1
|
Deng Y, Yuan X, Lu X, Wu J, Luo C, Zhang T, Liu Q, Tang S, Li Z, Mu X, Hu Y, Du Q, Xu J, Xie R. The Use of Gut Organoids: To Study the Physiology and Disease of the Gut Microbiota. J Cell Mol Med 2025; 29:e70330. [PMID: 39968926 PMCID: PMC11836903 DOI: 10.1111/jcmm.70330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/02/2024] [Accepted: 12/16/2024] [Indexed: 02/20/2025] Open
Abstract
The intestinal flora has attracted much attention in recent years. An imbalance in the intestinal flora can cause not only intestinal diseases but also cause a variety of parenteral diseases, such as endocrine diseases, nervous system diseases and cardiovascular diseases. Research on the mechanism of disease is likely to be hampered by sample accessibility, ethical issues, and differences between cellular animal and physiological studies. However, advances in stem cell culture have made it possible to reproduce 3D human tissues in vitro that mimic the cellular, anatomical and functional characteristics of real organs. Recent studies have shown that organoids can be used to simulate the development and disease of the gut and intestinal flora and have a wide range of applications in intestinal flora physiology and disease. Intestinal organoids provide a preeminent in vitro model system for cultivating microbiota that influence GI physiology, as well as for understanding how they encounter intestinal epithelial cells and cause disease. The mechanistic details obtained from such modelling may provide new avenues for the prevention and treatment of many gastrointestinal (GI) disorders. Researchers are now starting to take inspiration from other fields, such as bioengineering, and the rise of interdisciplinary approaches, including organoid chip technology and microfluidics, has greatly accelerated the development of organoids to generate intestinal organoids that are more physiologically relevant and suitable for gut microbiota studies. Here, we describe the development of organoid models of gut biology and the application of organoids to study the pathophysiology of diseases caused by intestinal dysbiosis.
Collapse
Affiliation(s)
- Ya Deng
- Department of Endoscopy and Digestive SystemGuizhou Provincial People's HospitalGuiyangGuizhouChina
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Xiaolu Yuan
- The Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - XianMin Lu
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Jiangbo Wu
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Chen Luo
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Ting Zhang
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Qi Liu
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Siqi Tang
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhuo Li
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Xingyi Mu
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Yanxia Hu
- Zunyi Medical UniversityZunyiGuizhouChina
| | - Qian Du
- Department of Endoscopy and Digestive SystemGuizhou Provincial People's HospitalGuiyangGuizhouChina
| | - Jingyu Xu
- Guizhou Medical UniversityGuiyangGuizhouChina
| | - Rui Xie
- Department of Endoscopy and Digestive SystemGuizhou Provincial People's HospitalGuiyangGuizhouChina
| |
Collapse
|
2
|
Alkailani MI, Gibbings D. The Regulation and Immune Signature of Retrotransposons in Cancer. Cancers (Basel) 2023; 15:4340. [PMID: 37686616 PMCID: PMC10486412 DOI: 10.3390/cancers15174340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Advances in sequencing technologies and the bioinformatic analysis of big data facilitate the study of jumping genes' activity in the human genome in cancer from a broad perspective. Retrotransposons, which move from one genomic site to another by a copy-and-paste mechanism, are regulated by various molecular pathways that may be disrupted during tumorigenesis. Active retrotransposons can stimulate type I IFN responses. Although accumulated evidence suggests that retrotransposons can induce inflammation, the research investigating the exact mechanism of triggering these responses is ongoing. Understanding these mechanisms could improve the therapeutic management of cancer through the use of retrotransposon-induced inflammation as a tool to instigate immune responses to tumors.
Collapse
Affiliation(s)
- Maisa I. Alkailani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Derrick Gibbings
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| |
Collapse
|
3
|
Yang L, Chen X, Lee C, Shi J, Lawrence EB, Zhang L, Li Y, Gao N, Jung SY, Creighton CJ, Li JJ, Cui Y, Arimura S, Lei Y, Li W, Shen L. Functional characterization of age-dependent p16 epimutation reveals biological drivers and therapeutic targets for colorectal cancer. J Exp Clin Cancer Res 2023; 42:113. [PMID: 37143122 PMCID: PMC10157929 DOI: 10.1186/s13046-023-02689-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Methylation of the p16 promoter resulting in epigenetic gene silencing-known as p16 epimutation-is frequently found in human colorectal cancer and is also common in normal-appearing colonic mucosa of aging individuals. Thus, to improve clinical care of colorectal cancer (CRC) patients, we explored the role of age-related p16 epimutation in intestinal tumorigenesis. METHODS We established a mouse model that replicates two common genetic and epigenetic events observed in human CRCs: Apc mutation and p16 epimutation. We conducted long-term survival and histological analysis of tumor development and progression. Colonic epithelial cells and tumors were collected from mice and analyzed by RNA sequencing (RNA-seq), quantitative PCR, and flow cytometry. We performed single-cell RNA sequencing (scRNA-seq) to characterize tumor-infiltrating immune cells throughout tumor progression. We tested whether anti-PD-L1 immunotherapy affects overall survival of tumor-bearing mice and whether inhibition of both epigenetic regulation and immune checkpoint is more efficacious. RESULTS Mice carrying combined Apc mutation and p16 epimutation had significantly shortened survival and increased tumor growth compared to those with Apc mutation only. Intriguingly, colon tumors with p16 epimutation exhibited an activated interferon pathway, increased expression of programmed death-ligand 1 (Pdl1), and enhanced infiltration of immune cells. scRNA-seq further revealed the presence of Foxp3+ Tregs and γδT17 cells, which contribute to an immunosuppressive tumor microenvironment (TME). Furthermore, we showed that a combined therapy using an inhibitor of DNA methylation and a PD-L1 immune checkpoint inhibitor is more effective for improving survival in tumor-bearing mice than blockade of either pathway alone. CONCLUSIONS Our study demonstrated that age-dependent p16 epimutation creates a permissive microenvironment for malignant transformation of polyps to colon cancer. Our findings provide a mechanistic rationale for future targeted therapy in patients with p16 epimutation.
Collapse
Affiliation(s)
- Li Yang
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, TX, Houston, USA
| | - Xiaomin Chen
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, TX, Houston, USA
| | - Christy Lee
- Department of Statistics, University of California, Los Angeles, CA, USA
| | - Jiejun Shi
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
- Present address: Department of General Surgery, Shanghai Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Emily B Lawrence
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, TX, Houston, USA
| | - Lanjing Zhang
- Department of Pathology, Princeton Medical Center, Plainsboro, NJ, USA
- Department of Chemical Biology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA
| | - Chad J Creighton
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jingyi Jessica Li
- Department of Statistics, University of California, Los Angeles, CA, USA
| | - Ya Cui
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Sumimasa Arimura
- Department of Medicine and Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| | - Lanlan Shen
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, TX, Houston, USA.
| |
Collapse
|
4
|
Shi X, Yu L, Huang R, Bao W, Wu S, Wu Z. Identification of a 5-Methylcytosine Site (mC-7) That May Inhibit CXCL11 Expression and Regulate E. coli F18 Susceptibility in IPEC-J2 Cells. Vet Sci 2022; 9:vetsci9110600. [PMID: 36356076 PMCID: PMC9698616 DOI: 10.3390/vetsci9110600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
The primary pathogen causing post-weaning diarrhea in piglets is Escherichia coli F18 (E. coli F18), hence it is essential to investigate the mechanism governing E. coli F18 resistance in native pig breeds. Based on the previous RNA-seq results of the duodenum from E. coli F18-resistant and -susceptible Meishan piglets, CXCL11, an important functional gene, was preliminarily screened. In this investigation, in order to further examine the expression regulation mechanism of E. coli F18 in intestinal porcine epithelial cells (IPEC-J2) against E. coli F18 infection, CXCL11 gene expression on IPEC-J2 cells infected by E. coli F18 was detected, which was significantly downregulated (p < 0.01). Secondly, the overexpression on the IPEC-J2 cell line was successfully structured, and a relative quantification method of the PILIN, bacteria enumeration, and immunofluorescence assay indicated that the CXCL11 overexpression significantly reduced the ability of E. coli F18 to interact with IPEC-J2 in vitro. The promoter region of the CXCL11 gene was predicted to contain a CpG island (−619 ~ −380 bp) of which 13 CpG sites in the sequencing region were methylated to varying degrees, and the methylation level of one CPG site (mC-7) positively linked negatively with the expression of the CXCL11 gene (p < 0.05). Meanwhile, a dual luciferase assay detected the mutation of the mC-7 site that significantly inhibited the luciferase activity of the CXCL11 gene promoter (p < 0.01). Transcription factor prediction and expression verification indicated that mC-7 is located in the OSR1-binding domain, and that its expression level is related to E. coli F18 susceptibility. We speculated that methylation modification of the mC-7 site of the CpG island in the promoter region of the CXCL11 gene might inhibit the binding of transcription factor OSR1 with the mC-7 site, and then affect its expression level to regulate the susceptibility to E. coli F18.
Collapse
Affiliation(s)
- Xiaoru Shi
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Luchen Yu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Rufeng Huang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: (S.W.); (Z.W.)
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: (S.W.); (Z.W.)
| |
Collapse
|
5
|
A Novel Cognition of Decitabine: Insights into Immunomodulation and Antiviral Effects. Molecules 2022; 27:molecules27061973. [PMID: 35335337 PMCID: PMC8950928 DOI: 10.3390/molecules27061973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
DNA methylation, as one of the major means of epigenesis change, makes a large difference in the spatial structure of chromatin, transposable element activity and, fundamentally, gene transcription. It has been confirmed that DNA methylation is closely related to innate immune responses. Decitabine, the most efficient available DNA methyltransferase inhibitor, has demonstrated exhilarating immune activation and antiviral effects on multiple viruses, including HIV, HBV, HCV, HPV and EHV1. This review considers the role of decitabine in regulating innate immune responses and antiviral ability. Understanding the complex transcriptional and immune regulation of decitabine could help to identify and validate therapeutic methods to reduce pathogen infection-associated morbidity, especially virus infection-induced morbidity and mortality.
Collapse
|
6
|
Alkailani M, Palidwor G, Poulin A, Mohan R, Pepin D, Vanderhyden B, Gibbings D. A genome-wide strategy to identify causes and consequences of retrotransposon expression finds activation by BRCA1 in ovarian cancer. NAR Cancer 2021; 3:zcaa040. [PMID: 33447827 PMCID: PMC7787265 DOI: 10.1093/narcan/zcaa040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/03/2022] Open
Abstract
It is challenging to identify the causes and consequences of retrotransposon expression in human disease due to the hundreds of active genomic copies and their poor conservation across species. We profiled genomic insertions of retrotransposons in ovarian cancer. In addition, in ovarian and breast cancer we analyzed RNAs exhibiting Bayesian correlation with retrotransposon RNA to identify causes and consequences of retrotransposon expression. This strategy finds divergent inflammatory responses associated with retrotransposon expression in ovarian and breast cancer and identifies new factors inducing expression of endogenous retrotransposons including anti-viral responses and the common tumor suppressor BRCA1. In cell lines, mouse ovarian epithelial cells and patient-derived tumor spheroids, BRCA1 promotes accumulation of retrotransposon RNA. BRCA1 promotes transcription of active families of retrotransposons and their insertion into the genome. Intriguingly, elevated retrotransposon expression predicts survival in ovarian cancer patients. Retrotransposons are part of a complex regulatory network in ovarian cancer including BRCA1 that contributes to patient survival. The described strategy can be used to identify the regulators and impacts of retrotransposons in various contexts of biology and disease in humans.
Collapse
Affiliation(s)
- Maisa Alkailani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Gareth Palidwor
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
- Bioinformatics, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada
| | - Ariane Poulin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Raghav Mohan
- Pediatrics Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 021145, USA
| | - David Pepin
- Pediatrics Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 021145, USA
- Department of Surgery, Harvard Medical School, Boston, MA 021156, USA
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada
| | - Derrick Gibbings
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
7
|
Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency. Nature 2020; 588:169-173. [PMID: 33087935 DOI: 10.1038/s41586-020-2844-1] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022]
Abstract
Cancer therapies that target epigenetic repressors can mediate their effects by activating retroelements within the human genome. Retroelement transcripts can form double-stranded RNA (dsRNA) that activates the MDA5 pattern recognition receptor1-6. This state of viral mimicry leads to loss of cancer cell fitness and stimulates innate and adaptive immune responses7,8. However, the clinical efficacy of epigenetic therapies has been limited. To find targets that would synergize with the viral mimicry response, we sought to identify the immunogenic retroelements that are activated by epigenetic therapies. Here we show that intronic and intergenic SINE elements, specifically inverted-repeat Alus, are the major source of drug-induced immunogenic dsRNA. These inverted-repeat Alus are frequently located downstream of 'orphan' CpG islands9. In mammals, the ADAR1 enzyme targets and destabilizes inverted-repeat Alu dsRNA10, which prevents activation of the MDA5 receptor11. We found that ADAR1 establishes a negative-feedback loop, restricting the viral mimicry response to epigenetic therapy. Depletion of ADAR1 in patient-derived cancer cells potentiates the efficacy of epigenetic therapy, restraining tumour growth and reducing cancer initiation. Therefore, epigenetic therapies trigger viral mimicry by inducing a subset of inverted-repeats Alus, leading to an ADAR1 dependency. Our findings suggest that combining epigenetic therapies with ADAR1 inhibitors represents a promising strategy for cancer treatment.
Collapse
|
8
|
Cai J, Liu W, Wong CW, Zhu W, Lin Y, Hu J, Xu W, Zhang J, Sander M, Wang Z, Dan J, Zhang J, Liu Y, Guo L, Qin Z, Liu X, Liu Y, Yan G, Wu S, Liang J. Zinc-finger antiviral protein acts as a tumor suppressor in colorectal cancer. Oncogene 2020; 39:5995-6008. [PMID: 32770142 DOI: 10.1038/s41388-020-01416-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022]
Abstract
Avoiding immune destruction is essential for tumorigenesis. Current research into the interaction between tumor and immunological niches complement tumor pathology beyond cancer genetics. Intrinsic host defense immunity is a specialized innate immunity component to restrict viral infection. However, whether intrinsic immunity participates in tumor pathology is unclear. Previously, we identified a zinc-finger antiviral protein ZAP that is commonly downregulated in a panel of clinical cancer specimens. However, whether ZAP has an impact on tumor development was unknown. Here we report ZAP as a genuine tumor suppressor. Pan-caner analysis with TCGA data from 712 patients and large-scale immunohistochemistry in tissue microarrays from 1552 patients reveal that ZAP is prevalently downregulated, and associated with poor survival in liver, colon, and bladder cancer patients. Ectopic over-expression of ZAP inhibits the malignant phenotypes of colorectal tumor by cell cycle arrest. Using RNA immunoprecipitation and RNA decay assays, we demonstrate that ZAP directly and specifically binds to and degrades the transcript of TRAILR4, which in turn represses TRAILR4 expression and inhibits the aggressiveness of colorectal cancer cells. Furthermore, our CRISPR-engineered mice models show that loss-of-function of ZAP synergizes with APC-deficiency to drive malignant colorectal cancer in vivo. Overall, we identify a previously unknown function of the antiviral factor ZAP in colorectal tumorigenesis, linking intrinsic immunity to tumor pathogenetics.
Collapse
Affiliation(s)
- Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenfeng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chun Wa Wong
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wencang Xu
- Guangzhou Virotech Pharmaceutical Co., Ltd, Guangzhou, 510663, China
| | - Jifu Zhang
- Guangzhou Virotech Pharmaceutical Co., Ltd, Guangzhou, 510663, China
| | - Max Sander
- Guangzhou Virotech Pharmaceutical Co., Ltd, Guangzhou, 510663, China
| | - Zhuo Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia Dan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiayu Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li Guo
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhen Qin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xincheng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Sihan Wu
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA.
| | - Jiankai Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Yoshikawa N, Saito Y, Manabe H, Nakaoka T, Uchida R, Furukawa R, Muramatsu T, Sugiyama Y, Kimura M, Saito H. Glucose Depletion Enhances the Stem Cell Phenotype and Gemcitabine Resistance of Cholangiocarcinoma Organoids through AKT Phosphorylation and Reactive Oxygen Species. Cancers (Basel) 2019; 11:E1993. [PMID: 31835877 PMCID: PMC6966500 DOI: 10.3390/cancers11121993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer cells are strongly dependent on the glycolytic pathway for generation of energy even under aerobic condition through a phenomenon known as the Warburg effect. Rapid proliferation of cancer cells is often accompanied by high glucose consumption and abnormal angiogenesis, which may lead to glucose depletion. In the present study, we investigated how cholangiocarcinoma cells adapt to glucose depletion using a 3D organoid culture system. We cultured organoids derived from cholangiocarcinoma under glucose-free condition and investigated cell proliferation, expression of stem cell markers and resistance to gemcitabine. Cholangiocarcinoma organoids cultured under glucose-free condition showed reduced proliferation but were able to survive. We also observed an increase in the expression of stem cell markers including LGR5 and enhancement of stem cell phenotypic characteristics such as resistance to gemcitabine through AKT phosphorylation and reactive oxygen species. These findings indicate that cholangiocarcinoma cells are able to adapt to glucose depletion through enhancement of their stem cell phenotype in response to changes in microenvironmental conditions.
Collapse
Affiliation(s)
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shiba-kohen, Minato-ku, Tokyo 105-8512, Japan; (N.Y.); (H.M.); (T.N.); (R.U.); (R.F.); (T.M.); (M.K.); (H.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Transposable element expression in tumors is associated with immune infiltration and increased antigenicity. Nat Commun 2019; 10:5228. [PMID: 31745090 PMCID: PMC6864081 DOI: 10.1038/s41467-019-13035-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
Profound global loss of DNA methylation is a hallmark of many cancers. One potential consequence of this is the reactivation of transposable elements (TEs) which could stimulate the immune system via cell-intrinsic antiviral responses. Here, we develop REdiscoverTE, a computational method for quantifying genome-wide TE expression in RNA sequencing data. Using The Cancer Genome Atlas database, we observe increased expression of over 400 TE subfamilies, of which 262 appear to result from a proximal loss of DNA methylation. The most recurrent TEs are among the evolutionarily youngest in the genome, predominantly expressed from intergenic loci, and associated with antiviral or DNA damage responses. Treatment of glioblastoma cells with a demethylation agent results in both increased TE expression and de novo presentation of TE-derived peptides on MHC class I molecules. Therapeutic reactivation of tumor-specific TEs may synergize with immunotherapy by inducing inflammation and the display of potentially immunogenic neoantigens. Treatment with demethylation agents can reactivate transposable elements. Here in glioblastoma, the authors also show that this is accompanied by de novo presentation of TE-derived peptides on MHC class I molecules.
Collapse
|
11
|
Saito Y. Establishment of an organoid bank of biliary tract and pancreatic cancers and its application for personalized therapy and future treatment. J Gastroenterol Hepatol 2019; 34:1906-1910. [PMID: 31264257 DOI: 10.1111/jgh.14773] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022]
Abstract
Biliary tract cancers and pancreatic cancers are aggressive malignancies that are difficult to diagnose early and have a poor prognosis. Patients with inoperable biliary tract and pancreatic cancers generally receive chemotherapy regimens including gemcitabine. However, the effects of these drugs are limited, and the 5-year survival rates of patients are very low. The newly developed three-dimensional culture system known as "organoid culture" allows long-term expansion of stem cells into cyst-like structures (organoids) with properties resembling those of the original tissues. We and other groups have successfully established long-term in vitro cultures of organoids derived from biliary tract and pancreatic cancers. Organoids derived from biliary tract and pancreatic cancers closely recapitulate the properties of the original tumors including genetic alterations, gene expression profiles, and histopathological structures. These patient-derived cancer organoids can be applied for drug sensitivity testing, drug screening, epigenetic therapy, and differentiation-inducing therapy to identify therapeutic agents optimal for each patient. We intend to further establish organoids derived from various cancer cases and construct an organoid bank of biliary tract and pancreatic cancers. These powerful in vitro preclinical models of refractory cancers may bridge the gap between basic research and clinical trials and allow personalized therapy for patients.
Collapse
Affiliation(s)
- Yoshimasa Saito
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Shibakoen, Minato-ku, Tokyo, Japan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
12
|
Maiuri AR, Savant SS, Podicheti R, Rusch DB, O'Hagan HM. DNA methyltransferase inhibition reduces inflammation-induced colon tumorigenesis. Epigenetics 2019; 14:1209-1223. [PMID: 31240997 DOI: 10.1080/15592294.2019.1634986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Chronic inflammation is strongly associated with an increased risk of developing colorectal cancer. DNA hypermethylation of CpG islands alters the expression of genes in cancer cells and plays an important role in carcinogenesis. Chronic inflammation is also associated with DNA methylation alterations and in a mouse model of inflammation-induced colon tumorigenesis, we previously demonstrated that inflammation-induced tumours have 203 unique regions with DNA hypermethylation compared to uninflamed epithelium. To determine if altering inflammation-induced DNA hypermethylation reduces tumorigenesis, we used the same mouse model and treated mice with the DNA methyltransferase (DNMT) inhibitor decitabine (DAC) throughout the tumorigenesis time frame. DAC treatment caused a significant reduction in colon tumorigenesis. The tumours that did form after DAC treatment had reduced inflammation-specific DNA hypermethylation and alteration of expression of associated candidate genes. When compared, inflammation-induced tumours from control (PBS-treated) mice were enriched for cell proliferation associated gene expression pathways whereas inflammation-induced tumours from DAC-treated mice were enriched for interferon gene signatures. To further understand the altered tumorigenesis, we derived tumoroids from the different tumour types. Interestingly, tumoroids derived from inflammation-induced tumours from control mice maintained many of the inflammation-induced DNA hypermethylation alterations and had higher levels of DNA hypermethylation at these regions than tumoroids from DAC-treated mice. Importantly, tumoroids derived from inflammation-induced tumours from the DAC-treated mice proliferated more slowly than those derived from the inflammation-induced tumours from control mice. These studies suggest that inhibition of inflammation-induced DNA hypermethylation may be an effective strategy to reduce inflammation-induced tumorigenesis.
Collapse
Affiliation(s)
- Ashley R Maiuri
- Medical Sciences, Indiana University School of Medicine , Bloomington , IN , USA
| | - Sudha S Savant
- Medical Sciences, Indiana University School of Medicine , Bloomington , IN , USA
| | - Ram Podicheti
- School of Informatics, Computing and Engineering, Indiana University , Bloomington , IN , USA.,Center for Genomics and Bioinformatics, Indiana University , Bloomington , IN , USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University , Bloomington , IN , USA
| | - Heather M O'Hagan
- Medical Sciences, Indiana University School of Medicine , Bloomington , IN , USA.,Indiana University Melvin and Bren Simon Cancer Center , Indianapolis , IN , USA
| |
Collapse
|
13
|
Long interspersed nuclear element-1 mobilization as a target in cancer diagnostics, prognostics and therapeutics. Clin Chim Acta 2019; 493:52-62. [DOI: 10.1016/j.cca.2019.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022]
|
14
|
Saito Y, Muramatsu T, Kanai Y, Ojima H, Sukeda A, Hiraoka N, Arai E, Sugiyama Y, Matsuzaki J, Uchida R, Yoshikawa N, Furukawa R, Saito H. Establishment of Patient-Derived Organoids and Drug Screening for Biliary Tract Carcinoma. Cell Rep 2019; 27:1265-1276.e4. [DOI: 10.1016/j.celrep.2019.03.088] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/21/2018] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
|
15
|
Uchida R, Saito Y, Nogami K, Kajiyama Y, Suzuki Y, Kawase Y, Nakaoka T, Muramatsu T, Kimura M, Saito H. Epigenetic silencing of Lgr5 induces senescence of intestinal epithelial organoids during the process of aging. NPJ Aging Mech Dis 2018; 5:1. [PMID: 30534415 PMCID: PMC6279747 DOI: 10.1038/s41514-018-0031-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 11/09/2018] [Indexed: 01/10/2023] Open
Abstract
To understand the molecular features underlying stem cell aging, we established intestinal epithelial organoids derived from both young and aged mice and investigated alterations in their senescence and epigenetic status. Senescence-related changes including accumulation of senescence-associated β-galactosidase and up-regulation of Cdkn1a (p21) by DNA demethylation were observed in intestinal epithelial organoids derived from aged mice. We also demonstrated that the important stem cell marker Lgr5 was epigenetically silenced by trimethylation of histone H3 lysine 27, inducing suppression of Wnt signaling and a decrease of cell proliferation in organoids from aged mice. We further treated intestinal epithelial organoids from aged mice with nicotinamide mononucleotide (NMN), a key NAD+ intermediate. As a result, the organoids showed a higher NAD+ level, increased cell proliferative ability, activation of Lgr5 and suppression of senescence-associated genes, indicating that treatment with NMN could ameliorate senescence-related changes in intestinal epithelia. These findings suggest that organoids derived from aged animals could be a powerful research tool for investigating the molecular mechanisms underlying stem cell aging and for development of some form of anti-aging intervention, thus contributing to prolongation of healthy life expectancy. To understand the molecular features underlying stem cell aging, we established intestinal epithelial organoids derived from both young and aged mice, and investigated alterations in their senescence and epigenetic status. Senescence-related changes including accumulation of senescence-associated β-galactosidase were observed in intestinal epithelial organoids derived from aged mice. We also demonstrated that the important stem cell marker Lgr5 was epigenetically silenced by trimethylation of histone H3 lysine 27, inducing suppression of Wnt signaling and a decrease of cell proliferation in organoids from aged mice. Our results suggest that organoids derived from aged animals could be a powerful research tool for investigating the molecular mechanisms underlying stem cell aging and for development of some form of anti-aging intervention, thus contributing to prolongation of healthy life expectancy.
Collapse
|
16
|
Ishak CA, Classon M, De Carvalho DD. Deregulation of Retroelements as an Emerging Therapeutic Opportunity in Cancer. Trends Cancer 2018; 4:583-597. [DOI: 10.1016/j.trecan.2018.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/26/2022]
|
17
|
Marques-Magalhães Â, Graça I, Henrique R, Jerónimo C. Targeting DNA Methyltranferases in Urological Tumors. Front Pharmacol 2018; 9:366. [PMID: 29706891 PMCID: PMC5909196 DOI: 10.3389/fphar.2018.00366] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Urological cancers are a heterogeneous group of malignancies accounting for a considerable proportion of cancer-related morbidity and mortality worldwide. Aberrant epigenetic traits, especially altered DNA methylation patterns constitute a hallmark of these tumors. Nonetheless, these alterations are reversible, and several efforts have been carried out to design and test several epigenetic compounds that might reprogram tumor cell phenotype back to a normal state. Indeed, several DNMT inhibitors are currently under evaluation for therapeutic efficacy in clinical trials. This review highlights the critical role of DNA methylation in urological cancers and summarizes the available data on pre-clinical assays and clinical trials with DNMT inhibitors in bladder, kidney, prostate, and testicular germ cell cancers.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Inês Graça
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Bannert N, Hofmann H, Block A, Hohn O. HERVs New Role in Cancer: From Accused Perpetrators to Cheerful Protectors. Front Microbiol 2018; 9:178. [PMID: 29487579 PMCID: PMC5816757 DOI: 10.3389/fmicb.2018.00178] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/25/2018] [Indexed: 02/02/2023] Open
Abstract
Initial indications that retroviruses are connected to neoplastic transformation were seen more than a century ago. This concept has also been tested for endogenized retroviruses (ERVs) that are abundantly expressed in many transformed cells. In healthy cells, ERV expression is commonly prevented by DNA methylation and other epigenetic control mechanisms. ERVs are remnants of former exogenous forms that invaded the germ line of the host and have since been vertically transmitted. Several examples of ERV-induced genomic recombination events and dysregulation of cellular genes that contribute to tumor formation have been well documented. Moreover, evidence is accumulating that certain ERV proteins have oncogenic properties. In contrast to these implications for supporting cancer induction, a recent string of papers has described favorable outcomes of increasing human ERV (HERV) RNA and DNA abundance by treatment of cancer cells with methyltransferase inhibitors. Analogous to an infecting agent, the ERV-derived nucleic acids are sensed in the cytoplasm and activate innate immune responses that drive the tumor cell into apoptosis. This "viral mimicry" induced by epigenetic drugs might offer novel therapeutic approaches to help target cancer cells that are normally difficult to treat using standard chemotherapy. In this review, we discuss both the detrimental and the new beneficial role of HERV reactivation in terms of its implications for cancer.
Collapse
Affiliation(s)
- Norbert Bannert
- HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Henning Hofmann
- HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Adriana Block
- HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Oliver Hohn
- HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
19
|
Hurst TP, Magiorkinis G. Epigenetic Control of Human Endogenous Retrovirus Expression: Focus on Regulation of Long-Terminal Repeats (LTRs). Viruses 2017; 9:v9060130. [PMID: 28561791 PMCID: PMC5490807 DOI: 10.3390/v9060130] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Transposable elements, including endogenous retroviruses (ERVs), comprise almost 45% of the human genome. This could represent a significant pathogenic burden but it is becoming more evident that many of these elements have a positive contribution to make to normal human physiology. In particular, the contributions of human ERVs (HERVs) to gene regulation and the expression of noncoding RNAs has been revealed with the help of new and emerging genomic technologies. HERVs have the common provirus structure of coding open reading frames (ORFs) flanked by two long-terminal repeats (LTRs). However, over the course of evolution and as a consequence of host defence mechanisms, most of the sequences contain INDELs, mutations or have been reduced to single LTRs by recombination. These INDELs and mutations reduce HERV activity. However, there is a trade-off for the host cells in that HERVs can provide beneficial sources of genetic variation but with this benefit comes the risk of pathogenic activity and spread within the genome. For example, the LTRs are of critical importance as they contain promoter sequences and can regulate not only HERV expression but that of human genes. This is true even when the LTRs are located in intergenic regions or are in antisense orientation to the rest of the gene. Uncontrolled, this promoter activity could disrupt normal gene expression or transcript processing (e.g., splicing). Thus, control of HERVs and particularly their LTRs is essential for the cell to manage these elements and this control is achieved at multiple levels, including epigenetic regulations that permit HERV expression in the germline but silence it in most somatic tissues. We will discuss some of the common epigenetic mechanisms and how they affect HERV expression, providing detailed discussions of HERVs in stem cell, placenta and cancer biology.
Collapse
Affiliation(s)
- Tara P Hurst
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | - Gkikas Magiorkinis
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
20
|
Aberrant DNA Methylation as a Biomarker and a Therapeutic Target of Cholangiocarcinoma. Int J Mol Sci 2017; 18:ijms18061111. [PMID: 28545228 PMCID: PMC5485935 DOI: 10.3390/ijms18061111] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
Cholangiocarcinoma is an epithelial malignancy arising in the region between the intrahepatic bile ducts and the ampulla of Vater at the distal end of the common bile duct. The effect of current chemotherapy regimens against cholangiocarcinoma is limited, and the prognosis of patients with cholangiocarcinoma is poor. Aberrant DNA methylation and histone modification induce silencing of tumor suppressor genes and chromosomal instability during carcinogenesis. Studies have shown that the tumor suppressor genes and microRNAs (miRNAs) including MLH1, p14, p16, death-associated protein kinase (DAPK), miR-370 and miR-376c are frequently methylated in cholangiocarcinoma. Silencing of these tumor suppressor genes and miRNAs plays critical roles in the initiation and progression of cholangiocarcinoma. In addition, recent studies have demonstrated that DNA methylation inhibitors induce expression of endogenous retroviruses and exert the anti-tumor effect of via an anti-viral immune response. Aberrant DNA methylation of tumor suppressor genes and miRNAs could be a powerful biomarker for the diagnosis and treatment of cholangiocarcinoma. Epigenetic therapy with DNA methylation inhibitors holds considerable promise for the treatment of cholangiocarcinoma through the reactivation of tumor suppressor genes and miRNAs as well as the induction of an anti-viral immune response.
Collapse
|
21
|
Abstract
The intestinal microbiota consists of a dynamic organization of bacteria, viruses, archaea, and fungal species essential for maintaining gut homeostasis and protecting the host against pathogenic invasion. When dysregulated, the intestinal microbiota can contribute to colorectal cancer development. Though the microbiota is multifaceted in its ability to induce colorectal cancer, this review will focus on the capability of the microbiota to induce colorectal cancer through the modulation of immune function and the production of microbial-derived metabolites. We will also explore an experimental technique that is revolutionizing intestinal research. By elucidating the interactions of microbial species with epithelial tissue, and allowing for drug screening of patients with colorectal cancers, organoid development is a novel culturing technique that is innovating intestinal research. As a cancer that remains one of the leading causes of cancer-related deaths worldwide, it is imperative that scientific findings are translated into the creation of effective therapeutics to treat colorectal cancer.
Collapse
Affiliation(s)
- Sofia Oke
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, 1 King’s College Cir, MSB 7302, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
22
|
A New Molecular Mechanism Underlying the Antitumor Effect of DNA Methylation Inhibitors via an Antiviral Immune Response. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:227-242. [DOI: 10.1016/bs.apcsb.2016.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Ueki S, Murakami Y, Yamada S, Kimura M, Saito Y, Saito H. microRNA-mediated resistance to hypoglycemia in the HepG2 human hepatoma cell line. BMC Cancer 2016; 16:732. [PMID: 27629773 PMCID: PMC5024426 DOI: 10.1186/s12885-016-2762-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022] Open
Abstract
Background It is generally accepted that the energy resources of cancer cells rely on anaerobic metabolism or the glycolytic system, even if they have sufficient oxygen. This is known as the Warburg effect. The cells skillfully survive under hypoglycemic conditions when their circumstances change, which probably at least partly involves microRNA (miRNA)-mediated regulation. Methods To determine how cancer cells exploit miRNA-mediated epigenetic mechanisms to survive in hypoglycemic conditions, we used DNA microarray analysis to comprehensively and simultaneously compare the expression of miRNAs and mRNAs in the HepG2 human hepatoma cell line and in cultured normal human hepatocytes. Results The hypoglycemic condition decreased the expression of miRNA-17-5p and -20a-5p in hepatoma cells and consequently upregulated the expression of their target gene p21. These regulations were also confirmed by using antisense inhibitors of these miRNAs. In addition to this change, the hypoglycemic condition led to upregulated expression of heat shock proteins and increased resistance to caspase-3-induced apoptosis. However, we could not identify miRNA-mediated regulations, despite using comprehensive detection. Several interesting genes were also found to be upregulated in the hypoglycemic condition by the microarray analysis, probably because of responding to this cellular stress. Conclusion These results suggest that cancer cells skillfully survive in hypoglycemic conditions, which frequently occur in malignancies, and that some of the gene regulation of this process is manipulated by miRNAs. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2762-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Satomi Ueki
- Department of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, 1058512, Japan
| | - Yuko Murakami
- Department of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, 1058512, Japan
| | - Shoji Yamada
- Department of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, 1058512, Japan
| | - Masaki Kimura
- Department of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, 1058512, Japan
| | - Yoshimasa Saito
- Department of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, 1058512, Japan
| | - Hidetsugu Saito
- Department of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, 1058512, Japan.
| |
Collapse
|