1
|
Shen H, Zhang T, Ji Y, Zhang Y, Wang Y, Jiang Y, Chen X, Liang Q, Wu K, Li Y, Lu X, Cui L, Zhao B, Wang Y. GRK5 Deficiency in the Hippocampus Leads to Cognitive Impairment via Abnormal Microglial Alterations. Mol Neurobiol 2023; 60:1547-1562. [PMID: 36525154 DOI: 10.1007/s12035-022-03151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
GRK5 is a member of the G protein-coupled receptor (GPCR) kinase family and is closely associated with heart and nervous system disease. It has been reported that GRK5 is closely related to cerebral nerve function and neurodegenerative diseases. However, the biological function of GRK5 in the brain and the influence of GRK5 deficiency on cognitive dysfunction associated with neurodegenerative diseases are unknown. Here, we reported that mice with reduced GRK5 in the hippocampus exhibit cognitive impairment and some Alzheimer's disease (AD)-related molecular pathologies, such as significant neuronal damage and loss, enhanced tau protein phosphorylation, and increased levels of Aβ peptides in the hippocampus. Mechanistically, we observed that GRK5 is located in microglia and plays an essential role in maintaining the morphology and function of microglia. GRK5 deficiency elicits microglial morphology changes and proinflammatory-associated gene increases. In addition, transcriptional analysis of hippocampal tissues revealed striking changes in neuroactive ligand‒receptor interactions and TNF signaling in GRK5-deficient mice. In conclusion, our results further confirm the vital role of GRK5 in maintaining normal cognitive function in mice. This finding suggests a possible mechanism by which GRK5 maintains microglial homeostasis, and its loss may induce microglial function deficits and cause some AD-related molecular pathogenesis.
Collapse
Affiliation(s)
- Hongtao Shen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tianzhen Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yao Ji
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yu Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongxiang Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuling Jiang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qiuhao Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kefeng Wu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yunfeng Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xingyu Lu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
2
|
Suo WZ. GRK5 Deficiency Causes Mild Cognitive Impairment due to Alzheimer's Disease. J Alzheimers Dis 2021; 85:1399-1410. [PMID: 34958040 DOI: 10.3233/jad-215379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prevention of Alzheimer's disease (AD) is a high priority mission while searching for a disease modifying therapy for AD, a devastating major public health crisis. Clinical observations have identified a prodromal stage of AD for which the patients have mild cognitive impairment (MCI) though do not yet meet AD diagnostic criteria. As an identifiable transitional stage before the onset of AD, MCI should become the high priority target for AD prevention, assuming successful prevention of MCI and/or its conversion to AD also prevents the subsequent AD. By pulling this string, one demonstrated cause of amnestic MCI appears to be the deficiency of G protein-coupled receptor-5 (GRK5). The most compelling evidence is that GRK5 knockout (GRK5KO) mice naturally develop into aMCI during aging. Moreover, GRK5 deficiency was reported to occur during prodromal stage of AD in CRND8 transgenic mice. When a GRK5KO mouse was crossbred with Tg2576 Swedish amyloid precursor protein transgenic mouse, the resulted double transgenic GAP mice displayed exaggerated behavioral and pathological changes across the spectrum of AD pathogenesis. Therefore, the GRK5 deficiency possesses unique features and advantage to serve as a prophylactic therapeutic target for MCI due to AD.
Collapse
Affiliation(s)
- William Z Suo
- Laboratory for Alzheimer's Disease & Aging Research, VA Medical Center, Kansas City, MO, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,The University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| |
Collapse
|
3
|
Guimarães TR, Swanson E, Kofler J, Thathiah A. G protein-coupled receptor kinases are associated with Alzheimer's disease pathology. Neuropathol Appl Neurobiol 2021; 47:942-957. [PMID: 34164834 DOI: 10.1111/nan.12742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
AIM Alzheimer's disease (AD) is characterised by extracellular deposition of amyloid-β (Aβ) in amyloid plaques and intracellular aggregation and accumulation of hyperphosphorylated tau in neurofibrillary tangles (NFTs). Although several kinases have been identified to contribute to the pathological phosphorylation of tau, kinase-targeted therapies for AD have not been successful in clinical trials. Critically, the kinases responsible for numerous identified tau phosphorylation sites remain unknown. G protein-coupled receptor (GPCR) kinases (GRKs) have recently been implicated in phosphorylation of non-GPCR substrates, for example, tubulin and α-synuclein, and in neurological disorders, including schizophrenia and Parkinson's disease. Accordingly, we investigated the involvement of GRKs in the pathophysiology of AD. METHODS We performed a comprehensive immunohistochemical and biochemical analysis of the ubiquitously expressed GRKs, namely, GRK2, 3, 5 and 6, in postmortem human brain tissue of control subjects and AD patients. RESULTS GRKs display unique cell-type-specific expression patterns in neurons, astrocytes and microglia. Levels of GRKs 2, 5 and 6 are specifically decreased in the CA1 region of the AD hippocampus. Biochemical evidence indicates that the GRKs differentially associate with total, soluble and insoluble pools of tau in the AD brain. Complementary immunohistochemical studies indicate that the GRKs differentially colocalise with total tau, phosphorylated tau and NFTs. Notably, GRKs 3 and 5 also colocalise with amyloid plaques. CONCLUSION These studies establish a link between GRKs and the pathological phosphorylation and accumulation of tau and amyloid pathology in AD brains and suggest a novel role for these kinases in regulation of the pathological hallmarks of AD.
Collapse
Affiliation(s)
- Thais Rafael Guimarães
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eric Swanson
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Brain Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amantha Thathiah
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Brain Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Targeting GRK5 for Treating Chronic Degenerative Diseases. Int J Mol Sci 2021; 22:ijms22041920. [PMID: 33671974 PMCID: PMC7919044 DOI: 10.3390/ijms22041920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors and they are responsible for the transduction of extracellular signals, regulating almost all aspects of mammalian physiology. These receptors are specifically regulated by a family of serine/threonine kinases, called GPCR kinases (GRKs). Given the biological role of GPCRs, it is not surprising that GRKs are also involved in several pathophysiological processes. Particular importance is emerging for GRK5, which is a multifunctional protein, expressed in different cell types, and it has been found located in single or multiple subcellular compartments. For instance, when anchored to the plasma membrane, GRK5 exerts its canonical function, regulating GPCRs. However, under certain conditions (e.g., pro-hypertrophic stimuli), GRK5 translocates to the nucleus of cells where it can interact with non-GPCR-related proteins as well as DNA itself to promote “non-canonical” signaling, including gene transcription. Importantly, due to these actions, several studies have demonstrated that GRK5 has a pivotal role in the pathogenesis of chronic-degenerative disorders. This is true in the cardiac cells, tumor cells, and neurons. For this reason, in this review article, we will inform the readers of the most recent evidence that supports the importance of targeting GRK5 to prevent the development or progression of cancer, cardiovascular, and neurological diseases.
Collapse
|
5
|
A Standardized Anxiety Quotient in Elevated Open Platform Task Quantifies Rodent Anxiogenic Tendency with Improved Reliability and Sensitivity. Neuroscience 2019; 423:12-17. [PMID: 31704493 DOI: 10.1016/j.neuroscience.2019.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 11/24/2022]
Abstract
Sensitivity and reliability of animal behavioral assessment methods are critical for successful translation of in vitro findings to in vivo. Here we report a data transformation process in the elevated open platform task that generates a novel parameter, namely peak tolerance of fear (PTF) or its inversely correlated equivalent of anxiety quotient (AQ), to measure anxiogenic tendency in rodent. As compared to traditional parameters such as travel distance, time, or entries, PTF or AQ displays largely reduced data dispersion not only ingroup but also cross-study and cross-cohort, therefore representing a significant improvement of the methodology for rodent anxiety assessment.
Collapse
|
6
|
The expression of G protein-coupled receptor kinase 5 and its interaction with dendritic marker microtubule-associated protein-2 after status epilepticus. Epilepsy Res 2017; 138:62-70. [DOI: 10.1016/j.eplepsyres.2017.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/07/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
|
7
|
Zhang Y, Zhao J, Yin M, Cai Y, Liu S, Wang Y, Zhang X, Cao H, Chen T, Huang P, Mai H, Liu Z, Tao H, Zhao B, Cui L. The influence of two functional genetic variants of GRK5 on tau phosphorylation and their association with Alzheimer's disease risk. Oncotarget 2017; 8:72714-72726. [PMID: 29069820 PMCID: PMC5641163 DOI: 10.18632/oncotarget.20283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/23/2017] [Indexed: 11/25/2022] Open
Abstract
Our work explores the relationship between G protein-coupled receptor kinase-5 (GRK5) single nucleotide polymorphisms and Alzheimer's disease risk. We confirmed that GRK5 translocates from the cellular membrane to the cytosol in the hippocampus of Alzheimer's disease mice and that GRK5 deficiency promotes tau hyperphosphorylation, a hallmark of Alzheimer's disease pathology. Our results indicate that one functional variant, or mutant, of GRK5 (GRK5-Gln41Leu) decreased GRK5 translocation from the membrane to the cytoplasm and reduced tau hyperphosphorylation, whereas, another GRK5 mutant (GRK5-Arg304His) increased GRK5 translocation to the cytoplasm and promoted tau hyperphosphorylation. In addition, case-control studies revealed that GRK5-Gln41Leu is associated with a lower risk of late-onset Alzheimer's disease. Our findings suggest that the GRK5-Gln41Leu mutant may resist tau hyperphosphorylation by promoting GRK5 membrane stability and, in effect, may contribute to lower Alzheimer's disease risk.
Collapse
Affiliation(s)
- Yuan Zhang
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Jianghao Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingkang Yin
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shengyuan Liu
- Department of Chronic Disease, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Yan Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xingliang Zhang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hao Cao
- Departments of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Ting Chen
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Pengru Huang
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hui Mai
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhou Liu
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua Tao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
8
|
Singh P, Peng W, Zhang Q, Ding X, Suo WZ. GRK5 deficiency leads to susceptibility to intermittent hypoxia-induced cognitive impairment. Behav Brain Res 2016; 302:29-34. [PMID: 26778781 DOI: 10.1016/j.bbr.2016.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/11/2022]
Abstract
Obstructive sleep apnea (OSA) leads to cognitive impairment in about 25% patients, though it remains elusive what makes one more susceptible than the other to be cognitively impaired. G protein-coupled receptor kinase-5 (GRK5) deficiency is recently found to render subjects more susceptible to cognitive impairment triggered by over-expression of Swedish mutant ß-amyloid precursor protein. This study is to determine whether GRK5 deficiency also renders subjects more susceptible to the OSA-triggered cognitive impairment. Both wild type (WT) and GRK5 knockout (KO) mice were placed in conditions absence and presence of intermittent hypoxia (IH) with 8%/21% O2 90-s cycle for 8h a day for a month, and then followed by behavioral assessments with battery of tasks. We found that the selected IH condition only induced marginally abnormal behavior (slightly elevated anxiety with most others unchanged) in the WT mice but it caused significantly more behavioral deficits in the KO mice, ranging from elevated anxiety, impaired balancing coordination, and impaired short-term spatial memory. These results suggest that GRK5 deficiency indeed makes the mice more susceptible to wide range of behavioral impairments, including cognitive impairments.
Collapse
Affiliation(s)
- Prabhakar Singh
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | - Wei Peng
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | - Qiang Zhang
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA
| | - XueFeng Ding
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; Department of Cognitive Sciences, Beijing Institute of Basic Medical Sciences, Beijing 100850, PR China
| | - William Z Suo
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; Departments of Neurology, University of Kansas Medical College, Kansas City, KS 66170, USA; Departments of Physiology, University of Kansas Medical College, Kansas City, KS 66170, USA; The University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA.
| |
Collapse
|