1
|
Gaccione L, Martina M, Barchi L, Portis E. A Compendium for Novel Marker-Based Breeding Strategies in Eggplant. PLANTS (BASEL, SWITZERLAND) 2023; 12:1016. [PMID: 36903876 PMCID: PMC10005326 DOI: 10.3390/plants12051016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The worldwide production of eggplant is estimated at about 58 Mt, with China, India and Egypt being the major producing countries. Breeding efforts in the species have mainly focused on increasing productivity, abiotic and biotic tolerance/resistance, shelf-life, the content of health-promoting metabolites in the fruit rather than decreasing the content of anti-nutritional compounds in the fruit. From the literature, we collected information on mapping quantitative trait loci (QTLs) affecting eggplant's traits following a biparental or multi-parent approach as well as genome-wide association (GWA) studies. The positions of QTLs were lifted according to the eggplant reference line (v4.1) and more than 700 QTLs were identified, here organized into 180 quantitative genomic regions (QGRs). Our findings thus provide a tool to: (i) determine the best donor genotypes for specific traits; (ii) narrow down QTL regions affecting a trait by combining information from different populations; (iii) pinpoint potential candidate genes.
Collapse
|
2
|
Gebremeskel H, Umer MJ, Hongju Z, Li B, Shengjie Z, Yuan P, Xuqiang L, Nan H, Wenge L. Genetic mapping and molecular characterization of the delayed green gene dg in watermelon ( Citrullus lanatus). FRONTIERS IN PLANT SCIENCE 2023; 14:1152644. [PMID: 37152178 PMCID: PMC10158938 DOI: 10.3389/fpls.2023.1152644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Leaf color mutants are common in higher plants that can be used as markers in crop breeding and are important tools in understanding regulatory mechanisms of chlorophyll biosynthesis and chloroplast development. Genetic analysis was performed by evaluating F1, F2 and BC1 populations derived from two parental lines (Charleston gray with green leaf color and Houlv with delayed green leaf color), suggesting that a single recessive gene controls the delayed green leaf color. In this study, the delayed green mutant showed a conditional pale green leaf color at the early leaf development but turned to green as the leaf development progressed. Delayed green leaf plants showed reduced pigment content, photosynthetic, chlorophyll fluorescence parameters, and impaired chloroplast development compared with green leaf plants. The delayed green (dg) locus was mapped to 7.48 Mb on chromosome 3 through bulk segregant analysis approach, and the gene controlling delayed green leaf color was narrowed to 53.54 kb between SNP130 and SNP135 markers containing three candidate genes. Sequence alignment of the three genes indicated that there was a single SNP mutation (G/A) in the coding region of ClCG03G010030 in the Houlv parent, which causes an amino acid change from Arginine to Lysine. The ClCG03G010030 gene encoded FtsH extracellular protease protein family is involved in early delayed green leaf development. The expression level of ClCG03G010030 was significantly reduced in delayed green leaf plants than in green leaf plants. These results indicated that the ClCG03G010030 might control watermelon green leaf color and the single SNP variation in ClCG03G010030 may result in early delayed green leaf color development during evolutionary process.
Collapse
Affiliation(s)
- Haileslassie Gebremeskel
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Department of Horticulture, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Muhammad Jawad Umer
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhu Hongju
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Bingbing Li
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhao Shengjie
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Pingli Yuan
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lu Xuqiang
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - He Nan
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Liu Wenge
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Liu Wenge,
| |
Collapse
|
3
|
Xu T, Zhang J, Liu Y, Zhang Q, Li W, Zhang Y, Wu M, Chen T, Ding D, Wang W, Zhang Z. Exon skipping in IspE Gene is associated with abnormal chloroplast development in rice albino leaf 4 mutant. FRONTIERS IN PLANT SCIENCE 2022; 13:986678. [PMID: 36426160 PMCID: PMC9678938 DOI: 10.3389/fpls.2022.986678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The formation of leaf color largely depends on the components of pigment accumulation in plastids, which are involved in chloroplast development and division. Here, we isolated and characterized the rice albino leaf 4 (al4) mutant, which exhibited an albino phenotype and eventually died at the three-leaf stage. The chloroplasts in al4 mutant were severely damaged and unable to form intact thylakoid structure. Further analysis revealed that the candidate gene encodes 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE), which participates in the methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis. We further demonstrated that the mutation at the exon-intron junction site cause alternative splicing factors fail to distinguish the origin of the GT-AG intron, leading to exon skipping and producing a truncated OsIspE in the al4 mutant. Notably, disruption of OsIspE led to the reduced expression of chloroplast-associated genes, including chloroplast biosynthetic and translation related genes and photosynthetic associated nuclear genes (PhANGs). In summary, these findings reveal that OsIspE plays a crucial role in chloroplast biogenesis and provides novel insights into the function of CMK during chloroplast development in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wenyi Wang
- *Correspondence: Zemin Zhang, ; Wenyi Wang,
| | | |
Collapse
|
4
|
Andrade-Marcial M, Pacheco-Arjona R, Góngora-Castillo E, De-la-Peña C. Chloroplastic pentatricopeptide repeat proteins (PPR) in albino plantlets of Agave angustifolia Haw. reveal unexpected behavior. BMC PLANT BIOLOGY 2022; 22:352. [PMID: 35850575 PMCID: PMC9295523 DOI: 10.1186/s12870-022-03742-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pentatricopeptide repeat (PPR) proteins play an essential role in the post-transcriptional regulation of genes in plastid genomes. Although important advances have been made in understanding the functions of these genes, there is little information available on chloroplastic PPR genes in non-model plants and less in plants without chloroplasts. In the present study, a comprehensive and multifactorial bioinformatic strategy was applied to search for putative PPR genes in the foliar and meristematic tissues of green and albino plantlets of the non-model plant Agave angustifolia Haw. RESULTS A total of 1581 PPR transcripts were identified, of which 282 were chloroplastic. Leaf tissue in the albino plantlets showed the highest levels of expression of chloroplastic PPRs. The search for hypothetical targets of 12 PPR sequences in the chloroplast genes of A. angustifolia revealed their action on transcripts related to ribosomes and translation, photosystems, ATP synthase, plastid-encoded RNA polymerase and RuBisCO. CONCLUSIONS Our results suggest that the expression of PPR genes depends on the state of cell differentiation and plastid development. In the case of the albino leaf tissue, which lacks functional chloroplasts, it is possible that anterograde and retrograde signaling networks are severely compromised, leading to a compensatory anterograde response characterized by an increase in the expression of PPR genes.
Collapse
Affiliation(s)
- M Andrade-Marcial
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - R Pacheco-Arjona
- Facultad de Medicina Veterinaria y Zootecnia, Consejo Nacional de Ciencia y Tecnología- Universidad Autónoma de Yucatán, Mérida, Mexico
| | - E Góngora-Castillo
- Consejo Nacional de Ciencia y Tecnología-Unidad De Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - C De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
5
|
Han SH, Kim JY, Lee JH, Park CM. Safeguarding genome integrity under heat stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab355. [PMID: 34343307 DOI: 10.1093/jxb/erab355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Heat stress adversely affects an array of molecular and cellular events in plant cells, such as denaturation of protein and lipid molecules and malformation of cellular membranes and cytoskeleton networks. Genome organization and DNA integrity are also disturbed under heat stress, and accordingly, plants have evolved sophisticated adaptive mechanisms that either protect their genomes from deleterious heat-induced damages or stimulate genome restoration responses. In particular, it is emerging that DNA damage responses are a critical defense process that underlies the acquirement of thermotolerance in plants, during which molecular players constituting the DNA repair machinery are rapidly activated. In recent years, thermotolerance genes that mediate the maintenance of genome integrity or trigger DNA repair responses have been functionally characterized in various plant species. Furthermore, accumulating evidence supports that genome integrity is safeguarded through multiple layers of thermoinduced protection routes in plant cells, including transcriptome adjustment, orchestration of RNA metabolism, protein homeostasis, and chromatin reorganization. In this review, we summarize topical progresses and research trends in understanding how plants cope with heat stress to secure genome intactness. We focus on molecular regulatory mechanisms by which plant genomes are secured against the DNA-damaging effects of heat stress and DNA damages are effectively repaired. We will also explore the practical interface between heat stress response and securing genome integrity in view of developing biotechnological ways of improving thermotolerance in crop species under global climate changes, a worldwide ecological concern in agriculture.
Collapse
Affiliation(s)
- Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Yu HW, Lu ZH, Wang X, Liu D, He JX, Jiang XL, Ke LJ, Guo WW, Deng XX, Xu Q. Identification of a delayed leaf greening gene from a mutation of pummelo. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1165-1173. [PMID: 33009992 DOI: 10.1007/s11427-020-1790-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/01/2020] [Indexed: 05/11/2023]
Abstract
Delayed greening of young leaves is an unusual phenomenon of plants in nature. Citrus are mostly evergreen tree species. Here, a natural mutant of "Guanxi" pummelo (Citrus maxima), which shows yellow leaves at the young stage, was characterized to identify the genes underlying the trait of delayed leaf greening in plants. A segregating population with this mutant as the seed parent and a normal genotype as the pollen parent was generated. Two DNA pools respectively from the leaves of segregating seedlings with extreme phenotypes of normal leaf greening and delayed leaf greening were collected for sequencing. Bulked segregant analysis (BSA) and InDel marker analysis demonstrated that the delayed leaf greening trait is governed by a 0.3 Mb candidate region on chromosome 6. Gene expression analysis further identified a key candidate gene (Citrus Delayed Greening gene 1, CDG1) in the 0.3 Mb region, which showed significantly differential expression between the genotypes with delayed and normal leaf greening phenotypes. There was a 67 bp InDel region difference in the CDG1 promoter and the InDel region contains a TATA-box element. Confocal laser-scanning microscopy revealed that the CDG1-GFP fusion protein signals were co-localized with the chloroplast signals in the protoplasts. Overexpression of CDG1 in tobacco and Arabidopsis led to the phenotype of delayed leaf greening. These results suggest that the CDG1 gene is involved in controlling the delayed leaf greening phenotype with important functions in chloroplast development.
Collapse
Affiliation(s)
- Hui-Wen Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, Minnan Normal University, Zhangzhou, 363000, China
| | - Zhi-Hao Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xia Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Xian He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Lin Jiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling-Jun Ke
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, Minnan Normal University, Zhangzhou, 363000, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiu-Xin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Zhao D, Zheng Y, Yang L, Yao Z, Cheng J, Zhang F, Jiang H, Liu D. The transcription factor AtGLK1 acts upstream of MYBL2 to genetically regulate sucrose-induced anthocyanin biosynthesis in Arabidopsis. BMC PLANT BIOLOGY 2021; 21:242. [PMID: 34049482 PMCID: PMC8162001 DOI: 10.1186/s12870-021-03033-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/11/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND The regulation of anthocyanin biosynthesis by various factors including sugars, light and abiotic stresses is mediated by numerous regulatory factors acting at the transcriptional level. Here experimental evidence was provided in order to demonstrate that the nuclear GARP transcription factor AtGLK1 plays an important role in regulating sucrose-induced anthocyanin biosynthesis in Arabidopsis. RESULTS The results obtained using real-time quantitative PCR and GUS staining assays revealed that AtGLK1 was mainly expressed in the green tissues of Arabidopsis seedlings and could be induced by sucrose. The loss-of-function glk1 glk2 double mutant has lower anthocyanin levels than the glk2 single mutant, although it has been determined that loss of AtGLK1 alone does not affect anthocyanin accumulation. Overexpression of AtGLK1 enhances the accumulation of anthocyanin in transgenic Arabidopsis seedlings accompanied by increased expression of anthocyanin biosynthetic and regulatory genes. Moreover, we found that AtGLK1 also participates in plastid-signaling mediated anthocyanin accumulations. Genetic, physiological, and molecular biological approaches demonstrated that AtGLK1 acts upstream of MYBL2, which is a key negative regulator of anthocyanin biosynthesis, to genetically regulate sucrose-induced anthocyanin biosynthesis. CONCLUSION Our results indicated that AtGLK1 positively regulates sucrose-induced anthocyanin biosynthesis in Arabidopsis via MYBL2.
Collapse
Affiliation(s)
- Dongming Zhao
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuxuan Zheng
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lingjun Yang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ziyu Yao
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianfeng Cheng
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fang Zhang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haiyan Jiang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dong Liu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
8
|
Azarin K, Usatov A, Makarenko M, Kozel N, Kovalevich A, Dremuk I, Yemelyanova A, Logacheva M, Fedorenko A, Averina N. A point mutation in the photosystem I P700 chlorophyll a apoprotein A1 gene confers variegation in Helianthus annuus L. PLANT MOLECULAR BIOLOGY 2020; 103:373-389. [PMID: 32166486 DOI: 10.1007/s11103-020-00997-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/09/2020] [Indexed: 05/24/2023]
Abstract
Even a point mutation in the psaA gene mediates chlorophyll deficiency. The role of the plastid signal may perform the redox state of the compounds on the acceptor-side of PSI. Two extranuclear variegated mutants of sunflower, Var1 and Var33, were investigated. The yellow sectors of both mutants were characterized by an extremely low chlorophyll and carotenoid content, as well as poorly developed, unstacked thylakoid membranes. A full-genome sequencing of the cpDNA revealed mutations in the psaA gene in both Var1 and Var33. The cpDNA from the yellow sectors of Var1 differs from those in the wild type by only a single, non-synonymous substitution (Gly734Glu) in the psaA gene, which encodes a subunit of photosystem (PS) I. In the cpDNA from the yellow sectors of Var33, the single-nucleotide insertion in the psaA gene was revealed, leading to frameshift at the 580 amino acid position. Analysis of the photosynthetic electron transport demonstrated an inhibition of the PSI and PSII activities in the yellow tissues of the mutant plants. It has been suggested that mutations in the psaA gene of both Var1 and Var33 led to the disruption of PSI. Due to the non-functional PSI, photosynthetic electron transport is blocked, which, in turn, leads to photodamage of PSII. These data are confirmed by immunoblotting analysis, which showed a significant reduction in PsbA in the yellow leaf sectors, but not PsaA. The expression of chloroplast and nuclear genes encoding the PSI subunits (psaA, psaB, and PSAN), the PSII subunits (psbA, psbB, and PSBW), the antenna proteins (LHCA1, LHCB1, and LHCB4), the ribulose 1.5-bisphosphate carboxylase subunits (rbcL and RbcS), and enzymes of chlorophyll biosynthesis were down-regulated in the yellow leaf tissue. The extremely reduced transcriptional activity of the two protochlorophyllide oxidoreductase (POR) genes involved in chlorophyll biosynthesis is noteworthy. The disruption of NADPH synthesis, due to the non-functional PSI, probably led to a significant reduction in NADPH-protochlorophyllide oxidoreductase in the yellow sectors of Var1 and Var33. A dramatic decrease in chlorophyllide was shown in the yellow sectors. A reduction in NADPH-protochlorophyllide oxidoreductase, along with photodegradation, has been suggested as a result of chlorophyll deficiency.
Collapse
Affiliation(s)
- Kirill Azarin
- Southern Federal University, Rostov-on-Don, Russian Federation.
| | | | - Maksim Makarenko
- Southern Federal University, Rostov-on-Don, Russian Federation
- Institute for Information Transmission Problems, Moscow, Russian Federation
| | - Nikolay Kozel
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| | | | - Irina Dremuk
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Anna Yemelyanova
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Mariya Logacheva
- Institute for Information Transmission Problems, Moscow, Russian Federation
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | | | - Nataliya Averina
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
9
|
Yi J, Zhao D, Chu J, Yan J, Liu J, Wu M, Cheng J, Jiang H, Zeng Y, Liu D. AtDPG1 is involved in the salt stress response of Arabidopsis seedling through ABI4. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110180. [PMID: 31481194 DOI: 10.1016/j.plantsci.2019.110180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 05/08/2023]
Abstract
Although the genes controlling chloroplast development play important roles in plant responses to environmental stresses, the molecular mechanisms remain largely unclear. In this study, an Arabidopsis mutant dpg1 (delayed pale-greening1) with a chloroplast development defect was studied. By using quantitative RT-PCR and histochemical GUS assays, we demonstrated that AtDPG1 was mainly expressed in the green tissues of Arabidopsis seedlings and could be induced by salt stress. Phenotypic analysis showed that mutation in AtDPG1 lead to an enhanced sensitivity to salt stress in Arabidopsis seedlings. Further studies demonstrated that disruption of the AtDPG1 in Arabidopsis increases its sensitivity to salt stress in an ABA-dependent manner. Moreover, expression levels of various stress-responsive and ABA signal-related genes were remarkably altered in the dpg1 plants under NaCl treatment. Notably, the transcript levels of ABI4 in dpg1 mutant increased more significantly than that in wild type plants under salt conditions. The seedlings of dpg1/abi4 double mutant exhibited stronger resistance to salt stress after salt treatment compared with the dpg1 single mutant, suggesting that the salt-hypersensitive phenotype of dpg1 seedlings could be rescued via loss of ABI4 function. These results reveal that AtDPG1 is involved in the salt stress response of Arabidopsis seedling through ABI4.
Collapse
Affiliation(s)
- Jian Yi
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dongming Zhao
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jijun Yan
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinsong Liu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meijia Wu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianfeng Cheng
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haiyan Jiang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yongjun Zeng
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dong Liu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
10
|
Chen N, Wang P, Li C, Wang Q, Pan J, Xiao F, Wang Y, Zhang K, Li C, Yang B, Sun C, Deng X. A Single Nucleotide Mutation of the IspE Gene Participating in the MEP Pathway for Isoprenoid Biosynthesis Causes a Green-Revertible Yellow Leaf Phenotype in Rice. PLANT & CELL PHYSIOLOGY 2018; 59:1905-1917. [PMID: 29893915 DOI: 10.1093/pcp/pcy108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/03/2018] [Indexed: 05/28/2023]
Abstract
Plant isoprenoids are dependent on two independent pathways, the cytosolic mevalonate (MVA) pathway and the plastidic methylerythritol phosphate (MEP) pathway. IspE is one of seven known enzymes in the MEP pathway. Currently, no IspE gene has been identified in rice. In addition, no virescent mutants have been reported to result from a gene mutation affecting the MEP pathway. In this study, we isolated a green-revertible yellow leaf mutant gry340 in rice. The mutant exhibited a reduced level of photosynthetic pigments, and an arrested development of chloroplasts and mitochondria in its yellow leaves. Map-based cloning revealed a missense mutation in OsIspE (LOC_Os01g58790) in gry340 mutant plants. OsIspE is constitutively expressed in all tissues, and its encoded protein is targeted to the chloroplast. Further, the mutant phenotype of gry340 was rescued by introduction of the wild-type gene. Therefore, we have successfully identified an IspE gene in monocotyledons via map-based cloning, and confirmed that the green-revertible yellow leaf phenotype of gry340 does result from a single nucleotide mutation in the IspE gene. In addition, the ispE ispF double mutant displayed an etiolation lethal phenotype, indicating that the isoprenoid precursors from the cytosol cannot efficiently compensate for the deficiency of the MEP pathway in rice chloroplasts. Furthermore, real-time quantitative reverse transcription-PCR suggested that this functional defect in OsIspE affected the expression of not only other MEP pathway genes but also that of MVA pathway genes, photosynthetic genes and mitochondrial genes.
Collapse
Affiliation(s)
- Nenggang Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunmei Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qian Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jihong Pan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fuliang Xiao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kuan Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Caixia Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Changhui Sun
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojian Deng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Wang M, Jiang L, Da Q, Liu J, Feng D, Wang J, Wang HB, Jin HL. DELAYED GREENING 238, a Nuclear-Encoded Chloroplast Nucleoid Protein, Is Involved in the Regulation of Early Chloroplast Development and Plastid Gene Expression in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2016; 57:2586-2599. [PMID: 27818379 DOI: 10.1093/pcp/pcw172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Chloroplast development is an essential process for plant growth that is regulated by numerous proteins. Plastid-encoded plastid RNA polymerase (PEP) is a large complex that regulates plastid gene transcription and chloroplast development. However, many proteins in this complex remain to be identified. Here, through large-scale screening of Arabidopsis mutants by Chl fluorescence imaging, we identified a novel protein, DELAYED GREENING 238 (DG238), which is involved in regulating chloroplast development and plastid gene expression. Loss of DG238 retards plant growth, delays young leaf greening, affects chloroplast development and lowers photosynthetic efficiency. Moreover, blue-native PAGE (BN-PAGE) and Western blot analysis indicated that PSII and PSI protein levels are reduced in dg238 mutants. DG238 is mainly expressed in young tissues and is regulated by light signals. Subcellular localization analysis showed that DG238 is a nuclear-encoded chloroplast nucleoid protein. More interestingly, DG238 was co-expressed with FLN1, which encodes an essential subunit of the PEP complex. Bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays showed that DG238 can also interact with FLN1. Taken together, these results suggest that DG238 may function as a component of the PEP complex that is important for the early stage of chloroplast development and helps regulate PEP-dependent plastid gene expression.
Collapse
Affiliation(s)
- Menglong Wang
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, PR China
| | - Lan Jiang
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, PR China
| | - Qingen Da
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, PR China
| | - Jun Liu
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, PR China
| | - Dongru Feng
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, PR China
| | - Jinfa Wang
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, PR China
| | - Hong-Bin Wang
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, PR China
| | - Hong-Lei Jin
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, PR China
| |
Collapse
|