1
|
Purohit K, Reddy N, Sunna A. Exploring the Potential of Bioactive Peptides: From Natural Sources to Therapeutics. Int J Mol Sci 2024; 25:1391. [PMID: 38338676 PMCID: PMC10855437 DOI: 10.3390/ijms25031391] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Bioactive peptides, specific protein fragments with positive health effects, are gaining traction in drug development for advantages like enhanced penetration, low toxicity, and rapid clearance. This comprehensive review navigates the intricate landscape of peptide science, covering discovery to functional characterization. Beginning with a peptidomic exploration of natural sources, the review emphasizes the search for novel peptides. Extraction approaches, including enzymatic hydrolysis, microbial fermentation, and specialized methods for disulfide-linked peptides, are extensively covered. Mass spectrometric analysis techniques for data acquisition and identification, such as liquid chromatography, capillary electrophoresis, untargeted peptide analysis, and bioinformatics, are thoroughly outlined. The exploration of peptide bioactivity incorporates various methodologies, from in vitro assays to in silico techniques, including advanced approaches like phage display and cell-based assays. The review also discusses the structure-activity relationship in the context of antimicrobial peptides (AMPs), ACE-inhibitory peptides (ACEs), and antioxidative peptides (AOPs). Concluding with key findings and future research directions, this interdisciplinary review serves as a comprehensive reference, offering a holistic understanding of peptides and their potential therapeutic applications.
Collapse
Affiliation(s)
- Kruttika Purohit
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Sydney, NSW 2109, Australia;
| | - Narsimha Reddy
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Sydney, NSW 2109, Australia;
- School of Science, Parramatta Campus, Western Sydney University, Penrith, NSW 2751, Australia
| | - Anwar Sunna
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Sydney, NSW 2109, Australia;
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
2
|
Nisar N, Mir SA, Kareem O, Pottoo FH. Proteomics approaches in the identification of cancer biomarkers and drug discovery. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
3
|
Zubair F. MALDI mass Spectrometry based proteomics for drug discovery & development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 40:29-35. [PMID: 34916018 DOI: 10.1016/j.ddtec.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022]
Abstract
Matrix-assisted laser desorption/ ionization (MALDI) is a soft ionization technique for introducing wide range of analytes into a mass spectrometer (MS). MALDI MS is a powerful tool in drug discovery research and development, providing a high-throughput molecular analysis technique in both preclinical and clinical systems. In particular, MALDI MS is invaluable in the study of peptides and proteins that drive all biological functions. This technology is label-free, provides high specificity in molecular identification, and is high-throughput. MALDI MS has been used in biomarker discovery and quantitation in virtually all tissues, serum, plasma, CSF, and urine for diagnostics, patient stratification, and monitoring drug efficacy. Other applications include characterization of biological drugs, spatial mapping of biomarkers and drugs in tissues, drug screening, and toxicological assessment.
Collapse
|
4
|
Chang LS, Oblinger JL, Smith AE, Ferrer M, Angus SP, Hawley E, Petrilli AM, Beauchamp RL, Riecken LB, Erdin S, Poi M, Huang J, Bessler WK, Zhang X, Guha R, Thomas C, Burns SS, Gilbert TSK, Jiang L, Li X, Lu Q, Yuan J, He Y, Dixon SAH, Masters A, Jones DR, Yates CW, Haggarty SJ, La Rosa S, Welling DB, Stemmer-Rachamimov AO, Plotkin SR, Gusella JF, Guinney J, Morrison H, Ramesh V, Fernandez-Valle C, Johnson GL, Blakeley JO, Clapp DW, on behalf of the Synodos for NF2 Consortium. Brigatinib causes tumor shrinkage in both NF2-deficient meningioma and schwannoma through inhibition of multiple tyrosine kinases but not ALK. PLoS One 2021; 16:e0252048. [PMID: 34264955 PMCID: PMC8282008 DOI: 10.1371/journal.pone.0252048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Neurofibromatosis Type 2 (NF2) is an autosomal dominant genetic syndrome caused by mutations in the NF2 tumor suppressor gene resulting in multiple schwannomas and meningiomas. There are no FDA approved therapies for these tumors and their relentless progression results in high rates of morbidity and mortality. Through a combination of high throughput screens, preclinical in vivo modeling, and evaluation of the kinome en masse, we identified actionable drug targets and efficacious experimental therapeutics for the treatment of NF2 related schwannomas and meningiomas. These efforts identified brigatinib (ALUNBRIG®), an FDA-approved inhibitor of multiple tyrosine kinases including ALK, to be a potent inhibitor of tumor growth in established NF2 deficient xenograft meningiomas and a genetically engineered murine model of spontaneous NF2 schwannomas. Surprisingly, neither meningioma nor schwannoma cells express ALK. Instead, we demonstrate that brigatinib inhibited multiple tyrosine kinases, including EphA2, Fer and focal adhesion kinase 1 (FAK1). These data demonstrate the power of the de novo unbiased approach for drug discovery and represents a major step forward in the advancement of therapeutics for the treatment of NF2 related malignancies.
Collapse
Affiliation(s)
- Long-Sheng Chang
- The Research Institute at Nationwide Children’s Hospital and Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Janet L. Oblinger
- The Research Institute at Nationwide Children’s Hospital and Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Abbi E. Smith
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steven P. Angus
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Eric Hawley
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Alejandra M. Petrilli
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, Florida, United States of America
| | - Roberta L. Beauchamp
- Massachusetts General Hospital and Department of Neurology, Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Serkan Erdin
- Massachusetts General Hospital and Department of Neurology, Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ming Poi
- Division of Pharmacy Practice and Science, The Ohio State University College of Pharmacy, Columbus, Ohio, United States of America
| | - Jie Huang
- The Research Institute at Nationwide Children’s Hospital and Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Waylan K. Bessler
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Craig Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sarah S. Burns
- The Research Institute at Nationwide Children’s Hospital and Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Thomas S. K. Gilbert
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Li Jiang
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaohong Li
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Qingbo Lu
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Jin Yuan
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Yongzheng He
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Shelley A. H. Dixon
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Andrea Masters
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - David R. Jones
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | - Charles W. Yates
- Department of Otolaryngology and Head/Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stephen J. Haggarty
- Massachusetts General Hospital and Department of Neurology, Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Salvatore La Rosa
- Children’s Tumor Foundation, New York, New York, United States of America
| | - D. Bradley Welling
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital and Harvard University, Boston, Massachusetts, United States of America
| | - Anat O. Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Scott R. Plotkin
- Massachusetts General Hospital and Department of Neurology, Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James F. Gusella
- Center for Genomic Medicine, Massachusetts General Hospital and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Justin Guinney
- Sage Bionetworks, Seattle, Washington, United States of America
| | - Helen Morrison
- Leibniz Institute on Aging–Fritz-Lipmann Institute (FLI), Jena, Germany
| | - Vijaya Ramesh
- Massachusetts General Hospital and Department of Neurology, Center for Genomic Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Lake Nona-Orlando, Florida, United States of America
| | - Gary L. Johnson
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Jaishri O. Blakeley
- Departments of Neurology, Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - D. Wade Clapp
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, United States of America
| | | |
Collapse
|
5
|
Yagnik G, Liu Z, Rothschild KJ, Lim MJ. Highly Multiplexed Immunohistochemical MALDI-MS Imaging of Biomarkers in Tissues. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:977-988. [PMID: 33631930 PMCID: PMC8033562 DOI: 10.1021/jasms.0c00473] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Immunohistochemistry (IHC) combined with fluorescence microscopy provides an important and widely used tool for researchers and pathologists to image multiple biomarkers in tissue specimens. However, multiplex IHC using standard fluorescence microscopy is generally limited to 3-5 different biomarkers, with hyperspectral or multispectral methods limited to 8. We report the development of a new technology based on novel photocleavable mass-tags (PC-MTs) for facile antibody labeling, which enables highly multiplexed IHC based on MALDI mass spectrometric imaging (MALDI-IHC). This approach significantly exceeds the multiplexity of both fluorescence- and previous cleavable mass-tag-based methods. Up to 12-plex MALDI-IHC was demonstrated on mouse brain, human tonsil, and breast cancer tissues specimens, reflecting the known molecular composition, anatomy, and pathology of the targeted biomarkers. Novel dual-labeled fluorescent PC-MT antibodies and label-free small-molecule mass spectrometric imaging greatly extend the capability of this new approach. MALDI-IHC shows promise for use in the fields of tissue pathology, tissue diagnostics, therapeutics, and precision medicine.
Collapse
Affiliation(s)
- Gargey Yagnik
- AmberGen,
Inc., 313 Pleasant Street, Watertown, Massachusetts 02472, United States
| | - Ziying Liu
- AmberGen,
Inc., 313 Pleasant Street, Watertown, Massachusetts 02472, United States
| | - Kenneth J. Rothschild
- AmberGen,
Inc., 313 Pleasant Street, Watertown, Massachusetts 02472, United States
- Molecular
Biophysics Laboratory, Department of Physics and Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Mark J. Lim
- AmberGen,
Inc., 313 Pleasant Street, Watertown, Massachusetts 02472, United States
| |
Collapse
|
6
|
Chen X, Wang Y, Ma N, Tian J, Shao Y, Zhu B, Wong YK, Liang Z, Zou C, Wang J. Target identification of natural medicine with chemical proteomics approach: probe synthesis, target fishing and protein identification. Signal Transduct Target Ther 2020; 5:72. [PMID: 32435053 PMCID: PMC7239890 DOI: 10.1038/s41392-020-0186-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
Natural products are an important source of new drugs for the treatment of various diseases. However, developing natural product-based new medicines through random moiety modification is a lengthy and costly process, due in part to the difficulties associated with comprehensively understanding the mechanism of action and the side effects. Identifying the protein targets of natural products is an effective strategy, but most medicines interact with multiple protein targets, which complicate this process. In recent years, an increasing number of researchers have begun to screen the target proteins of natural products with chemical proteomics approaches, which can provide a more comprehensive array of the protein targets of active small molecules in an unbiased manner. Typically, chemical proteomics experiments for target identification consist of two key steps: (1) chemical probe design and synthesis and (2) target fishing and identification. In recent decades, five different types of chemical proteomic probes and their respective target fishing methods have been developed to screen targets of molecules with different structures, and a variety of protein identification approaches have been invented. Presently, we will classify these chemical proteomics approaches, the application scopes and characteristics of the different types of chemical probes, the different protein identification methods, and the advantages and disadvantages of these strategies.
Collapse
Affiliation(s)
- Xiao Chen
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yutong Wang
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nan Ma
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Tian
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yurou Shao
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bo Zhu
- School of Medicine & Holistic Integrative Medicine, and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yin Kwan Wong
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Zhen Liang
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Chang Zou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
7
|
Hamza GM, Bergo VB, Mamaev S, Wojchowski DM, Toran P, Worsfold CR, Castaldi MP, Silva JC. Affinity-Bead Assisted Mass Spectrometry (Affi-BAMS): A Multiplexed Microarray Platform for Targeted Proteomics. Int J Mol Sci 2020; 21:E2016. [PMID: 32188029 PMCID: PMC7139916 DOI: 10.3390/ijms21062016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
The ability to quantitatively probe diverse panels of proteins and their post-translational modifications (PTMs) across multiple samples would aid a broad spectrum of biological, biochemical and pharmacological studies. We report a novel, microarray analytical technology that combines immuno-affinity capture with Matrix Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS), which is capable of supporting highly multiplexed, targeted proteomic assays. Termed "Affinity-Bead Assisted Mass Spectrometry" (Affi-BAMS), this LC-free technology enables development of highly specific and customizable assay panels for simultaneous profiling of multiple proteins and PTMs. While affinity beads have been used previously in combination with MS, the Affi-BAMS workflow uses enrichment on a single bead that contains one type of antibody, generally capturing a single analyte (protein or PTM) while having enough binding capacity to enable quantification within approximately 3 orders of magnitude. The multiplexing capability is achieved by combining Affi-BAMS beads with different protein specificities. To enable screening of bead-captured analytes by MS, we further developed a novel method of performing spatially localized elution of targets from individual beads arrayed on a microscope slide. The resulting arrays of micro spots contain highly concentrated analytes localized within 0.5 mm diameter spots that can be directly measured using MALDI MS. While both intact proteins and protein fragments can be monitored by Affi-BAMS, we initially focused on applying this technology for bottom-up proteomics to enable screening of hundreds of samples per day by combining the robust magnetic bead-based workflow with the high throughput nature of MALDI MS acquisition. To demonstrate the variety of applications and robustness of Affi-BAMS, several studies are presented that focus on the response of 4EBP1, RPS6, ERK1/ERK2, mTOR, Histone H3 and C-MET to stimuli including rapamycin, H2O2, EPO, SU11274, Staurosporine and Vorinostat.
Collapse
Affiliation(s)
- Ghaith M. Hamza
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Boston, MA 02451, USA; (G.M.H.); (M.P.C.)
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; (D.M.W.); (P.T.)
| | - Vladislav B. Bergo
- Adeptrix Corporation, Beverly, MA 01915, USA; (V.B.B.); (S.M.); (C.R.W.)
| | - Sergey Mamaev
- Adeptrix Corporation, Beverly, MA 01915, USA; (V.B.B.); (S.M.); (C.R.W.)
| | - Don M. Wojchowski
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; (D.M.W.); (P.T.)
| | - Paul Toran
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; (D.M.W.); (P.T.)
| | | | - M. Paola Castaldi
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Boston, MA 02451, USA; (G.M.H.); (M.P.C.)
| | - Jeffrey C. Silva
- Adeptrix Corporation, Beverly, MA 01915, USA; (V.B.B.); (S.M.); (C.R.W.)
| |
Collapse
|
8
|
Bonifácio MJ, Sousa F, Aires C, Loureiro AI, Fernandes-Lopes C, Pires NM, Palma PN, Moser P, Soares-da-Silva P. Preclinical pharmacological evaluation of the fatty acid amide hydrolase inhibitor BIA 10-2474. Br J Pharmacol 2020; 177:2123-2142. [PMID: 31901141 PMCID: PMC7161550 DOI: 10.1111/bph.14973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/17/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose In 2016, one person died and four others had mild‐to‐severe neurological symptoms during a phase I trial of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10‐2474. Experimental Approach Pharmacodynamic and pharmacokinetic studies were performed with BIA 10‐2474, PF‐04457845 and JNJ‐42165279 using mice, rats and human FAAH expressed in COS cells. Selectivity was evaluated by activity‐based protein profiling (APBB) in rats. BIA 10‐2474 effect in stroke‐prone spontaneously hypertensive rats (SHRSP) was investigated. Key Results BIA 10‐2474 was 10‐fold less potent than PF‐04457845 in inhibiting human FAAH in situ but inhibited mouse brain and liver FAAH with ED50 values of 13.5 and 6.2 μg·kg−1, respectively. Plasma and brain BIA 10‐2474 levels were consistent with in situ potency and neither BIA 10‐2474 nor its metabolites accumulated following repeat administration. FAAH and α/β‐hydrolase domain containing 6 were the primary targets of BIA 10‐2474 and, at higher exposure levels, ABHD11, PNPLA6, PLA2G15, PLA2G6 and androgen‐induced protein 1. At 100 mg·kg−1 for 28 days, the level of several lipid species containing arachidonic acid increased. Daily treatment of SHRSP with BIA 10‐2474 did not affect mortality rate or increased the incidence of haemorrhage or oedema in surviving animals. Conclusions and Implications BIA 10‐2474 potently inhibits FAAH in vivo, similarly to PF‐04457845 and interacts with a number of lipid processing enzymes, some previously identified in human cells as off‐targets particularly at high levels of exposure. These interactions occurred at doses used in toxicology studies, but the implication of these off‐targets in the clinical trial accident remains unclear.
Collapse
Affiliation(s)
- Maria-João Bonifácio
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Filipa Sousa
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Cátia Aires
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Ana I Loureiro
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Carlos Fernandes-Lopes
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Nuno M Pires
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Pedro Nuno Palma
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Paul Moser
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Patrício Soares-da-Silva
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal.,Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Friese A, Ursu A, Hochheimer A, Schöler HR, Waldmann H, Bruder JM. The Convergence of Stem Cell Technologies and Phenotypic Drug Discovery. Cell Chem Biol 2019; 26:1050-1066. [PMID: 31231030 DOI: 10.1016/j.chembiol.2019.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 04/04/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
Recent advances in induced pluripotent stem cell technologies and phenotypic screening shape the future of bioactive small-molecule discovery. In this review we analyze the impact of small-molecule phenotypic screens on drug discovery as well as on the investigation of human development and disease biology. We further examine the role of 3D spheroid/organoid structures, microfluidic systems, and miniaturized on-a-chip systems for future discovery strategies. In highlighting representative examples, we analyze how recent achievements can translate into future therapies. Finally, we discuss remaining challenges that need to be overcome for the adaptation of the next generation of screening approaches.
Collapse
Affiliation(s)
- Alexandra Friese
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Andrei Ursu
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany; Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Andreas Hochheimer
- ISAR Bioscience GmbH, Institute for Stem Cell & Applied Regenerative Medicine Research, 82152 Planegg, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Medical Faculty, University of Münster, Domagkstrasse 3, 48149 Münster, Germany.
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| | - Jan M Bruder
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.
| |
Collapse
|