1
|
Takemori C, Koyanagi-Aoi M, Fukumoto T, Kunisada M, Wakamatsu K, Ito S, Hosaka C, Takeuchi S, Kubo A, Aoi T, Nishigori C. Revealing the UV response of melanocytes in xeroderma pigmentosum group A using patient-derived induced pluripotent stem cells. J Dermatol Sci 2024; 115:111-120. [PMID: 39033075 DOI: 10.1016/j.jdermsci.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Xeroderma pigmentosum (XP) is characterized by photosensitivity that causes pigmentary disorder and predisposition to skin cancers on sunlight-exposed areas due to DNA repair deficiency. Patients with XP group A (XP-A) develop freckle-like pigmented maculae and depigmented maculae within a year unless strict sun-protection is enforced. Although it is crucial to study pigment cells (melanocytes: MCs) as disease target cells, establishing MCs in primary cultures is challenging. OBJECTIVE Elucidation of the disease pathogenesis by comparison between MCs differentiated from XP-A induced pluripotent stem cells (iPSCs) and healthy control iPSCs on the response to UV irradiation. METHODS iPSCs were established from a XP-A fibroblasts and differentiated into MCs. Differences in gene expression profiles between XP-A-iPSC-derived melanocytes (XP-A-iMCs) and Healthy control iPSC-derived MCs (HC-iMCs) were analyzed 4 and 12 h after irradiation with 30 or 150 J/m2 of UV-B using microarray analysis. RESULTS XP-A-iMCs expressed SOX10, MITF, and TYR, and showed melanin synthesis. Further, XP-A-iMCs showed reduced DNA repair ability. Gene expression profile between XP-A-iMCs and HC-iMCs revealed that, numerous gene probes that were specifically upregulated or downregulated in XP-A-iMCs after 150-J/m2 of UV-B irradiation did not return to basal levels. Of note that apoptotic pathways were highly upregulated at 150 J/m2 UV exposure in XP-A-iMCs, and cytokine-related pathways were upregulated even at 30 J/m2 UV exposure. CONCLUSION We revealed for the first time that cytokine-related pathways were upregulated even at low-dose UV exposure in XP-A-iMCs. Disease-specific iPSCs are useful to elucidate the disease pathogenesis and develop treatment strategies of XP.
Collapse
Affiliation(s)
- Chihiro Takemori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan
| | - Takeshi Fukumoto
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Makoto Kunisada
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan; Department of Dermatology, Hyogo Prefectural Harima-Himeji General Medical Center, Himeji, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Chieko Hosaka
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Seiji Takeuchi
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Akiharu Kubo
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan.
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
| |
Collapse
|
2
|
Rogoulenko E, Levy Y. Skipping events impose repeated binding attempts: profound kinetic implications of protein-DNA conformational changes. Nucleic Acids Res 2024; 52:6763-6776. [PMID: 38721783 PMCID: PMC11229352 DOI: 10.1093/nar/gkae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 07/09/2024] Open
Abstract
The kinetics of protein-DNA recognition, along with its thermodynamic properties, including affinity and specificity, play a central role in shaping biological function. Protein-DNA recognition kinetics are characterized by two key elements: the time taken to locate the target site amid various nonspecific alternatives; and the kinetics involved in the recognition process, which may necessitate overcoming an energetic barrier. In this study, we developed a coarse-grained (CG) model to investigate interactions between a transcription factor called the sex-determining region Y (SRY) protein and DNA, in order to probe how DNA conformational changes affect SRY-DNA recognition and binding kinetics. We find that, not only does a requirement for such a conformational DNA transition correspond to a higher energetic barrier for binding and therefore slower kinetics, it may further impede the recognition kinetics by increasing unsuccessful binding events (skipping events) where the protein partially binds its DNA target site but fails to form the specific protein-DNA complex. Such skipping events impose the need for additional cycles protein search of nonspecific DNA sites, thus significantly extending the overall recognition time. Our results highlight a trade-off between the speed with which the protein scans nonspecific DNA and the rate at which the protein recognizes its specific target site. Finally, we examine molecular approaches potentially adopted by natural systems to enhance protein-DNA recognition despite its intrinsically slow kinetics.
Collapse
Affiliation(s)
- Elena Rogoulenko
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
3
|
Hasanzadeh A, Ebadati A, Dastanpour L, Aref AR, Sahandi Zangabad P, Kalbasi A, Dai X, Mehta G, Ghasemi A, Fatahi Y, Joshi S, Hamblin MR, Karimi M. Applications of Innovation Technologies for Personalized Cancer Medicine: Stem Cells and Gene-Editing Tools. ACS Pharmacol Transl Sci 2023; 6:1758-1779. [PMID: 38093832 PMCID: PMC10714436 DOI: 10.1021/acsptsci.3c00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/16/2024]
Abstract
Personalized medicine is a new approach toward safer and even cheaper treatments with minimal side effects and toxicity. Planning a therapy based on individual properties causes an effective result in a patient's treatment, especially in a complex disease such as cancer. The benefits of personalized medicine include not only early diagnosis with high accuracy but also a more appropriate and effective therapeutic approach based on the unique clinical, genetic, and epigenetic features and biomarker profiles of a specific patient's disease. In order to achieve personalized cancer therapy, understanding cancer biology plays an important role. One of the crucial applications of personalized medicine that has gained consideration more recently due to its capability in developing disease therapy is related to the field of stem cells. We review various applications of pluripotent, somatic, and cancer stem cells in personalized medicine, including targeted cancer therapy, cancer modeling, diagnostics, and drug screening. CRISPR-Cas gene-editing technology is then discussed as a state-of-the-art biotechnological advance with substantial impacts on medical and therapeutic applications. As part of this section, the role of CRISPR-Cas genome editing in recent cancer studies is reviewed as a further example of personalized medicine application.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Arefeh Ebadati
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Lida Dastanpour
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Amir R. Aref
- Department
of Medical Oncology and Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Parham Sahandi Zangabad
- Monash
Institute of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical
Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Alireza Kalbasi
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02115, United States
| | - Xiaofeng Dai
- School of
Biotechnology, Jiangnan University, Wuxi 214122, China
- National
Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial
Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Geeta Mehta
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer
Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Precision
Health, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Amir Ghasemi
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department
of Materials Science and Engineering, Sharif
University of Technology, Tehran 14588, Iran
| | - Yousef Fatahi
- Nanotechnology
Research Centre, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 14166, Iran
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14166, Iran
- Universal
Scientific Education and Research Network (USERN), Tehran 14166, Iran
| | - Suhasini Joshi
- Chemical
Biology Program, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
| | - Michael R. Hamblin
- Laser Research
Centre, Faculty of Health Science, University
of Johannesburg, Doornfontein 2028, South Africa
- Radiation
Biology Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
| | - Mahdi Karimi
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Oncopathology
Research Center, Iran University of Medical
Sciences, Tehran 14535, Iran
- Research
Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 14166, Iran
- Applied
Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 14166, Iran
| |
Collapse
|
4
|
Gorlin syndrome-induced pluripotent stem cells form medulloblastoma with loss of heterozygosity in PTCH1. Aging (Albany NY) 2020; 12:9935-9947. [PMID: 32436863 PMCID: PMC7288908 DOI: 10.18632/aging.103258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Gorlin syndrome is a rare autosomal dominant hereditary disease with a high incidence of tumors such as basal cell carcinoma and medulloblastoma. Disease-specific induced pluripotent stem cells (iPSCs) and an animal model have been used to analyze disease pathogenesis. In this study, we generated iPSCs derived from fibroblasts of four patients with Gorlin syndrome (Gln-iPSCs) with heterozygous mutations of the PTCH1 gene. Gln-iPSCs from the four patients developed into medulloblastoma, a manifestation of Gorlin syndrome, in 100% (four out of four), of teratomas after implantation into immunodeficient mice, but none (0/584) of the other iPSC-teratomas did so. One of the medulloblastomas showed loss of heterozygosity in the PTCH1 gene while the benign teratoma, i.e. the non-medulloblastoma portion, did not, indicating a close clinical correlation between tumorigenesis in Gorlin syndrome patients and Gln-iPSCs.
Collapse
|
5
|
Aoto S, Katagiri S, Wang Y, Pagnamenta AT, Sakamoto-Abutani R, Toyoda M, Umezawa A, Okamura K. Frequent retrotransposition of endogenous genes in ERCC2-deficient cells derived from a patient with xeroderma pigmentosum. Stem Cell Res Ther 2019; 10:273. [PMID: 31455402 PMCID: PMC6712803 DOI: 10.1186/s13287-019-1381-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/04/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Retrotransposition of protein-coding genes is thought to occur due to the existence of numerous processed pseudogenes in both animals and plants. Unlike retrotransposons including Alu and LINE-1, direct evidence of such retrotransposition events has not been reported to date. Even if such an event occurs in a somatic cell, it is almost impossible to detect it using bulk of cells as a sample. Single-cell analyses or other techniques are needed. METHODS In order to examine genetic stability of stem cells, we have established induced pluripotent stem cell (iPSC) lines from several patients with DNA repair-deficiency disorders, such as ataxia telangiectasia and xeroderma pigmentosum, along with healthy controls. Performing whole-exome sequencing analyses of these parental and iPSC lines, we compiled somatic mutations accumulated by the deficiency of DNA repair mechanisms. Whereas most somatic mutations cannot be detected in bulk, cell reprogramming enabled us to observe all the somatic mutations which had occurred in the cell line. Patterns of somatic mutations should be distinctive depending on which DNA repair gene is impaired. RESULTS The comparison revealed that deficiency of ATM and XPA preferentially gives rise to indels and single-nucleotide substitutions, respectively. On the other hand, deficiency of ERCC2 caused not only single-nucleotide mutations but also many retrotranspositions of endogenous genes, which were readily identified by examining removal of introns in whole-exome sequencing. Although the number was limited, those events were also detected in healthy control samples. CONCLUSIONS The present study exploits clonality of iPSCs to unveil somatic mutation sets that are usually hidden in bulk cell analysis. Whole-exome sequencing analysis facilitated the detection of retrotransposition mutations. The results suggest that retrotranspositions of human endogenous genes are more frequent than expected in somatic cells and that ERCC2 plays a defensive role against transposition of endogenous and exogenous DNA fragments.
Collapse
Affiliation(s)
- Saki Aoto
- Medical Genome Center, National Center for Child Health and Development Research Institute, Setagaya, Tokyo, Japan
| | - Saki Katagiri
- Department of Biology, Faculty of Science, Ochanomizu University, Bunkyo, Tokyo, Japan
- Present address: Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi Japan
| | - Yi Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | | | - Rie Sakamoto-Abutani
- Department of Reproductive Biology, National Center for Child Health and Development Research Institute, Setagaya, Tokyo, Japan
| | - Masashi Toyoda
- Research team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Setagaya, Tokyo, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Center for Child Health and Development Research Institute, Setagaya, Tokyo, Japan
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535 Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| |
Collapse
|
6
|
Attwood SW, Edel MJ. iPS-Cell Technology and the Problem of Genetic Instability-Can It Ever Be Safe for Clinical Use? J Clin Med 2019; 8:E288. [PMID: 30823421 PMCID: PMC6462964 DOI: 10.3390/jcm8030288] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
The use of induced Pluripotent Stem Cells (iPSC) as a source of autologous tissues shows great promise in regenerative medicine. Nevertheless, several major challenges remain to be addressed before iPSC-derived cells can be used in therapy, and experience of their clinical use is extremely limited. In this review, the factors affecting the safe translation of iPSC to the clinic are considered, together with an account of efforts being made to overcome these issues. The review draws upon experiences with pluripotent stem-cell therapeutics, including clinical trials involving human embryonic stem cells and the widely transplanted mesenchymal stem cells. The discussion covers concerns relating to: (i) the reprogramming process; (ii) the detection and removal of incompletely differentiated and pluripotent cells from the resulting medicinal products; and (iii) genomic and epigenetic changes, and the evolutionary and selective processes occurring during culture expansion, associated with production of iPSC-therapeutics. In addition, (iv) methods for the practical culture-at-scale and standardization required for routine clinical use are considered. Finally, (v) the potential of iPSC in the treatment of human disease is evaluated in the light of what is known about the reprogramming process, the behavior of cells in culture, and the performance of iPSC in pre-clinical studies.
Collapse
Affiliation(s)
- Stephen W Attwood
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK.
| | - Michael J Edel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain.
- Victor Chang Cardiac Research Institute, Sydney, NSW 2145, Australia.
- Harry Perkins Research Institute, Fiona Stanley Hospital, University of Western Australia, PO Box 404, Bull Creek, Western Australia 6149, Australia.
| |
Collapse
|
7
|
Inoue M, Kajiwara K, Yamaguchi A, Kiyono T, Samura O, Akutsu H, Sago H, Okamoto A, Umezawa A. Autonomous trisomic rescue of Down syndrome cells. J Transl Med 2019; 99:885-897. [PMID: 30760866 PMCID: PMC6760570 DOI: 10.1038/s41374-019-0230-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 11/10/2022] Open
Abstract
Down syndrome is the most frequent chromosomal abnormality among live-born infants. All Down syndrome patients have mental retardation and are prone to develop early onset Alzheimer's disease. However, it has not yet been elucidated whether there is a correlation between the phenotype of Down syndrome and the extra chromosome 21. In this study, we continuously cultivated induced pluripotent stem cells (iPSCs) with chromosome 21 trisomy for more than 70 weeks, and serendipitously obtained revertant cells with normal chromosome 21 diploids from the trisomic cells during long-term cultivation. Repeated experiments revealed that this trisomy rescue was not due to mosaicism of chromosome 21 diploid cells and occurred at an extremely high frequency. We herewith report the spontaneous correction from chromosome 21 trisomy to disomy without genetic manipulation, chemical treatment or exposure to irradiation. The revertant diploid cells will possibly serve a reference for drug screening and a raw material of regenerative medicinal products for cell-based therapy.
Collapse
Affiliation(s)
- Momoko Inoue
- 0000 0004 0377 2305grid.63906.3aDepartment of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535 Japan ,0000 0001 0661 2073grid.411898.dDepartment of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471 Japan
| | - Kazuhiro Kajiwara
- 0000 0004 0377 2305grid.63906.3aDepartment of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535 Japan ,0000 0001 0661 2073grid.411898.dDepartment of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471 Japan
| | - Ayumi Yamaguchi
- 0000 0004 0377 2305grid.63906.3aDepartment of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535 Japan
| | - Tohru Kiyono
- 0000 0001 2168 5385grid.272242.3Division of Carcinogenesis and Cancer Prevention, Department of Cell Culture Technology, National Cancer Center Research Institute, Tokyo, 104-0045 Japan
| | - Osamu Samura
- 0000 0001 0661 2073grid.411898.dDepartment of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471 Japan
| | - Hidenori Akutsu
- 0000 0004 0377 2305grid.63906.3aDepartment of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535 Japan
| | - Haruhiko Sago
- 0000 0004 0377 2305grid.63906.3aDepartment of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 157-8535 Japan
| | - Aikou Okamoto
- 0000 0001 0661 2073grid.411898.dDepartment of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471 Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan.
| |
Collapse
|
8
|
Turinetto V, Orlando L, Giachino C. Induced Pluripotent Stem Cells: Advances in the Quest for Genetic Stability during Reprogramming Process. Int J Mol Sci 2017; 18:E1952. [PMID: 28902128 PMCID: PMC5618601 DOI: 10.3390/ijms18091952] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 12/19/2022] Open
Abstract
Evaluation of the extent and nature of induced pluripotent stem cell (iPSC) genetic instability is important for both basic research and future clinical use. As previously demonstrated regarding embryonic stem cells, such DNA aberrations might affect the differentiation capacity of the cells and increase their tumorigenicity. Here, we first focus on the contribution of multiple DNA damage response pathways during cellular reprogramming. We then discuss the origin and mechanisms responsible for the modification of genetic material in iPSCs (pre-existing variations in somatic cells, mutations induced by reprogramming factors, and mutations induced by culture expansion) and deepen the possible functional consequences of genetic variations in these cells. Lastly, we present some recent improvements of iPSC generation methods aimed at obtaining cells with fewer genetic variations.
Collapse
Affiliation(s)
- Valentina Turinetto
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy.
| | - Luca Orlando
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy.
| |
Collapse
|
9
|
Zhi Y, Ji H, Pan J, He P, Zhou X, Zhang H, Zhou Z, Chen Z. Downregulated XPA promotes carcinogenesis of bladder cancer via impairment of DNA repair. Tumour Biol 2017; 39:1010428317691679. [PMID: 28222669 DOI: 10.1177/1010428317691679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of urinary system, largely resulting from failure of repair of DNA damage to the environmental insults. The function of XPA in nucleotide excision repair pathway has been well documented. However, participation of XPA in the repair of DNA double-strand break remains unknown. Here, we reported that bladder cancer expressed low XPA levels compared to adjacent non-tumor bladder tissue, and this phenotype was closely associated with chromosomal aberrations. Moreover, downregulated XPA appeared to increase incidence of chromosome aberration. XPA reduction increased cell viability of a bladder cancer cell line RT4, while XPA re-expression decreased the cell viability of RT4 cells. Since high mutation frequency is the basis of mutations of oncogenes and anti-oncogenes, and may be the essence of bladder cancer susceptibility, our study suggests that downregulated XPA may promote carcinogenesis of bladder cancer via impairment of DNA repair.
Collapse
Affiliation(s)
- Yi Zhi
- Urology Institute of People Liberation Army, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Huixiang Ji
- Urology Institute of People Liberation Army, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jinhong Pan
- Urology Institute of People Liberation Army, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Peng He
- Urology Institute of People Liberation Army, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaozhou Zhou
- Urology Institute of People Liberation Army, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Heng Zhang
- Urology Institute of People Liberation Army, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhansong Zhou
- Urology Institute of People Liberation Army, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhiwen Chen
- Urology Institute of People Liberation Army, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|