1
|
Leask MP, Crișan TO, Ji A, Matsuo H, Köttgen A, Merriman TR. The pathogenesis of gout: molecular insights from genetic, epigenomic and transcriptomic studies. Nat Rev Rheumatol 2024; 20:510-523. [PMID: 38992217 DOI: 10.1038/s41584-024-01137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
The pathogenesis of gout involves a series of steps beginning with hyperuricaemia, followed by the deposition of monosodium urate crystal in articular structures and culminating in an innate immune response, mediated by the NLRP3 inflammasome, to the deposited crystals. Large genome-wide association studies (GWAS) of serum urate levels initially identified the genetic variants with the strongest effects, mapping mainly to genes that encode urate transporters in the kidney and gut. Other GWAS highlighted the importance of uncommon genetic variants. More recently, genetic and epigenetic genome-wide studies have revealed new pathways in the inflammatory process of gout, including genetic associations with epigenomic modifiers. Epigenome-wide association studies are also implicating epigenomic remodelling in gout, which perhaps regulates the responsiveness of the innate immune system to monosodium urate crystals. Notably, genes implicated in gout GWAS do not include those encoding components of the NLRP3 inflammasome itself, but instead include genes encoding molecules involved in its regulation. Knowledge of the molecular mechanisms underlying gout has advanced through the translation of genetic associations into specific molecular mechanisms. Notable examples include ABCG2, HNF4A, PDZK1, MAF and IL37. Current genetic studies are dominated by participants of European ancestry; however, studies focusing on other population groups are discovering informative population-specific variants associated with gout.
Collapse
Affiliation(s)
- Megan P Leask
- Department of Physiology, University of Otago, Dunedin, Aotearoa, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tania O Crișan
- Department of Medical Genetics, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aichang Ji
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Tony R Merriman
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Microbiology and Immunology, University of Otago, Dunedin, Aotearoa, New Zealand.
| |
Collapse
|
2
|
Qi H, Sun M, Terkeltaub R, Merriman TR, Chen H, Li Z, Ji A, Xue X, Sun W, Wang C, Li X, He Y, Cui L, Dalbeth N, Li C. Hyperuricemia Subtypes Classified According to Renal Uric Acid Handling Manifesting Distinct Phenotypic and Genetic Profiles in People With Gout. Arthritis Rheumatol 2024; 76:1130-1140. [PMID: 38412854 DOI: 10.1002/art.42838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVE Hyperuricemia can be stratified into four subtypes according to renal uric acid handling. The aim of this study was to comprehensively describe the biologic characteristics (including genetic background) of clinically defined hyperuricemia subtypes in two large geographically independent gout cohorts. METHODS Hyperuricemia subtype was defined as renal uric acid overload (ROL), renal uric acid underexcretion (RUE), combined, or renal normal. Twenty single nucleotide polymorphisms (SNPs) previously identified as gout risk loci or associated with serum urate (SU) concentration in the East Asian population were genotyped. Weighted polygenic risk scores were calculated to assess the cumulative effect of genetic risks on the subtypes. RESULTS Of the 4,873 participants, 8.8% had an ROL subtype, 60.9% RUE subtype, 23.1% combined subtype, and 7.2% normal subtype. The ROL subtype was independently associated with older age at onset, lower SU, tophi, and diabetes mellitus; RUE was associated with lower body mass index (BMI) and non-diabetes mellitus; the combined subtype was associated with younger age at onset, higher BMI, SU, estimated glomerular filtration rate (eGFR), and smoking; and the normal subtype was independently associated with older age at onset, lower SU, and eGFR. Thirteen SNPs were associated with gout with 6 shared loci and subtype-dependent risk loci patterns. High polygenic risk scores were associated with ROL subtype (odds ratio [OR] = 9.63, 95% confidence interval [95% CI] 4.53-15.12), RUE subtype (OR = 2.18, 95% CI 1.57-3.03), and combined subtype (OR = 6.32, 95% CI 4.22-9.48) compared with low polygenic risk scores. CONCLUSION Hyperuricemia subtypes classified according to renal uric acid handling have subtype-specific clinical and genetic features, suggesting subtype-unique pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Han Qi
- The Affiliated Hospital of Qingdao University, Qingdao University, and Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Qingdao, China
| | - Mingshu Sun
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Tony R Merriman
- Qingdao University, Qingdao, China, and University of Alabama Birmingham
| | | | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aichang Ji
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaomei Xue
- The Affiliated Hospital of Qingdao University, Qingdao University, and Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Qingdao, China
| | - Wenyan Sun
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Can Wang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinde Li
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuwei He
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingling Cui
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Changgui Li
- The Affiliated Hospital of Qingdao University, Qingdao University, and Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Qingdao, China
| |
Collapse
|
3
|
Malik S, Chakraborty D, Agnihotri P, Sharma A, Biswas S. Mitochondrial functioning in Rheumatoid arthritis modulated by estrogen: Evidence-based insight into the sex-based influence on mitochondria and disease. Mitochondrion 2024; 76:101854. [PMID: 38403096 DOI: 10.1016/j.mito.2024.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Alteration of immune response and synovium microvasculature in Rheumatoid arthritis (RA) progression has been suggested to be associated with mitochondrial functioning. Mitochondria, with maternally inherited DNA, exhibit differential response to the female hormone estrogen. Various epidemiological evidence has also shown the prominence of RA in the female population, depicting the role of estrogen in modulating the pathogenesis of RA. As estrogen regulates the expression of differential proteins and associated signaling pathways of RA, its influence on mitochondrial functioning seems evident. Thus, in this review, the studies related to mitochondria and their relation with estrogen and Rheumatoid arthritis were retrieved. We analyzed the different mitochondrial activities that are altered in RA and the possibility of their estrogenic control. The study expands to in silico analysis, revealing the differential mitochondrial proteins expressed in RA and examining these proteins as potential estrogenic targets. It was found that ALDH2, CASP3, and SOD2 are the major mitochondrial proteins involved in RA progression and are also potent estradiol targets. The analysis establishes the role of mitochondrial proteins in RA progression, which were found to be direct or indirect targets of estrogen, depicting its potential for regulating mitochondrial functions in RA.
Collapse
Affiliation(s)
- Swati Malik
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Prachi Agnihotri
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Alankrita Sharma
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
4
|
Shang D, Wang P, Tang W, Mo R, Lai R, Lu J, Li Z, Wang X, Cai W, Wang H, Zhao G, Xie Q, Xiang X. Genetic Variations of ALDH (rs671) Are Associated With the Persistence of HBV Infection Among the Chinese Han Population. Front Med (Lausanne) 2022; 9:811639. [PMID: 35237626 PMCID: PMC8882735 DOI: 10.3389/fmed.2022.811639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Alcohol dehydrogenase 1B (ADH1B) and aldehyde dehydrogenase 2 (ALDH2), members of the alcohol dehydrogenase family, have important roles in liver diseases. The roles of the polymorphisms of ADH1B rs1229984 and ALDH2 rs671 in hepatitis B virus (HBV) susceptibility and persistent infection were investigated in the present study. Total 1,034 patients with hepatitis B [99 acute hepatitis B (AHB), 521 chronic hepatitis B (CHB), 158 acute-on-chronic liver failure (ACLF), 159 liver cirrhosis (LC), and 97 hepatocellular carcinoma (HCC)] and 1,262 healthy controls (HCs) of the Chinese Han population were recruited, and single nucleotide polymorphisms (SNPs) of rs671 and rs1229984 were genotyped. Independent and joint roles of rs671 and rs1229984 in HBV infection were analyzed. The results showed that rs671 genotypes had a significantly different distribution among different subgroups. Compared with HCs, the frequency of rs671-AA genotype was higher in hepatitis B individuals, especially in the CHB group [adjusted OR (95%CI) = 1.899 (1.232–2.928), p = 0.003, in the co-dominant model], which showed a significant positive association. It was further confirmed that CHB individuals who carried ALDH2 rs671-AA genotype had a higher risk of persistent HBV infection and higher HBV-DNA quantitation compared with those with GG/GA genotype. In addition, the rs671-AA genotype might predict HCC incidence in patients with CHB. There were no different distributions of alleles or genotypes in rs671 mutant among AHB, ACLF, LC, or HCC groups compared with HCs. These data suggested the possible hazardous role of rs671-AA variant in HBV infection and persistence.
Collapse
Affiliation(s)
- Dabao Shang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Hepatobiliary Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Weiliang Tang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruidong Mo
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rongtao Lai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ziqiang Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaolin Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gangde Zhao
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Gangde Zhao
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Qing Xie
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Xiaogang Xiang
| |
Collapse
|
5
|
The genetic basis of urate control and gout: Insights into molecular pathogenesis from follow-up study of genome-wide association study loci. Best Pract Res Clin Rheumatol 2021; 35:101721. [PMID: 34732286 DOI: 10.1016/j.berh.2021.101721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the post-genome-wide association study (GWAS) era in gout, i.e., the translation of GWAS genetic association signals into biologically informative knowledge. Analytical and experimental follow-up of individual loci, based on the identification of causal genetic variants, reveals molecular pathogenic pathways. We summarize in detail the largest GWAS in urate to date, then we review follow-up studies and molecular insights from ABCG2, HNF4A, PDZK1, MAF, GCKR, ALDH2, ALDH16A1, SLC22A12, SLC2A9, ABCC4, and SLC22A13, including the role of insulin signaling. One common factor in these pathways is the importance of transcriptional control, including the HNF4α transcription factor. The new molecular knowledge reveals new targets for intervention to manage urate levels and prevent gout.
Collapse
|
6
|
The Aldehyde Dehydrogenase ALDH2*2 Allele, Associated with Alcohol Drinking Behavior, Dates Back to Prehistoric Times. Biomolecules 2021; 11:biom11091376. [PMID: 34572589 PMCID: PMC8465343 DOI: 10.3390/biom11091376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/02/2023] Open
Abstract
Human alcohol-consumption behavior is partly genetically encoded. The alcohol consumption of 987 residents in Keelung, Taiwan, was evaluated by using the Alcohol Use Disorder Identification Test (AUDIT). We assessed ~750,000 genomic variants of 71 residents who drank hazardously (AUDIT score ≥ 8) and 126 residents who did not drink in their daily lives (AUDIT score = 0), using high-density single nucleotide polymorphism (SNP) arrays. The rs671 G > A manifests the highest significance of the association with drinking behavior (Fisher’s exact P = 8.75 × 10−9). It is a pleiotropic, non-synonymous variant in the aldehyde dehydrogenase 2 (ALDH2) gene. The minor allele “A”, commonly known as ALDH2*2, is associated with non-drinkers. Intriguingly, identity-by-descent haplotypes encompassing genomic regions with a median length of 1.6 (0.6–2.0) million nucleotide bases were found in all study participants with either heterozygous or homozygous ALDH2*2 (n = 81 and 13, respectively). We also analyzed a public-domain dataset with genome-wide genotypes of 2000 participants in Guangzhou, a coastal city in Southern China. Among them, 175 participants have homozygous ALDH2*2 genotype, and again, long ALDH2*2-carrying haplotypes were found in all 175 participants without exceptions. The median length of the ALDH2*2-carrying haplotype is 1.7 (0.5–2.8) million nucleotide bases. The haplotype lengths in the Keelung and Guangzhou cohorts combined indicate that the origin of the ALDH2*2 allele dates back to 7935 (7014–9381) years ago. In conclusion, the rs671 G > A is the leading genomic variant associated with the long-term drinking behavior among residents of Keelung, Taiwan. The ALDH2*2 allele has been in Asian populations since prehistoric times.
Collapse
|
7
|
Wu J, Ma C, Yi J, Chen Y, Ye A, Kong L, Qiu L, Xu T. Analysis of gender-specific associations between aldehyde dehydrogenase 2 ( ALDH2) rs671 genetic polymorphisms and serum uric acid levels in Han Chinese. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:772. [PMID: 34268385 PMCID: PMC8246195 DOI: 10.21037/atm-20-7113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/28/2021] [Indexed: 11/22/2022]
Abstract
Background Serum uric acid (SUA) is influenced by lifestyle and genetics, and unbalanced SUA levels are linked to various common disorders. While the aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphism appears to be associated with SUA levels, the evidence remains inconclusive. The aim of this study was to examine the distribution of the ALDH2 rs671 polymorphism among Han Chinese in Beijing and determine the association between this polymorphism and SUA. Methods A total of 6,461 randomized healthy individuals were included in the study. Biochemical indicators were tested and ALDH2 rs671 polymorphism testing was conducted for subjects enrolled in the study. The distribution of the ALDH2 rs671 polymorphism and the relationship between genotype and the levels of serum lipids and uric acid (UA) were analyzed. Results The ALDH2 rs671 genotype frequencies were 68.1% (G/G), 29.3% (G/A), and 2.6% (A/A). There was no significant difference in allele distribution between males and females. In males, different ALDH2 genotypes exhibited significant differences in several biochemical analytes, including body mass index (BMI), blood glucose (Glu), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), UA, glutamyl transpeptidase (GGT), and creatinine (Cr) (P<0.05). No such differences were found in females. SUA levels in G/A and A/A-carrying males were significantly lower than those of G/G-carrying males. The effect of the ALDH2 polymorphism on UA was still significant after further adjustment for factors including BMI, Glu, TC, HDL-C, Cr, and GGT. Conclusions The ALDH2 polymorphism is related to SUA in Beijing males, and A allele-carrying males have lower SUA levels.
Collapse
Affiliation(s)
- Jie Wu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Chaochao Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Jie Yi
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yu Chen
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Ali Ye
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Lingjun Kong
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Tengda Xu
- Department of Health Care, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
8
|
Liu YR, Tantoh DM, Lin CC, Hsiao CH, Liaw YP. Risk of gout among Taiwanese adults with ALDH-2 rs671 polymorphism according to BMI and alcohol intake. Arthritis Res Ther 2021; 23:115. [PMID: 33858492 PMCID: PMC8048165 DOI: 10.1186/s13075-021-02497-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Gout stems from both modifiable and genetic sources. We evaluated the risk of gout among Taiwanese adults with aldehyde dehydrogenase-2 (ALDH2) rs671 single nucleotide polymorphism (SNP) according to body mass index (BMI) and alcohol drinking. METHODS We obtained information of 9253 individuals having no personal history of cancer from the Taiwan Biobank (2008-2016) and estimated the association between gout and independent variables (e.g., rs671, BMI, and alcohol drinking) using multiple logistic regression. RESULTS Alcohol drinking and abnormal BMI were associated with a higher risk of gout whereas the rs671 GA+AA genotype was associated with a lower risk. The odds ratios (ORs) and 95% confidence intervals (CIs) were 1.297 and 1.098-1.532 for alcohol drinking, 1.550 and 1.368-1.755 for abnormal BMI, and 0.887 and 0.800-0.984 for GA+AA. The interaction between BMI and alcohol on gout was significant for GG (p-value = 0.0102) and GA+AA (p-value = 0.0175). When we stratified genotypes by BMI, alcohol drinking was significantly associated with gout only among individuals with a normal BMI (OR; 95% CI = 1.533; 1.036-2.269 for GG and 2.109; 1.202-3.699 for GA+AA). Concerning the combination of BMI and alcohol drinking among participants stratified by genotypes (reference, GG genotype, normal BMI, and no alcohol drinking), the risk of gout was significantly higher in the following categories: GG, normal BMI, and alcohol drinking (OR, 95% CI = 1.929, 1.385-2.688); GG, abnormal BMI, and no alcohol drinking (OR, 95% CI, = 1.721, 1.442-2.052); GG, abnormal BMI, and alcohol drinking (OR, 95% CI = 1.941, 1.501-2.511); GA+AA, normal BMI, and alcohol drinking (OR, 95% CI = 1.971, 1.167-3.327); GA+AA, abnormal BMI, and no alcohol drinking (OR, 95% CI = 1.498, 1.256-1.586); and GA+AA, abnormal BMI, and alcohol drinking (OR, 95% CI = 1.545, 1.088-2.194). CONCLUSIONS Alcohol and abnormal BMI were associated with a higher risk of gout, whereas the rs671 GA+AA genotype was associated with a lower risk. Noteworthy, BMI and alcohol had a significant interaction on gout risk. Stratified analyses revealed that alcohol drinking especially among normal-weight individuals might elevate the risk of gout irrespective of the genotype.
Collapse
Affiliation(s)
- Yu-Ruey Liu
- Department of Emergency Medicine, Chung-Kang Branch, Cheng Ching Hospital, Taichung City, 407, Taiwan
| | - Disline Manli Tantoh
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Chuan-Chao Lin
- Department of Physical Medicine and Rehabilitation, Chung Shan Medical University Hospital, Taichung City, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Chih-Hsuan Hsiao
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Yung-Po Liaw
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan.
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan.
| |
Collapse
|
9
|
Ko YL. Genetics of hyperuricemia and gout: Insights from recent genome-wide association studies and Mendelian randomization studies. Tzu Chi Med J 2021; 34:261-269. [PMID: 35912057 PMCID: PMC9333104 DOI: 10.4103/tcmj.tcmj_117_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/27/2021] [Accepted: 07/22/2021] [Indexed: 11/11/2022] Open
Abstract
Gout is the most common form of inflammatory arthritis in adults. Elevation serum uric acid (SUA) concentration is known to be the key to gout pathogenesis. Since the first genome-wide association study (GWAS) for SUA was performed in 2007, the number of gene loci known to be associated with hyperuricemia and gout has grown rapidly. GWASs and Mendelian randomization studies have also reported numerous novel results regarding the genetics of hyperuricemia and gout since 2018. We concisely review recent advances in scholarship on the effects of genetics on hyperuricemia and gout risk. We also review data from genetic association studies in Taiwan and perform GWASs of SUA levels among Taiwan Biobank participants.
Collapse
|
10
|
Leask MP, Sumpter NA, Lupi AS, Vazquez AI, Reynolds RJ, Mount DB, Merriman TR. The Shared Genetic Basis of Hyperuricemia, Gout, and Kidney Function. Semin Nephrol 2020; 40:586-599. [DOI: 10.1016/j.semnephrol.2020.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Kawafune K, Hachiya T, Nogawa S, Takahashi S, Jia H, Saito K, Kato H. Strong association between the 12q24 locus and sweet taste preference in the Japanese population revealed by genome-wide meta-analysis. J Hum Genet 2020; 65:939-947. [PMID: 32572145 DOI: 10.1038/s10038-020-0787-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 11/09/2022]
Abstract
The sweet taste preference of humans is an important adaptation to ensure the acquisition of carbohydrate nutrition; however, overconsumption of sweet foods can potentially lead to diseases such as obesity and diabetes. Although previous studies have suggested that interindividual variation of human sweet taste preference is heritable, genetic loci associated with the trait have yet to be fully elucidated. Here, we genotyped 12,312 Japanese participants using the HumanCore-12+ Custom BeadChip or the HumanCore-24 Custom BeadChip microarrays. The sweet taste preference of the participants was surveyed via an internet-based questionnaire, resulting in a five-point scale of sweet taste preference. The genome-wide meta-analysis of the Japanese participants revealed a strong association between the 12q24 locus and sweet taste preference scale (P = 2.8 × 10-70). The lead variant rs671 is monoallelic in non-East Asian populations and is located in the aldehyde dehydrogenase (ALDH2) gene, encoding an enzyme involved in alcohol metabolism. The association between the minor allele of rs671 and sweet taste preference was attenuated by adjusting for alcohol drinking. The subgroup analysis showed that the effect of rs671 on sweet taste preference was greater in males than in females. In conclusion, we found an association between the 12q24 locus and sweet taste preference in the Japanese population, and showed that the adjustment for drinking habits attenuated the association. This novel genetic association may provide new clues to elucidate mechanisms determining sweet taste preferences.
Collapse
Affiliation(s)
- Kaoru Kawafune
- Genequest Inc., Siba 5-29-11, Minato-ku, Tokyo, 108-0014, Japan
| | - Tsuyoshi Hachiya
- Genequest Inc., Siba 5-29-11, Minato-ku, Tokyo, 108-0014, Japan.,Genome Analytics Japan Inc., 15-1-3205 Tomihisa-cho, Shinjuku-ku, Tokyo, 162-0067, Japan
| | - Shun Nogawa
- Genequest Inc., Siba 5-29-11, Minato-ku, Tokyo, 108-0014, Japan
| | - Shoko Takahashi
- Genequest Inc., Siba 5-29-11, Minato-ku, Tokyo, 108-0014, Japan
| | - Huijuan Jia
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kenji Saito
- Genequest Inc., Siba 5-29-11, Minato-ku, Tokyo, 108-0014, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hisanori Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
12
|
Nakayama A, Nakatochi M, Kawamura Y, Yamamoto K, Nakaoka H, Shimizu S, Higashino T, Koyama T, Hishida A, Kuriki K, Watanabe M, Shimizu T, Ooyama K, Ooyama H, Nagase M, Hidaka Y, Matsui D, Tamura T, Nishiyama T, Shimanoe C, Katsuura-Kamano S, Takashima N, Shirai Y, Kawaguchi M, Takao M, Sugiyama R, Takada Y, Nakamura T, Nakashima H, Tsunoda M, Danjoh I, Hozawa A, Hosomichi K, Toyoda Y, Kubota Y, Takada T, Suzuki H, Stiburkova B, Major TJ, Merriman TR, Kuriyama N, Mikami H, Takezaki T, Matsuo K, Suzuki S, Hosoya T, Kamatani Y, Kubo M, Ichida K, Wakai K, Inoue I, Okada Y, Shinomiya N, Matsuo H. Subtype-specific gout susceptibility loci and enrichment of selection pressure on ABCG2 and ALDH2 identified by subtype genome-wide meta-analyses of clinically defined gout patients. Ann Rheum Dis 2020; 79:657-665. [PMID: 32238385 PMCID: PMC7213308 DOI: 10.1136/annrheumdis-2019-216644] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Genome-wide meta-analyses of clinically defined gout were performed to identify subtype-specific susceptibility loci. Evaluation using selection pressure analysis with these loci was also conducted to investigate genetic risks characteristic of the Japanese population over the last 2000-3000 years. METHODS Two genome-wide association studies (GWASs) of 3053 clinically defined gout cases and 4554 controls from Japanese males were performed using the Japonica Array and Illumina Array platforms. About 7.2 million single-nucleotide polymorphisms were meta-analysed after imputation. Patients were then divided into four clinical subtypes (the renal underexcretion type, renal overload type, combined type and normal type), and meta-analyses were conducted in the same manner. Selection pressure analyses using singleton density score were also performed on each subtype. RESULTS In addition to the eight loci we reported previously, two novel loci, PIBF1 and ACSM2B, were identified at a genome-wide significance level (p<5.0×10-8) from a GWAS meta-analysis of all gout patients, and other two novel intergenic loci, CD2-PTGFRN and SLC28A3-NTRK2, from normal type gout patients. Subtype-dependent patterns of Manhattan plots were observed with subtype GWASs of gout patients, indicating that these subtype-specific loci suggest differences in pathophysiology along patients' gout subtypes. Selection pressure analysis revealed significant enrichment of selection pressure on ABCG2 in addition to ALDH2 loci for all subtypes except for normal type gout. CONCLUSIONS Our findings on subtype GWAS meta-analyses and selection pressure analysis of gout will assist elucidation of the subtype-dependent molecular targets and evolutionary involvement among genotype, phenotype and subtype-specific tailor-made medicine/prevention of gout and hyperuricaemia.
Collapse
Affiliation(s)
- Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
- Medical Squadron, Air Base Group, Western Aircraft Control and Warning Wing, Japan Air Self-Defense Force, Kasuga, Japan
| | - Masahiro Nakatochi
- Division of Department of Nursing, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
- Department of General Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Toshihide Higashino
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Miki Watanabe
- Department of Public Health, Nagoya City University Graduate School Medical Science, Nagoya, Japan
| | - Toru Shimizu
- Midorigaoka Hospital, Takatsuki, Japan
- Kyoto Industrial Health Association, Kyoto, Japan
| | | | | | | | | | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Nishiyama
- Department of Public Health, Nagoya City University Graduate School Medical Science, Nagoya, Japan
| | - Chisato Shimanoe
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
- Clinical Research Center, Saga University Hospital, Saga, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Naoyuki Takashima
- Department of Health Science, Shiga University of Medical Science, Otsu, Japan
- Department of Public Health, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Yuya Shirai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makoto Kawaguchi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Mikiya Takao
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Ryo Sugiyama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yuzo Takada
- Faculty of Medical Science, Teikyo University of Science, Tokyo, Japan
| | - Takahiro Nakamura
- Laboratory for Mathematics, National Defense Medical College, Tokorozawa, Japan
| | - Hiroshi Nakashima
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Japan
| | - Masashi Tsunoda
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Japan
| | - Inaho Danjoh
- Group of Privacy Controls, Tohoku Medical Megabank Organization, Sendai, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Yu Kubota
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Blanka Stiburkova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Institute of Rheumatology, Prague, Czech Republic
| | - Tanya J Major
- Department of Biochemisty, University of Otago, Dunedin, New Zealand
| | - Tony R Merriman
- Department of Biochemisty, University of Otago, Dunedin, New Zealand
| | - Nagato Kuriyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Haruo Mikami
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Toshiro Takezaki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School Medical Science, Nagoya, Japan
| | - Tatsuo Hosoya
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
- Department of Pathophysiology and Therapy in Chronic Kidney Disease, Jikei University School of Medicine, Tokyo, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kimiyoshi Ichida
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ituro Inoue
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Many novel genetic associations in the field of hyperuricaemia and gout have been described recently. This review discusses advances in gout genetics and their potential clinical applications. RECENT FINDINGS Genome-wide association studies have identified approximately 30 serum urate-associated loci, some of which represent targets for drug development in gout. Some genes implicated in initiating the inflammatory response to deposited crystals in gout flares have also been described. In addition, genetic studies have been used to understand the link between hyperuricaemia and other comorbidities, particularly cardiometabolic diseases. ABCG2 has been established as a key genetic determinant in the onset of gout, and plays a role in the progression and severity of disease. Recent pharmacogenetic studies have also demonstrated the association between ABCG2 and poor response to allopurinol, and the link between HLA-B58:01 genotype and adverse drug reactions to allopurinol. SUMMARY Advances in gout genetics have provided important molecular insights into disease pathogenesis, better characterized the pharmacogenetics of allopurinol, and raised the possibility of using genetic testing to provide personalized treatment for patients. Prospective studies are now needed to clarify whether genetic testing in gout provides further benefit when added to established clinical management.
Collapse
|
14
|
Kawamura Y, Nakaoka H, Nakayama A, Okada Y, Yamamoto K, Higashino T, Sakiyama M, Shimizu T, Ooyama H, Ooyama K, Nagase M, Hidaka Y, Shirahama Y, Hosomichi K, Nishida Y, Shimoshikiryo I, Hishida A, Katsuura-Kamano S, Shimizu S, Kawaguchi M, Uemura H, Ibusuki R, Hara M, Naito M, Takao M, Nakajima M, Iwasawa S, Nakashima H, Ohnaka K, Nakamura T, Stiburkova B, Merriman TR, Nakatochi M, Ichihara S, Yokota M, Takada T, Saitoh T, Kamatani Y, Takahashi A, Arisawa K, Takezaki T, Tanaka K, Wakai K, Kubo M, Hosoya T, Ichida K, Inoue I, Shinomiya N, Matsuo H. Genome-wide association study revealed novel loci which aggravate asymptomatic hyperuricaemia into gout. Ann Rheum Dis 2019; 78:1430-1437. [PMID: 31289104 PMCID: PMC6788923 DOI: 10.1136/annrheumdis-2019-215521] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The first ever genome-wide association study (GWAS) of clinically defined gout cases and asymptomatic hyperuricaemia (AHUA) controls was performed to identify novel gout loci that aggravate AHUA into gout. METHODS We carried out a GWAS of 945 clinically defined gout cases and 1003 AHUA controls followed by 2 replication studies. In total, 2860 gout cases and 3149 AHUA controls (all Japanese men) were analysed. We also compared the ORs for each locus in the present GWAS (gout vs AHUA) with those in the previous GWAS (gout vs normouricaemia). RESULTS This new approach enabled us to identify two novel gout loci (rs7927466 of CNTN5 and rs9952962 of MIR302F) and one suggestive locus (rs12980365 of ZNF724) at the genome-wide significance level (p<5.0×10-8). The present study also identified the loci of ABCG2, ALDH2 and SLC2A9. One of them, rs671 of ALDH2, was identified as a gout locus by GWAS for the first time. Comparing ORs for each locus in the present versus the previous GWAS revealed three 'gout vs AHUA GWAS'-specific loci (CNTN5, MIR302F and ZNF724) to be clearly associated with mechanisms of gout development which distinctly differ from the known gout risk loci that basically elevate serum uric acid level. CONCLUSIONS This meta-analysis is the first to reveal the loci associated with crystal-induced inflammation, the last step in gout development that aggravates AHUA into gout. Our findings should help to elucidate the molecular mechanisms of gout development and assist the prevention of gout attacks in high-risk AHUA individuals.
Collapse
Affiliation(s)
- Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
- Department of General Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
- Medical Squadron, Air Base Group, Western Aircraft Control and Warning Wing, Japan Air Self-Defense Force, Kasuga, Fukuoka, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Toshihide Higashino
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masayuki Sakiyama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
- Department of Defense Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toru Shimizu
- Midorigaoka Hospital, Takatsuki, Osaka, Japan
- Kyoto Industrial Health Association, Kyoto, Japan
| | | | | | | | | | - Yuko Shirahama
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Ippei Shimoshikiryo
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Makoto Kawaguchi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hirokazu Uemura
- Department of Preventive Medicine, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan
| | - Rie Ibusuki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Oral Epidemiology, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Mikiya Takao
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Mayuko Nakajima
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Satoko Iwasawa
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroshi Nakashima
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keizo Ohnaka
- Department of Geriatric Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Nakamura
- Laboratory for Mathematics, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Blanka Stiburkova
- Institute of Rheumatology, Prague, Czech Republic
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tony R Merriman
- Department of Biochemisty, University of Otago, Dunedin, New Zealand
| | - Masahiro Nakatochi
- Data Science Division, Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Mitsuhiro Yokota
- Department of Genome Science, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Tappei Takada
- Department of Pharmacy, the University of Tokyo Hospital, Tokyo, Japan
| | - Tatsuya Saitoh
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Division of Inflammation Biology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kokichi Arisawa
- Department of Preventive Medicine, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan
| | - Toshiro Takezaki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Tatsuo Hosoya
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Department of Pathophysiology and Therapy in Chronic Kidney Disease, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Kimiyoshi Ichida
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ituro Inoue
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
15
|
Major TJ, Dalbeth N, Stahl EA, Merriman TR. An update on the genetics of hyperuricaemia and gout. Nat Rev Rheumatol 2019; 14:341-353. [PMID: 29740155 DOI: 10.1038/s41584-018-0004-x] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A central aspect of the pathogenesis of gout is elevated urate concentrations, which lead to the formation of monosodium urate crystals. The clinical features of gout result from an individual's immune response to these deposited crystals. Genome-wide association studies (GWAS) have confirmed the importance of urate excretion in the control of serum urate levels and the risk of gout and have identified the kidneys, the gut and the liver as sites of urate regulation. The genetic contribution to the progression from hyperuricaemia to gout remains relatively poorly understood, although genes encoding proteins that are involved in the NLRP3 (NOD-, LRR- and pyrin domain-containing 3) inflammasome pathway play a part. Genome-wide and targeted sequencing is beginning to identify uncommon population-specific variants that are associated with urate levels and gout. Mendelian randomization studies using urate-associated genetic variants as unconfounded surrogates for lifelong urate exposure have not supported claims that urate is causal for metabolic conditions that are comorbidities of hyperuricaemia and gout. Genetic studies have also identified genetic variants that predict responsiveness to therapies (for example, urate-lowering drugs) for treatment of hyperuricaemia. Future research should focus on large GWAS (that include asymptomatic hyperuricaemic individuals) and on increasing the use of whole-genome sequencing data to identify uncommon genetic variants with increased penetrance that might provide opportunities for clinical translation.
Collapse
Affiliation(s)
- Tanya J Major
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Eli A Stahl
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
16
|
Jee YH, Jung KJ, Park YB, Spiller W, Jee SH. Causal effect of alcohol consumption on hyperuricemia using a Mendelian randomization design. Int J Rheum Dis 2019; 22:1912-1919. [PMID: 31338989 DOI: 10.1111/1756-185x.13668] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 05/22/2019] [Accepted: 06/18/2019] [Indexed: 11/28/2022]
Abstract
AIM We used a Mendelian randomization analysis to assess the causal effect of alcohol consumption on hyperuricemia in Koreans. METHODS The Korean Cancer Prevention Study-II (KCPS-II) Biobank cohort consisted of 156 701 healthy Korean aged 20 years or older. Clinical data including serum uric acid, alcohol consumption, and other related confounding variables were collected at baseline. The 27 single nucleotide polymorphisms (SNP) including rs671 in aldehyde dehydrogenase 2 (ALDH2) were obtained from a genome-wide association study of alcohol consumption in the KCPS-II Biobank among 11 678 men and women in 2017. Both unweighted and weighted genetic risk score (wGRS) were calculated using 10 SNPs selected based on linkage disequilibrium. RESULTS As strong instrumental variables, both rs671 and wGRS were associated with an increased amount of alcohol drinking in men and women. Alcohol consumption was also positively associated with hyperuricemia risk in men (P < .001) and women (P = .014). Both rs671 major G allele and wGRS were not associated with hyperuricemia. In Mendelian randomization analysis, the causal relationship between any alcohol consumption and hyperuricemia was found only in men, albeit non-significant after correction for multiple testing. The associations did not change after excluding heavy drinkers or the elderly. CONCLUSIONS These results provide evidence that alcohol consumption is causally associated with risk of hyperuricemia in Korean men and support its role as a risk determinant.
Collapse
Affiliation(s)
- Yon Ho Jee
- DNAlink Corporation, Seoul, Korea.,Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Keum Ji Jung
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, Korea
| | - Wes Spiller
- Population Health Science Institute, University of Bristol, Bristol, UK
| | - Sun Ha Jee
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea.,Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| |
Collapse
|
17
|
Igarashi M, Nogawa S, Kawafune K, Hachiya T, Takahashi S, Jia H, Saito K, Kato H. Identification of the 12q24 locus associated with fish intake frequency by genome-wide meta-analysis in Japanese populations. GENES AND NUTRITION 2019; 14:21. [PMID: 31320941 PMCID: PMC6612078 DOI: 10.1186/s12263-019-0646-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/26/2019] [Indexed: 01/09/2023]
Abstract
Background Japan is traditionally a country with one of the highest levels of fish consumption worldwide, although the westernization of the Japanese diet has resulted in the reduction of fish consumption. A recent meta-analysis of genome-wide association studies (GWASs) on Western populations has identified a single nucleotide polymorphism (SNP) associated with fish intake frequency. Here, we examined the genetic basis for fish intake frequency among Japanese individuals. Results We conducted a meta-analysis of a GWAS including 12,603 Japanese individuals and identified a susceptibility locus for fish intake frequency at 12q24 (lead variant was rs11066015, P = 5.4 × 10-11). rs11066015 was in a strong linkage disequilibrium with rs671, a well-known SNP related to alcohol metabolism. When adjusted for alcohol drinking, the association between rs11066015 and fish intake frequency was substantially attenuated. Subgroup analysis revealed that the effect of the 12q24 variant on fish intake frequency was stronger in males than in females (P for interaction = 0.007) and stronger in the older subgroup than in the younger subgroup (P for interaction = 0.006). Conclusions Our findings suggest that the 12q24 locus is associated with fish intake frequency via alcohol drinking. This study can help contribute to personalized nutrition information, suggesting that fish intake should be promoted to consumers who have the rs11066015 minor allele, which is genetically linked to low fish intake frequency, especially in male and older individuals.
Collapse
Affiliation(s)
- Maki Igarashi
- 1Laboratory of Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan.,2Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535 Japan
| | - Shun Nogawa
- Genequest Inc, 5-29-11 Siba, Minato-ku, Tokyo, 108-0014 Japan
| | - Kaoru Kawafune
- Genequest Inc, 5-29-11 Siba, Minato-ku, Tokyo, 108-0014 Japan
| | - Tsuyoshi Hachiya
- Genequest Inc, 5-29-11 Siba, Minato-ku, Tokyo, 108-0014 Japan.,Genome Analytics Japan Inc, 15-1-3205, Tomihisa-cho, Shinjuku-ku, Tokyo, 162-0067 Japan
| | - Shoko Takahashi
- Genequest Inc, 5-29-11 Siba, Minato-ku, Tokyo, 108-0014 Japan
| | - Huijuan Jia
- 1Laboratory of Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Kenji Saito
- 1Laboratory of Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan.,Genequest Inc, 5-29-11 Siba, Minato-ku, Tokyo, 108-0014 Japan
| | - Hisanori Kato
- 1Laboratory of Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
18
|
Huang L, Liao J, Chen Y, Mo Z. Association between rs2188380 and the risk of breast cancer in southwest Chinese population. J Clin Lab Anal 2019; 33:e22889. [PMID: 30924556 PMCID: PMC6595373 DOI: 10.1002/jcla.22889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/17/2018] [Accepted: 12/29/2018] [Indexed: 01/04/2023] Open
Abstract
Background Previous studies have revealed that the single nucleotide polymorphism (SNP) rs2188380 was identified as a novel locus of gout. Interestingly, gout resulting from high serum uric acid (SUA) was also identified to be associated with the risk of breast cancer (BC). We hypothesized that maybe there was a relationship between rs2188380 and the risk of BC. Therefore, our study was conducted to investigate whether this novel gout‐related SNP (rs2188380) was associated with BC risk as well as the clinical and pathological characteristics in the southwest Chinese population. Materials and methods We performed a case‐control study including 104 breast cancer patients and 112 healthy controls to investigate whether rs2188380 is associated with BC risk in the southwest Chinese population. The genotyping was performed by the SNP scan method. General characteristics and clinicopathological characteristics of tumors were also included in the analysis. The statistical evaluations were performed using the Student t test, the chi‐square test or Fisher's exact test, and unconditional logistic regression analysis. Results The C/C genotype of rs2188380 might be related to BC risk to some extent compared with G/G genotype (OR = 9.241, 95% CI = 1.122‐76.101, P = 0.039). Furthermore, after adjusting the age, the association still existed (OR = 8.788, 95% CI = 1.063‐72.636, P = 0.044). However, no significant association was observed between rs2188380 and the clinicopathological characteristics of BC. Conclusions Our study primarily indicated that rs2188380 might have a potential association with BC risk to some extent. With a limited sample size and statistical power, further studies based on larger populations are needed to confirm the association.
Collapse
Affiliation(s)
- Lin Huang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinling Liao
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yang Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
19
|
Chen J, Huang W, Cheng CH, Zhou L, Jiang GB, Hu YY. Association Between Aldehyde dehydrogenase-2 Polymorphisms and Risk of Alzheimer's Disease and Parkinson's Disease: A Meta-Analysis Based on 5,315 Individuals. Front Neurol 2019; 10:290. [PMID: 30984100 PMCID: PMC6448532 DOI: 10.3389/fneur.2019.00290] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/06/2019] [Indexed: 11/21/2022] Open
Abstract
Objective: A number of studies have reported that aldehyde dehydrogenase-2 (ALDH2) polymorphisms maybe associated with the risk of Alzheimer's disease (AD) and Parkinson's disease (PD). However, the results of such studies are inconsistent. We therefore conducted a meta-analysis to clarify the association between ALDH2 polymorphisms and the risk of AD and PD. Methods: Five online databases were searched and the relevant studies were reviewed from inception through May 10, 2018. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated in each genetic model of the general population and various subgroups. Furthermore, we simultaneously performed heterogeneity, cumulative, sensitivity, and publication bias analyses. Results: Overall, nine case-control studies involving 5,315 subjects were included in this meta-analysis. Potential associations were found between the ALDH2 rs671 G>A polymorphism and the risk of AD (A vs. G: OR = 1.46, 95%CI = 1.01–2.11, P = 0.05, I2 = 84.2%; AA vs. GG: OR = 2.22, 95%CI = 1.03–4.77, P = 0.04, I2 = 79.2%; AA vs. GG+GA: OR = 1.94, 95%CI = 1.03–3.64, P =0.04, I2 = 71.1%). In addition, some similar results were observed in other subgroups. Moreover, no significant association between ALDH2 polymorphisms and PD risk. Conclusions: In conclusion, our meta-analysis indicated that the ALDH2 rs671 G>A polymorphism plays an important role in AD development.
Collapse
Affiliation(s)
- Jun Chen
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wei Huang
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chao-Hui Cheng
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Lan Zhou
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Guang-Bin Jiang
- Department of Radiology, Suizhou Central Hospital, Suizhou, China
| | - Yuan-Yuan Hu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
20
|
Nishiyama T, Nakatochi M, Goto A, Iwasaki M, Hachiya T, Sutoh Y, Shimizu A, Wang C, Tanaka H, Watanabe M, Hosono A, Tamai Y, Yamada T, Yamaji T, Sawada N, Fukumoto K, Otsuka K, Tanno K, Tomita H, Kojima K, Nagasaki M, Hozawa A, Hishida A, Sasakabe T, Nishida Y, Hara M, Ito H, Oze I, Nakamura Y, Mikami H, Ibusuki R, Takezaki T, Koyama T, Kuriyama N, Endoh K, Kuriki K, Turin TC, Naoyuki T, Katsuura-Kamano S, Uemura H, Okada R, Kawai S, Naito M, Momozawa Y, Kubo M, Sasaki M, Yamamoto M, Tsugane S, Wakai K, Suzuki S. Genome-wide association meta-analysis and Mendelian randomization analysis confirm the influence of ALDH2 on sleep durationin the Japanese population. Sleep 2019; 42:5362027. [DOI: 10.1093/sleep/zsz046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 02/20/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Takeshi Nishiyama
- Department of Public Health, Nagoya City University Graduate School of Medicine, Nagoya, Japan
- Department of Public Health, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Masahiro Nakatochi
- Data Science Division, Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Japan
| | - Atsushi Goto
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Tsuyoshi Hachiya
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Chaochen Wang
- Department of Public Health, Nagoya City University Graduate School of Medicine, Nagoya, Japan
- Department of Public Health, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hideo Tanaka
- Osaka Prefectural Kishiwada Public Health Center, Osaka, Japan
| | - Miki Watanabe
- Department of Public Health, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Hosono
- Department of Public Health, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | - Yuya Tamai
- Department of Public Health, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | | | - Taiki Yamaji
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Kentaro Fukumoto
- Department of Neuropsychiatry, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Kotaro Otsuka
- Department of Neuropsychiatry, School of Medicine, Iwate Medical University, Iwate, Japan
- Division of Clinical Research and Epidemiology, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Kozo Tanno
- Division of Clinical Research and Epidemiology, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
- Department of Hygiene and Preventive Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Hiroaki Tomita
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kaname Kojima
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tae Sasakabe
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Hidemi Ito
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Isao Oze
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yohko Nakamura
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Haruo Mikami
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Rie Ibusuki
- Department of International Islands and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshiro Takezaki
- Department of International Islands and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Nagato Kuriyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Kaori Endoh
- Laboratory of Public Health, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tanvir C Turin
- Department of Health Science, Shiga University of Medical Science, Shiga, Japan
| | - Takashima Naoyuki
- Department of Health Science, Shiga University of Medical Science, Shiga, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirokazu Uemura
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sayo Kawai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Oral Epidemiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
- Division of Ultra-High Field MRI and Department of Radiology, Iwate Medical University, Iwate, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Shoichiro Tsugane
- Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
21
|
Tao Y, Huang X, Xie Y, Zhou X, He X, Tang S, Liao M, Chen Y, Tan A, Chen Y, Wang Q, Mo Z. Genome-wide association and gene-environment interaction study identifies variants in ALDH2 associated with serum ferritin in a Chinese population. Gene 2019; 685:196-201. [PMID: 30399428 DOI: 10.1016/j.gene.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/28/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022]
Abstract
Ferritin is not only a biomarker of total iron status and systemic inflammation but is also associated with metabolic disorders. A number of genetic variations have been identified to affect serum ferritin, but there is limited understanding of the genetic variations in serum ferritin. To evaluate the relationships among genetic variations, metabolism and ferritin, we performed a secondary analysis of our previous genome-wide association study of ferritin. After adjusting for population stratification and age, the rs671 in ALDH2 was significantly associated with ferritin concentrations (P-combined = 2.98 × 10-8). Men carrying the mutated genotype of rs671 had lower serum ferritin levels. BMI was the mediation between rs671 and ferritin (P = 0.003). Moreover, a significant interaction between rs671 and alcohol consumption on ferritin levels was observed (P = 3.02 × 10-4). rs671 genotypes were significantly relevant to serum ferritin in drinkers (P = 2.39 × 10-7). We reported that rs671 was associated with ferritin in a manner of BMI mediation. These findings will provide new insights into the impacts of genetic variations and metabolisms on serum ferritin levels.
Collapse
Affiliation(s)
- Yuting Tao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi key laboratory for genomic and personalized medicine, Guangxi, collaborative innovation center for genomic and personalized medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaoliang Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi key laboratory for genomic and personalized medicine, Guangxi, collaborative innovation center for genomic and personalized medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuanliang Xie
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi key laboratory for genomic and personalized medicine, Guangxi, collaborative innovation center for genomic and personalized medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xianguo Zhou
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi key laboratory for genomic and personalized medicine, Guangxi, collaborative innovation center for genomic and personalized medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaoli He
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi key laboratory for genomic and personalized medicine, Guangxi, collaborative innovation center for genomic and personalized medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shaomei Tang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi key laboratory for genomic and personalized medicine, Guangxi, collaborative innovation center for genomic and personalized medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ming Liao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi key laboratory for genomic and personalized medicine, Guangxi, collaborative innovation center for genomic and personalized medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yang Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Department of Urology and Nephrology, the First Affiliated Hospital of Guangxi, Medical University, Nanning, China; Guangxi key laboratory for genomic and personalized medicine, Guangxi, collaborative innovation center for genomic and personalized medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Aihua Tan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi key laboratory for genomic and personalized medicine, Guangxi, collaborative innovation center for genomic and personalized medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yingchun Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi key laboratory for genomic and personalized medicine, Guangxi, collaborative innovation center for genomic and personalized medicine, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi key laboratory for genomic and personalized medicine, Guangxi, collaborative innovation center for genomic and personalized medicine, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, China.
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Department of Urology and Nephrology, the First Affiliated Hospital of Guangxi, Medical University, Nanning, China; Guangxi key laboratory for genomic and personalized medicine, Guangxi, collaborative innovation center for genomic and personalized medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
22
|
Matsumoto A. The Bidirectional Effect of Defective ALDH2 Polymorphism and Disease Prevention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:69-87. [PMID: 31368098 DOI: 10.1007/978-981-13-6260-6_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the role of aldehyde dehydrogenase 2 (ALDH2) in the detoxification of endogenous aldehydes, the defective polymorphism (rs671), which is highly prevalent among East Asians, does not show a serious phenotype, such as congenital abnormality. However, unfavorable and favorable impacts of the variant allele, ALDH2*2, on various disease risks have been reported. The underlying mechanisms are often complicated due to the compensatory aldehyde detoxification systems. As the phenotypes emerge due to overlapping environmental factors (e.g., alcohol intake and tobacco smoke) or individual vulnerabilities (e.g., aging and apolipoprotein E ε4 allele), polymorphism is therefore considered to be important in the field of preventative medicine. For example, it is important to recognize that ALDH2*2 carriers are at a high risk of alcohol drinking-related cancers; however, their drinking habit has less adverse effects on physiological indices, such as blood pressure, body mass index, levels of lipids, and hepatic deviation enzymes in the blood, than in non-ALDH2*2 carriers. Therefore, opportunities to reconsider their excessive drinking habit before adverse events occur can be missed. To perform effective disease prevention, the effects of ALDH2*2 on various diseases and the biological mechanisms should be clarified.
Collapse
Affiliation(s)
- Akiko Matsumoto
- Department of Social Medicine, Saga University School of Medicine, Saga, Japan.
| |
Collapse
|
23
|
Zhu W, Deng Y, Zhou X. Multiple Membrane Transporters and Some Immune Regulatory Genes are Major Genetic Factors to Gout. Open Rheumatol J 2018; 12:94-113. [PMID: 30123371 PMCID: PMC6062909 DOI: 10.2174/1874312901812010094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/30/2018] [Accepted: 06/20/2018] [Indexed: 01/10/2023] Open
Abstract
Gout is a common form of inflammatory arthritis caused by hyperuricemia and the deposition of Monosodium Urate (MSU) crystals. It is also considered as a complex disorder in which multiple genetic factors have been identified in association with its susceptibility and/or clinical outcomes. Major genes that were associated with gout include URAT1, GLUT9, OAT4, NPT1 (SLC17A1), NPT4 (SLC17A3), NPT5 (SLC17A4), MCT9, ABCG2, ABCC4, KCNQ1, PDZK1, NIPAL1, IL1β, IL-8, IL-12B, IL-23R, TNFA, MCP-1/CCL2, NLRP3, PPARGC1B, TLR4, CD14, CARD8, P2X7R, EGF, A1CF, HNF4G and TRIM46, LRP2, GKRP, ADRB3, ADH1B, ALDH2, COMT, MAOA, PRKG2, WDR1, ALPK1, CARMIL (LRRC16A), RFX3, BCAS3, CNIH-2, FAM35A and MYL2-CUX2. The proteins encoded by these genes mainly function in urate transport, inflammation, innate immunity and metabolism. Understanding the functions of gout-associated genes will provide important insights into future studies to explore the pathogenesis of gout, as well as to develop targeted therapies for gout.
Collapse
Affiliation(s)
- Weifeng Zhu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Nanchang University, Nanchang, China.,Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yan Deng
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Ophthalmology of Children, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaodong Zhou
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
24
|
Deng C, Tang S, Huang X, Gao J, Tian J, Zhou X, Xie Y, Liao M, Mo Z, Wang Q. Identification of three novel loci of ALDH2 Gene for Serum Folate levels in a Male Chinese Population by Genome-Wide Association Study. Gene 2018; 674:121-126. [PMID: 29953918 DOI: 10.1016/j.gene.2018.06.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Serum folate is important in clinical researches and DNA synthesis and methylation. Some loci and genes that are associated with folate levels had been detected by genome-wide association studies (GWAS), such as rs1801133 in MTHFR and rs1979277 in SHMT1. Nevertheless, only a small part of variants has been clearly identified for serum folate. Hence, we conducted a GWAS to discover new inherited susceptibility and gene-environment interactions on serum folate concentration. MATERIALS AND METHODS In a healthy Chinese population of 1999 men, genotyping was performed using Illumina HumanOmni1-Quad BeadChip. Serum folate levels were measured by enzyme-linked immunosorbent assay (ELISA), pathway enrichment analysis and statistical analysis were performed by Database for Annotation, Visualization and Integrated Discovery (DAVID) and Statistic Package for Social Science (SPSS). RESULTS We validated that rs1801133 in MTHFR was significantly involved in serum folate (P = 4.21 × 10-19). Surprisingly, we discovered three novel loci rs3782886, rs671, and rs4646776 of ALDH2 gene were suggestively significantly associated with folate serum folate levels in the male population studied (P = 2.17 × 10-7, P = 3.60 × 10-7, P = 3.99 × 10-7, respectively) after adjusting for population stratification, BMI and age. Men with the AA genotype had significantly higher serum folate levels compared with men with the GG/AG genotype. But we found ALDH2 gene mutation no relation to part of environmental factors on serum folate levels. CONCLUSION In a male Chinese population, genome-wide association study discovered that three novel SNPs rs3782886, rs671 and rs4646776 of ALDH2 gene were suggestively significantly associated with serum folate levels.
Collapse
Affiliation(s)
- Caiwang Deng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Shaomei Tang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Xiaoliang Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Jiamin Gao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Jiarong Tian
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Xianguo Zhou
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Yuanliang Xie
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Ming Liao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Department of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, China.
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Nanning, Guangxi Zhuang Autonomous Region 530021, China.
| |
Collapse
|
25
|
Sakiyama M, Matsuo H, Nakaoka H, Kawamura Y, Kawaguchi M, Higashino T, Nakayama A, Akashi A, Ueyama J, Kondo T, Wakai K, Sakurai Y, Yamamoto K, Ooyama H, Shinomiya N. Common variant of BCAS3 is associated with gout risk in Japanese population: the first replication study after gout GWAS in Han Chinese. BMC MEDICAL GENETICS 2018; 19:96. [PMID: 29879923 PMCID: PMC5992830 DOI: 10.1186/s12881-018-0583-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/19/2018] [Indexed: 01/29/2023]
Abstract
Background Gout is a common disease resulting from hyperuricemia which causes acute arthritis. A recent genome-wide association study (GWAS) of gout identified three new loci for gout in Han Chinese: regulatory factor X3 (RFX3), potassium voltage-gated channel subfamily Q member 1 (KCNQ1), and breast carcinoma amplified sequence 3 (BCAS3). The lack of any replication studies of these three loci using other population groups prompted us to perform a replication study with Japanese clinically defined gout cases and controls. Methods We genotyped the variants of RFX3 (rs12236871), KCNQ1 (rs179785) and BCAS3 (rs11653176) in 723 Japanese clinically defined gout cases and 913 controls by TaqMan method. rs179785 of KCNQ1 is also evaluated by direct sequencing because of difficulties of its genotyping by TaqMan method. Results Although the variants of RFX3 and BCAS3 were clearly genotyped by TaqMan method, rs179785 of KCNQ1 was not, because rs179785 (A/G) of KCNQ1 is located at the last nucleotide (“A”) of the 12-bp deletion variant (rs200562977) of KCNQ1. Therefore, rs179785 and rs200562977 of KCNQ1 were genotyped by direct sequencing in all samples. Moreover, by direct sequencing with the same primers, we were able to evaluate the genotypes of rs179784 of KCNQ1 which shows strong linkage disequilibrium with rs179785 (D’ = 1.0 and r2 = 0.99). rs11653176, a common variant of BCAS3, showed a significant association with gout (P = 1.66 × 10− 3; odds ratio [OR] = 0.80); the direction of effect was the same as that seen in the previous Han Chinese GWAS. Two variants of KCNQ1 (rs179785 and rs179784) had a nominally significant association (P = 0.043 and 0.044; OR = 0.85 and 0.86, respectively), but did not pass the significance threshold for multiple hypothesis testing using the Bonferroni correction. On the other hand, rs200562977 of KCNQ1 and rs12236871 of RFX3 did not show any significant association with gout. Conclusion BCAS3 is a coactivator of estrogen receptor alpha, and the influence of estrogen to serum uric acid level is well known. Our present replication study, as did the previous gout GWAS, demonstrated the common variant of BCAS3 to be associated with gout susceptibility.
Collapse
Affiliation(s)
- Masayuki Sakiyama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.,Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Makoto Kawaguchi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Toshihide Higashino
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Airi Akashi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Jun Ueyama
- Program in Radiological and Medical Laboratory Sciences, Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaaki Kondo
- Program in Radiological and Medical Laboratory Sciences, Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yutaka Sakurai
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Japan
| | - Ken Yamamoto
- Department of Medical Chemistry, Kurume University School of Medicine, Kurume, Japan
| | | | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
26
|
Matsumoto A. [Importance of an Aldehyde Dehydrogenase 2 Polymorphism in Preventive Medicine]. Nihon Eiseigaku Zasshi 2018; 73:9-20. [PMID: 29386454 DOI: 10.1265/jjh.73.9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unlike genetic alterations in other aldehyde dehydrogenase (ALDH) isozymes, a defective ALDH2 polymorphism (rs671), which is carried by almost half of East Asians, does not show a clear phenotype such as a shortened life span. However, impacts of a defective ALDH2 allele, ALDH2*2, on various disease risks have been reported. As ALDH2 is responsible for the detoxification of endogenous aldehydes, a negative effect of this polymorphism is predicted, but bidirectional effects have been actually observed and the mechanisms underlying such influences are often complex. One reason for this complexity may be the existence of compensatory aldehyde detoxification systems and the secondary effects of these systems. There are many issues to be addressed with regard to the ALDH2 polymorphism in the field of preventive medicine, including the following concerns. First, ALDH2 in the fetal stage plays a role in aldehyde detoxification; therefore, prenatal health effects of environmental aldehyde exposure are of concern for ALDH2*2-carrying fetuses. Second, ALDH2*2 carriers are at high risk of drinking-related cancers. However, their drinking habits result in less worsening of physiological findings, such as energy metabolism index and liver functions, compared with non-ALDH2*2 carriers, and therefore opportunities to detect excessive drinking can be lost. Third, personalized medicine such as personalized prescriptions for ALDH2*2 carriers will be required in the clinical setting, and accumulation of evidence is awaited. Lastly, since the ALDH2 polymorphism is not considered in workers' limits of exposure to aldehydes and their precursors, efforts to lower exposure levels beyond legal standards are required.
Collapse
Affiliation(s)
- Akiko Matsumoto
- Department of Social Medicine, Saga University School of Medicine
| |
Collapse
|
27
|
Zhang D, Yang M, Zhou D, Li Z, Cai L, Bao Y, Li H, Shan Z, Liu J, Lv D, Liu Y, Xu C, Ling J, Xu Y, Zhang S, Huang Q, Shi Y, Zhu Y, Lai M. The polymorphism rs671 at ALDH2 associated with serum uric acid levels in Chinese Han males: A genome-wide association study. Gene 2018; 651:62-69. [PMID: 29408531 DOI: 10.1016/j.gene.2018.01.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 01/22/2023]
Abstract
Serum uric acid (SUA) levels are highly heritable and an increased SUA level is one of important risk factors for gout, diabetes, metabolic syndrome, and cardiovascular diseases. The genetic variants underlying SUA remains largely unexplored. The aim was to explore new genetic variants underlying SUA in Chinese Han. We performed a genome-wide association study of SUA levels in Han Chinese. The discovery set contained 1634 samples and subsequent replication was comprised of 1649 females and 1169 males. 2620 subjects were recruited in the detailed analysis of rs671, alcohol drinking and SUA. We found a genome-wide significant association between SUA level and the SNP rs671 at ALDH2 (P = 1.2 × 10-10) in the merged data. In addition, we also replicated the signal from rs3733590 at SLC2A9 (P = 1.0 × 10-10). In males, about 0.21% to 1.95% of the total variance for SUA can be explained by rs671 using linear regression models in four independent cohorts. Of those, 56.75% to 93.51% might be explained by altering alcohol consumption due to rs671. No statistical association of rs671 and SUA was observed in females (P = 0.409). Furthermore, we observed a causal relationship between alcohol consumption and SUA in males using rs671 as an instrumental variable (P = 5.1 × 10-4). We replicated the previous findings in SLC2A9. Our evidence supported that rs671 was associated with SUA by affecting alcohol consumption in males. This finding strongly suggests a role for alcohol consumption in the development of hyperuricaemia and uric acid related traits.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Min Yang
- Department of Nutrition and Food Safety, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Dan Zhou
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Zhenli Li
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Libin Cai
- The People's No.3 Hospital of Xiaoshan, Hangzhou, Zhejiang 322251, PR China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, 600 Yishan Road, Shanghai 200233, PR China
| | - Hong Li
- Department of Endocrinology, Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang 310058, PR China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Juan Liu
- Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | - Duo Lv
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yi Liu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Chunxiao Xu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Jie Ling
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yuyang Xu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Shuai Zhang
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Qiong Huang
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Maode Lai
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
28
|
Identification of CDC42BPG as a novel susceptibility locus for hyperuricemia in a Japanese population. Mol Genet Genomics 2017; 293:371-379. [PMID: 29124443 PMCID: PMC5854719 DOI: 10.1007/s00438-017-1394-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/04/2017] [Indexed: 12/29/2022]
Abstract
Chronic kidney disease and hyperuricemia are serious global health problems. Recent genome-wide association studies have identified various genetic variants related to these disorders. However, most studies have been conducted in a cross-sectional manner. To identify novel susceptibility loci for chronic kidney disease or hyperuricemia, we performed longitudinal exome-wide association studies (EWASs), using ~ 244,000 genetic variants and clinical data of Japanese individuals who had undergone annual health checkups for several years. After establishing quality controls, the association of renal function-related traits in 5648 subjects (excluding patients with dialysis and population outliers) with 24,579 single nucleotide variants (SNVs) for three genetic models (P < 3.39 × 10− 7) was tested using generalized estimating equation models. The longitudinal EWASs revealed novel relations of five SNVs to renal function-related traits. Cross-sectional data for renal function-related traits in 7699 Japanese subjects were examined in a replication study. Among the five SNVs, rs55975541 in CDC42BPG was significantly (P < 4.90 × 10− 4) related to the serum concentration of uric acid in the replication cohort. We also examined the SNVs detected in our longitudinal EWASs with the information on P values in GKDGEN meta-analysis data. Four SNVs in SLC15A2 were significantly associated with the estimated glomerular filtration rate in European ancestry populations, although these SNVs were related to the serum concentration of uric acid with borderline significance in our longitudinal EWASs. Our findings indicate that CDC42BPG may be a novel susceptibility locus for hyperuricemia.
Collapse
|
29
|
Replication of Gout/Urate Concentrations GWAS Susceptibility Loci Associated with Gout in a Han Chinese Population. Sci Rep 2017. [PMID: 28642574 PMCID: PMC5481433 DOI: 10.1038/s41598-017-04127-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gout is a chronic disease resulting from elevated serum urate (SU). Previous genome-wide association studies (GWAS) have identified dozens of susceptibility loci for SU/gout, but few have been conducted for Chinese descent. Here, we try to extensively investigate whether these loci contribute to gout risk in Han Chinese. A total of 2255 variants in linkage disequilibrium (LD) with GWAS identified SU/gout associated variants were analyzed in a Han Chinese cohort of 1255 gout patients and 1848 controls. Cumulative genetic risk score analysis was performed to assess the cumulative effect of multiple “risk” variants on gout incidence. 23 variants (41%) of LD pruned variants set (n = 56) showed nominal association with gout in our sample (p < 0.05). Some of the previously reported gout associated loci (except ALDH16A1), including ABCG2, SLC2A9, GCKR, ALDH2 and CNIH2, were replicated. Cumulative genetic risk score analyses showed that the risk of gout increased for individuals with the growing number (≥8) of the risk alleles on gout associated loci. Most of the gout associated loci identified in previous GWAS were confirmed in an independent Chinese cohort, and the SU associated loci also confer susceptibility to gout. These findings provide important information of the genetic association of gout.
Collapse
|
30
|
Independent effects of ADH1B and ALDH2 common dysfunctional variants on gout risk. Sci Rep 2017; 7:2500. [PMID: 28566767 PMCID: PMC5451470 DOI: 10.1038/s41598-017-02528-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/12/2017] [Indexed: 01/26/2023] Open
Abstract
Gout is caused by hyperuricemia, with alcohol consumption being an established risk factor. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are crucial enzymes for alcohol metabolism. We recently performed a genome-wide association study of gout and a subsequent fine-mapping study which identified rs671 of ALDH2 as a gout locus. However, the association between gout and common variants of ADH1B has hitherto remained unreported, prompting us to investigate the association between gout and common dysfunctional variants of ADH1B (rs1229984) and ALDH2 (rs671). We used 1,048 clinically defined gout cases and 1,334 controls of Japanese male. The "His carrier" (His/His or His/Arg) of rs1229984 (His48Arg) of ADH1B significantly increased gout risk (P = 4.3 × 10-4, odds ratio = 1.76), as did the "non-Lys carrier (Glu/Glu)" of rs671 (Glu504Lys) of ALDH2. Furthermore, common variants of ADH1B and ALDH2 are independently associated with gout. Our findings likewise suggest that genotyping these variants can be useful for the evaluation of gout risk.
Collapse
|
31
|
Takeshima K, Nishiwaki Y, Suda Y, Niki Y, Sato Y, Kobayashi T, Miyamoto K, Uchida H, Inokuchi W, Tsuji T, Funayama A, Nakamura M, Matsumoto M, Toyama Y, Miyamoto T. A missense single nucleotide polymorphism in the ALDH2 gene, rs671, is associated with hip fracture. Sci Rep 2017; 7:428. [PMID: 28348376 PMCID: PMC5428735 DOI: 10.1038/s41598-017-00503-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/02/2017] [Indexed: 12/31/2022] Open
Abstract
Hip fracture is the most severe bone fragility fracture among osteoporotic injuries. Family history is a known risk factor for fracture and now included among criteria for osteoporosis diagnosis and treatment; however, genetic factors underlying family history favoring fracture remain to be elucidated. Here we demonstrate that a missense SNP in the ALDH2 gene, rs671 (ALDH2*2), is significantly associated with hip fracture (odds ratio = 2.48, 95% confidence interval: 1.20–5.10, p = 0.021). The rs671 SNP was also significantly associated with osteoporosis development (odds ratio = 2.04, 95% confidence interval: 1.07–3.88, p = 0.040). For analysis we enrolled 92 hip fracture patients plus 48 control subjects without bone fragility fractures with higher than −2.5 SD bone mineral density. We also recruited 156 osteoporosis patients diagnosed as below −2.5 SD in terms of bone mineral density but without hip fracture. Association of rs671 with hip fracture and osteoporosis was significant even after adjustment for age and body mass index. Our results provide new insight into the pathogenesis of hip fracture.
Collapse
Affiliation(s)
- Kenichiro Takeshima
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Orthopedic Surgery, Eiju General Hospital, 2-23-16 Higashiueno, Taito-ku, Tokyo, 110-8645, Japan
| | - Yuji Nishiwaki
- Department of Environmental and Occupational Health, School of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yasunori Suda
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Orthopedic Surgery, International University of Health and Welfare, Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo, 108-8329, Japan
| | - Yasuo Niki
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Advanced Therapy for Musculoskeletal Disorders, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kana Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hisaya Uchida
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Orthopedic Surgery, Hiratsuka City Hospital, 1-19-1 Minamihara, Hiratsuka city, Kanagawa, 254-0065, Japan
| | - Wataru Inokuchi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Orthopedic Surgery, Nerima Sogo Hospital, 1-24-1 Asahigaoka, Nerima-ku, Tokyo, 176-8530, Japan
| | - Takashi Tsuji
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Orthopedic Surgery, Fujita Health University, 1-98 Kutsukake-cho, Toyoake city, Aichi, 470-1192, Japan
| | - Atsushi Funayama
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshiaki Toyama
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Department of Environmental and Occupational Health, School of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|