss rate of 4% after 100 consecutive passages. Subsequently, this plasmid was applied in a screen of high activity PgdS hydrolase, leading to substantial improvements to γ-PGA titer with concomitant decrease in the molecular weight. Finally, a satisfactory yield of 17.62 ± 0.38 g/L LMW-γ-PGA with a weight-average molecular weight of 20-30 kDa was achieved by direct fermentation of Jerusalem artichoke tuber extract. Our study presents a potential method for commercial production of LMW-γ-PGA.
Collapse
Affiliation(s)
- Yuanyuan Sha
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Yatao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Mingxuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
8
|
Daudu D, Kisiala A, Werner Ribeiro C, Mélin C, Perrot L, Clastre M, Courdavault V, Papon N, Oudin A, Courtois M, Dugé de Bernonville T, Gaucher M, Degrave A, Lanoue A, Lanotte P, Schouler C, Brisset MN, Emery RN, Pichon O, Carpin S, Giglioli-Guivarc’h N, Crèche J, Besseau S, Glévarec G. Setting-up a fast and reliable cytokinin biosensor based on a plant histidine kinase receptor expressed in Saccharomyces cerevisiae. J Biotechnol 2019; 289:103-111. [DOI: 10.1016/j.jbiotec.2018.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022]
|
9
|
Kelwick R, Ricci L, Chee SM, Bell D, Webb AJ, Freemont PS. Cell-free prototyping strategies for enhancing the sustainable production of polyhydroxyalkanoates bioplastics. Synth Biol (Oxf) 2018; 3:ysy016. [PMID: 32995523 PMCID: PMC7445755 DOI: 10.1093/synbio/ysy016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 07/29/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022] Open
Abstract
The polyhydroxyalkanoates (PHAs) are microbially-produced biopolymers that could potentially be used as sustainable alternatives to oil-derived plastics. However, PHAs are currently more expensive to produce than oil-derived plastics. Therefore, more efficient production processes would be desirable. Cell-free metabolic engineering strategies have already been used to optimize several biosynthetic pathways and we envisioned that cell-free strategies could be used for optimizing PHAs biosynthetic pathways. To this end, we developed several Escherichia coli cell-free systems for in vitro prototyping PHAs biosynthetic operons, and also for screening relevant metabolite recycling enzymes. Furthermore, we customized our cell-free reactions through the addition of whey permeate, an industrial waste that has been previously used to optimize in vivo PHAs production. We found that the inclusion of an optimal concentration of whey permeate enhanced relative cell-free GFPmut3b production by approximately 50%. In cell-free transcription-translation prototyping reactions, gas chromatography-mass spectrometry quantification of cell-free 3-hydroxybutyrate (3HB) production revealed differences between the activities of the Native ΔPhaC_C319A (1.18 ± 0.39 µM), C104 ΔPhaC_C319A (4.62 ± 1.31 µM) and C101 ΔPhaC_C319A (2.65 ± 1.27 µM) phaCAB operons that were tested. Interestingly, the most active operon, C104 produced higher levels of PHAs (or PHAs monomers) than the Native phaCAB operon in both in vitro and in vivo assays. Coupled cell-free biotransformation/transcription-translation reactions produced greater yields of 3HB (32.87 ± 6.58 µM), and these reactions were also used to characterize a Clostridium propionicum Acetyl-CoA recycling enzyme. Together, these data demonstrate that cell-free approaches complement in vivo workflows for identifying additional strategies for optimizing PHAs production.
Collapse
Affiliation(s)
- Richard Kelwick
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
- Centre for Synthetic Biology and Innovation, Imperial College London, London, UK
| | - Luca Ricci
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
- Centre for Synthetic Biology and Innovation, Imperial College London, London, UK
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Soo Mei Chee
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
- The London DNA Foundry, Imperial College London, London, UK
| | - David Bell
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
- The London DNA Foundry, Imperial College London, London, UK
| | - Alexander J Webb
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
- Centre for Synthetic Biology and Innovation, Imperial College London, London, UK
| | - Paul S Freemont
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
- Centre for Synthetic Biology and Innovation, Imperial College London, London, UK
- The London DNA Foundry, Imperial College London, London, UK
| |
Collapse
|
10
|
Tools for engineering coordinated system behaviour in synthetic microbial consortia. Nat Commun 2018; 9:2677. [PMID: 29992956 PMCID: PMC6041260 DOI: 10.1038/s41467-018-05046-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/11/2018] [Indexed: 12/02/2022] Open
Abstract
Advancing synthetic biology to the multicellular level requires the development of multiple cell-to-cell communication channels that propagate information with minimal signal interference. The development of quorum-sensing devices, the cornerstone technology for building microbial communities with coordinated system behaviour, has largely focused on cognate acyl-homoserine lactone (AHL)/transcription factor pairs, while the use of non-cognate pairs as a design feature has received limited attention. Here, we demonstrate a large library of AHL-receiver devices, with all cognate and non-cognate chemical signal interactions quantified, and we develop a software tool that automatically selects orthogonal communication channels. We use this approach to identify up to four orthogonal channels in silico, and experimentally demonstrate the simultaneous use of three channels in co-culture. The development of multiple non-interfering cell-to-cell communication channels is an enabling step that facilitates the design of synthetic consortia for applications including distributed bio-computation, increased bioprocess efficiency, cell specialisation and spatial organisation. The engineering of synthetic microbial communities necessitates the use of synthetic, orthogonal cell-to-cell communication channels. Here the authors present a library of characterised AHL-receiver devices and a software tool for the automatic identification of non-interfering chemical communication channels.
Collapse
|
11
|
Braun L, Grimes JET, Templeton MR. The effectiveness of water treatment processes against schistosome cercariae: A systematic review. PLoS Negl Trop Dis 2018; 12:e0006364. [PMID: 29608589 PMCID: PMC5903662 DOI: 10.1371/journal.pntd.0006364] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/17/2018] [Accepted: 03/05/2018] [Indexed: 01/16/2023] Open
Abstract
Background Schistosomiasis is one of the most disabling neglected tropical diseases, ranking second in terms of years lived with disability. While treatment with the drug praziquantel can have immediate beneficial effects, reinfection can occur rapidly if people are in contact with cercaria-infested water. Water treatment for schistosomiasis control seeks to eliminate viable cercariae from water, thereby providing safe alternative water supplies for recreational and domestic activities including laundry and bathing. This provision may reduce contact with infested water, which is crucial for reducing reinfection following chemotherapy and cutting schistosome transmission. Methodology A qualitative systematic review was carried out to summarize the existing knowledge on the effectiveness of water treatment in removing or inactivating human schistosome cercariae. Four online databases were searched. Studies were screened and categorized into five water treatment processes: storage, heating, chlorination, filtration, and ultraviolet (UV) disinfection. Conclusions All five water treatment methods can remove or inactivate cercariae in water, and hence produce cercaria-free water. However, reliable design guidelines for treating water do not exist as there are insufficient data. Overall, the review found that cercariae are inactivated when storing water for 10–72 hours (depending on temperature), or with chlorination values of 3–30 mg-min/l. UV fluences between 3–60 mJ/cm2 may significantly damage or kill cercariae, and sand filters with 0.18–0.35 mm grain size have been shown to remove cercariae. This systematic review identified 67 studies about water treatment and schistosomiasis published in the past 106 years. It highlights the many factors that influence the results of water treatment experiments, which include different water quality conditions and methods for measuring key parameters. Variation in these factors limit comparability, and therefore currently available information is insufficient for providing complete water treatment design recommendations. Schistosomiasis control currently focuses on preventive chemotherapy (PC) with praziquantel, which is effective, safe, and inexpensive. However, this treatment does not prevent subsequent reinfection. As schistosomiasis control targets become more ambitious and move towards elimination, interest is increasing in the potentially complementary roles of water, sanitation, and hygiene (WASH) interventions which may disrupt transmission of the parasite, thereby slowing reinfection following treatment. Water treatment for schistosomiasis control seeks to eliminate viable schistosome cercariae from water. We carried out a systematic review to summarize the existing knowledge on the effectiveness of water treatment for the removal or inactivation of cercariae, by processes including chlorination, filtration, UV disinfection, heating, and water storage. This is the first review of its kind and provides a concise summary of what is known to-date regarding water treatment against cercariae of different Schistosoma species. The review also identifies gaps in knowledge and provides crucial and timely guidance for the control and elimination of schistosomiasis, by highlighting the requirements for designing effective and sustainable water infrastructure for schistosomiasis-endemic regions.
Collapse
Affiliation(s)
- Laura Braun
- Department of Civil and Environmental Engineering, South Kensington Campus, Imperial College London, London, United Kingdom
| | - Jack E T Grimes
- Department of Civil and Environmental Engineering, South Kensington Campus, Imperial College London, London, United Kingdom
| | - Michael R Templeton
- Department of Civil and Environmental Engineering, South Kensington Campus, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Wen KY, Cameron L, Chappell J, Jensen K, Bell DJ, Kelwick R, Kopniczky M, Davies JC, Filloux A, Freemont PS. A Cell-Free Biosensor for Detecting Quorum Sensing Molecules in P. aeruginosa-Infected Respiratory Samples. ACS Synth Biol 2017; 6:2293-2301. [PMID: 28981256 DOI: 10.1021/acssynbio.7b00219] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic biology designed cell-free biosensors are a promising new tool for the detection of clinically relevant biomarkers in infectious diseases. Here, we report that a modular DNA-encoded biosensor in cell-free protein expression systems can be used to measure a bacterial biomarker of Pseudomonas aeruginosa infection from human sputum samples. By optimizing the cell-free system and sample extraction, we demonstrate that the quorum sensing molecule 3-oxo-C12-HSL in sputum samples from cystic fibrosis lungs can be quantitatively measured at nanomolar levels using our cell-free biosensor system, and is comparable to LC-MS measurements of the same samples. This study further illustrates the potential of modular cell-free biosensors as rapid, low-cost detection assays that can inform clinical practice.
Collapse
Affiliation(s)
- Ke Yan Wen
- Section of Structural Biology, Department of Medicine, Imperial College London , London SW7 2AZ, U.K.,Centre for Synthetic Biology and Innovation, Imperial College London , London SW7 2AZ, U.K
| | - Loren Cameron
- Section of Structural Biology, Department of Medicine, Imperial College London , London SW7 2AZ, U.K.,Centre for Synthetic Biology and Innovation, Imperial College London , London SW7 2AZ, U.K.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London , London SW7 2AZ, U.K
| | - James Chappell
- Centre for Synthetic Biology and Innovation, Imperial College London , London SW7 2AZ, U.K
| | - Kirsten Jensen
- Section of Structural Biology, Department of Medicine, Imperial College London , London SW7 2AZ, U.K.,Centre for Synthetic Biology and Innovation, Imperial College London , London SW7 2AZ, U.K.,SynbiCITE, Imperial College London , London SW7 2AZ, U.K
| | - David J Bell
- Section of Structural Biology, Department of Medicine, Imperial College London , London SW7 2AZ, U.K.,SynbiCITE, Imperial College London , London SW7 2AZ, U.K
| | - Richard Kelwick
- Section of Structural Biology, Department of Medicine, Imperial College London , London SW7 2AZ, U.K.,Centre for Synthetic Biology and Innovation, Imperial College London , London SW7 2AZ, U.K
| | - Margarita Kopniczky
- Section of Structural Biology, Department of Medicine, Imperial College London , London SW7 2AZ, U.K.,Centre for Synthetic Biology and Innovation, Imperial College London , London SW7 2AZ, U.K
| | - Jane C Davies
- Chronic Suppurative Lung Disease, National Heart and Lung Institute, Imperial College London , London SW7 2AZ, U.K.,Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust , London SW3 6NP, U.K
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London , London SW7 2AZ, U.K
| | - Paul S Freemont
- Section of Structural Biology, Department of Medicine, Imperial College London , London SW7 2AZ, U.K.,Centre for Synthetic Biology and Innovation, Imperial College London , London SW7 2AZ, U.K.,SynbiCITE, Imperial College London , London SW7 2AZ, U.K
| |
Collapse
|
13
|
Davis AM, Plowright AT, Valeur E. Directing evolution: the next revolution in drug discovery? Nat Rev Drug Discov 2017; 16:681-698. [PMID: 28935911 DOI: 10.1038/nrd.2017.146] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The strong biological rationale to pursue challenging drug targets such as protein-protein interactions has stimulated the development of novel screening strategies, such as DNA-encoded libraries, to allow broader areas of chemical space to be searched. There has also been renewed interest in screening natural products, which are the result of evolutionary selection for a function, such as interference with a key signalling pathway of a competing organism. However, recent advances in several areas, such as understanding of the biosynthetic pathways for natural products, synthetic biology and the development of biosensors to detect target molecules, are now providing new opportunities to directly harness evolutionary pressure to identify and optimize compounds with desired bioactivities. Here, we describe innovations in the key components of such strategies and highlight pioneering examples that indicate the potential of the directed-evolution concept. We also discuss the scientific gaps and challenges that remain to be addressed to realize this potential more broadly in drug discovery.
Collapse
Affiliation(s)
- Andrew M Davis
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, 43150, Sweden
| | - Alleyn T Plowright
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Eric Valeur
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, 43150, Sweden
| |
Collapse
|
14
|
Bu Y, He X, Hu Q, Wang C, Xie X, Wang S. A novel cell membrane affinity sample pretreatment technique for recognition and preconcentration of active components from traditional Chinese medicine. Sci Rep 2017; 7:3569. [PMID: 28620157 PMCID: PMC5472601 DOI: 10.1038/s41598-017-03709-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022] Open
Abstract
We describe a novel biomembrane affinity sample pretreatment technique to quickly screen and preconcentrate active components from traditional Chinese medicine (TCM), which adopts cell membrane coated silica particles (CMCSPs) as affinity ligands which benefit the biomembrane's ability to maximize simulation of drug-receptor interactions in vivo. In this study, the prepared CMCSPs formed by irreversible adsorption of fibroblast growth factor receptor 4 (FGFR4) cell membrane on the surface of silica were characterized using different spectroscopic and imaging instruments. Drug binding experiments showed the excellent adsorption rate and adsorption capacity of FGFR4/CMCSPs compared with non-coated silica particles. The FGFR4/CMCSPs were used as solid-phase extraction sorbents to pretreat the TCM Aconitum szechenyianum Gay. The resultant FGFR4/CMCSPs exhibited good performance. In addition, high selectivity and recognition ability of the FGFR4/CMCSPs were determined by selectivity experiments. Four alkaloid were screened and identified, one of these alkaloid, napellonine, showed favorable anti-tumor activity in preliminary pharmacological verification trials including cell proliferation and molecular docking assays. The proposed cell membrane affinity sample pretreatment method is a reliable, effective and time-saving method for fast screening and enriching active compounds and can be extended to pretreat other TCMs as leading compounds resources.
Collapse
Affiliation(s)
- Yusi Bu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Xiaoshuang He
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Qi Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China
| | - Cheng Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoyu Xie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China. .,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China. .,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, 710061, China.
| |
Collapse
|
15
|
Webb AJ, Kelwick R, Freemont PS. Opportunities for applying whole-cell bioreporters towards parasite detection. Microb Biotechnol 2017; 10:244-249. [PMID: 28124438 PMCID: PMC5328813 DOI: 10.1111/1751-7915.12604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/12/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Alexander J Webb
- Centre for Synthetic Biology and Innovation, Imperial College London, London, SW7 2AZ, UK.,Section of Structural Biology, Department of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Richard Kelwick
- Centre for Synthetic Biology and Innovation, Imperial College London, London, SW7 2AZ, UK.,Section of Structural Biology, Department of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Paul S Freemont
- Centre for Synthetic Biology and Innovation, Imperial College London, London, SW7 2AZ, UK.,Section of Structural Biology, Department of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
16
|
Kelwick R, Webb AJ, MacDonald JT, Freemont PS. Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements. Metab Eng 2016; 38:370-381. [DOI: 10.1016/j.ymben.2016.09.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/08/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
|