1
|
Mehta TK, Man A, Ciezarek A, Ranson K, Penman D, Di-Palma F, Haerty W. Chromatin accessibility in gill tissue identifies candidate genes and loci associated with aquaculture relevant traits in tilapia. Genomics 2023; 115:110633. [PMID: 37121445 DOI: 10.1016/j.ygeno.2023.110633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
The Nile tilapia (Oreochromis niloticus) accounts for ∼9% of global freshwater finfish production however, extreme cold weather and decreasing freshwater resources has created the need to develop resilient strains. By determining the genetic bases of aquaculture relevant traits, we can genotype and breed desirable traits into farmed strains. We generated ATAC-seq and gene expression data from O. niloticus gill tissues, and through the integration of SNPs from 27 tilapia species, identified 1168 highly expressed genes (4% of all Nile tilapia genes) with highly accessible promoter regions with functional variation at transcription factor binding sites (TFBSs). Regulatory variation at these TFBSs is likely driving gene expression differences associated with tilapia gill adaptations, and differentially segregate in freshwater and euryhaline tilapia species. The generation of novel integrative data revealed candidate genes e.g., prolactin receptor 1 and claudin-h, genetic relationships, and loci associated with aquaculture relevant traits like salinity and osmotic stress acclimation.
Collapse
Affiliation(s)
| | | | | | - Keith Ranson
- Institute of Aquaculture, University of Stirling, Scotland, UK
| | - David Penman
- Institute of Aquaculture, University of Stirling, Scotland, UK
| | - Federica Di-Palma
- School of Biological Sciences, University of East Anglia, Norwich, UK; Genome British Columbia, Vancouver, Canada
| | - Wilfried Haerty
- Earlham Institute (EI), Norwich, UK; School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
2
|
Galli GLJ, Lock MC, Smith KLM, Giussani DA, Crossley DA. Effects of Developmental Hypoxia on the Vertebrate Cardiovascular System. Physiology (Bethesda) 2023; 38:0. [PMID: 36317939 DOI: 10.1152/physiol.00022.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
Developmental hypoxia has profound and persistent effects on the vertebrate cardiovascular system, but the nature, magnitude, and long-term outcome of the hypoxic consequences are species specific. Here we aim to identify common and novel cardiovascular responses among vertebrates that encounter developmental hypoxia, and we discuss the possible medical and ecological implications.
Collapse
Affiliation(s)
- Gina L J Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mitchell C Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kerri L M Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
3
|
Aslanidi KB, Kharakoz DP. Limits of temperature adaptation and thermopreferendum. Cell Biosci 2021; 11:69. [PMID: 33823918 PMCID: PMC8025563 DOI: 10.1186/s13578-021-00574-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Managing the limits of temperature adaptation is relevant both in medicine and in biotechnology. There are numerous scattered publications on the identification of the temperature limits of existence for various organisms and using different methods. Dmitry Petrovich Kharakoz gave a general explanation for many of these experimental results. The hypothesis implied that each cycle of synaptic exocytosis includes reversible phase transitions of lipids of the presynaptic membrane due to the entry and subsequent removal of calcium ions from the synaptic terminal. The correspondence of the times of phase transitions has previously been experimentally shown on isolated lipids in vitro. In order to test the hypothesis of D.P. Kharakoz in vivo, we investigated the influence of the temperature of long-term acclimatization on the temperature of heat and cold shock, as well as on the kinetics of temperature adaptation in zebrafish. Testing the hypothesis included a comparison of our experimental results with the results of other authors obtained on various models from invertebrates to humans. RESULTS The viability polygon for Danio rerio was determined by the minimum temperature of cold shock (about 6 °C), maximum temperature of heat shock (about 43 °C), and thermopreferendum temperature (about 27 °C). The ratio of the temperature range of cold shock to the temperature range of heat shock was about 1.3. These parameters obtained for Danio rerio describe with good accuracy those for the planarian Girardia tigrina, the ground squirrel Sermophilus undulatus, and for Homo sapiens. CONCLUSIONS The experimental values of the temperatures of cold shock and heat shock and the temperature of the thermal preferendum correspond to the temperatures of phase transitions of the lipid-protein composition of the synaptic membrane between the liquid and solid states. The viability range for zebrafish coincides with the temperature range, over which enzymes function effectively and also coincides with the viability polygons for the vast majority of organisms. The boundaries of the viability polygon are characteristic biological constants. The viability polygon of a particular organism is determined not only by the genome, but also by the physicochemical properties of lipids that make up the membrane structures of synaptic endings. The limits of temperature adaptation of any biological species are determined by the temperature range of the functioning of its nervous system.
Collapse
Affiliation(s)
- K B Aslanidi
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia, 142290.
| | - D P Kharakoz
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia, 142290
| |
Collapse
|
4
|
Exploring the Expression of Cardiac Regulators in a Vertebrate Extremophile: The Cichlid Fish Oreochromis (Alcolapia) alcalica. J Dev Biol 2020; 8:jdb8040022. [PMID: 33020460 PMCID: PMC7712675 DOI: 10.3390/jdb8040022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023] Open
Abstract
Although it is widely accepted that the cellular and molecular mechanisms of vertebrate cardiac development are evolutionarily conserved, this is on the basis of data from only a few model organisms suited to laboratory studies. Here, we investigate gene expression during cardiac development in the extremophile, non-model fish species, Oreochromis (Alcolapia) alcalica. We first characterise the early development of O. alcalica and observe extensive vascularisation across the yolk prior to hatching. We further investigate heart development by identifying and cloning O. alcalica orthologues of conserved cardiac transcription factors gata4, tbx5, and mef2c for analysis by in situ hybridisation. Expression of these three key cardiac developmental regulators also reveals other aspects of O. alcalica development, as these genes are expressed in developing blood, limb, eyes, and muscle, as well as the heart. Our data support the notion that O. alcalica is a direct-developing vertebrate that shares the highly conserved molecular regulation of the vertebrate body plan. However, the expression of gata4 in O. alcalica reveals interesting differences in the development of the circulatory system distinct from that of the well-studied zebrafish. Understanding the development of O. alcalica embryos is an important step towards providing a model for future research into the adaptation to extreme conditions; this is particularly relevant given that anthropogenic-driven climate change will likely result in more freshwater organisms being exposed to less favourable conditions.
Collapse
|
5
|
White LJ, Sutton G, Shechonge A, Day JJ, Dasmahapatra KK, Pownall ME. Adaptation of the carbamoyl-phosphate synthetase enzyme in an extremophile fish. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201200. [PMID: 33204476 PMCID: PMC7657897 DOI: 10.1098/rsos.201200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/21/2020] [Indexed: 05/03/2023]
Abstract
Tetrapods and fish have adapted distinct carbamoyl-phosphate synthase (CPS) enzymes to initiate the ornithine urea cycle during the detoxification of nitrogenous wastes. We report evidence that in the ureotelic subgenus of extremophile fish Oreochromis Alcolapia, CPS III has undergone convergent evolution and adapted its substrate affinity to ammonia, which is typical of terrestrial vertebrate CPS I. Unusually, unlike in other vertebrates, the expression of CPS III in Alcolapia is localized to the skeletal muscle and is activated in the myogenic lineage during early embryonic development with expression remaining in mature fish. We propose that adaptation in Alcolapia included both convergent evolution of CPS function to that of terrestrial vertebrates, as well as changes in development mechanisms redirecting CPS III gene expression to the skeletal muscle.
Collapse
Affiliation(s)
- Lewis J. White
- Biology Department, University of York, York YO10 5DD, UK
- Author for correspondence: Lewis J. White e-mail:
| | - Gemma Sutton
- Biology Department, University of York, York YO10 5DD, UK
| | - Asilatu Shechonge
- Tanzania Fisheries Research Institute, PO BOX 98, Kyela, Mbeya, Tanzania
| | - Julia J. Day
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
6
|
|
7
|
Burggren WW, Arriaga-Bernal JC, Méndez-Arzate PM, Méndez-Sánchez JF. Metabolic physiology of the Mayan cichlid fish (Mayaheros uropthalmus): Re-examination of classification as an oxyconformer. Comp Biochem Physiol A Mol Integr Physiol 2019; 237:110538. [DOI: 10.1016/j.cbpa.2019.110538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
|
8
|
De Boeck G, Wood CM, Brix KV, Sinha AK, Matey V, Johannsson OE, Bianchini A, Bianchini LF, Maina JN, Kavembe GD, Papah MB, Kisipan ML, Ojoo RO. Fasting in the ureotelic Lake Magadi tilapia, Alcolapia grahami, does not reduce its high metabolic demand, increasing its vulnerability to siltation events. CONSERVATION PHYSIOLOGY 2019; 7:coz060. [PMID: 31687141 PMCID: PMC6822538 DOI: 10.1093/conphys/coz060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Lake Magadi, Kenya, is one of the most extreme aquatic environments on Earth (pH~10, anoxic to hyperoxic, high temperatures). Recently, increased water demand and siltation have threatened the viable hot springs near the margins of the lake where Alcolapia grahami, the only fish surviving in the lake, live. These Lake Magadi tilapia largely depend on nitrogen-rich cyanobacteria for food and are 100% ureotelic. Their exceptionally high aerobic metabolic rate, together with their emaciated appearance, suggests that they are energy-limited. Therefore, we hypothesized that during food deprivation, Magadi tilapia would economize their energy expenditure and reduce metabolic rate, aerobic performance and urea-N excretion. Surprisingly, during a 5-day fasting period, routine metabolic rates increased and swimming performance (critical swimming speed) was not affected. Urea-N excretion remained stable despite the lack of their N-rich food source. Their nitrogen use switched to endogenous sources as liver and muscle protein levels decreased after a 5-day fast, indicating proteolysis. Additionally, fish relied on carbohydrates with lowered muscle glycogen levels, but there were no signs indicating use of lipid stores. Gene expression of gill and gut urea transporters were transiently reduced as were gill rhesus glycoprotein Rhbg and Rhcg-2. The reduction in gill glutamine synthetase expression concomitant with the reduction in Rh glycoprotein gene expression indicates reduced nitrogen/ammonia metabolism, most likely decreased protein synthesis. Additionally, fish showed reduced plasma total CO2, osmolality and Na+ (but not Cl-) levels, possibly related to reduced drinking rates and metabolic acidosis. Our work shows that Lake Magadi tilapia have the capacity to survive short periods of starvation which could occur when siltation linked to flash floods covers their main food source, but their seemingly hardwired high metabolic rates would compromise long-term survival.
Collapse
Affiliation(s)
- Gudrun De Boeck
- SPHERE, Department of Biology, Groenenborgerlaan 171, University of Antwerp, Antwerp B-2020, Belgium
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Chris M Wood
- Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4K1, Canada
- Department of Zoology, University of British Columbia, 6270 Univ Blvd, Vancouver, BC V6T 1Z4, Canada
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Kevin V Brix
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
- EcoTox, 3211 19th Terrace, Miami, FL 33145, USA
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Amit K Sinha
- SPHERE, Department of Biology, Groenenborgerlaan 171, University of Antwerp, Antwerp B-2020, Belgium
- Department of Aquaculture and Fisheries, University of Arkansas, 1200 North Univ Dr, Pine Bluff, AR 71601, USA
| | - Victoria Matey
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - Ora E Johannsson
- Department of Zoology, University of British Columbia, 6270 Univ Blvd, Vancouver, BC V6T 1Z4, Canada
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Ave Italia Km 8, Rio Grande, RS 96203-900, Brazil
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Lucas F Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Ave Italia Km 8, Rio Grande, RS 96203-900, Brazil
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - John N Maina
- Department of Zoology, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg 2006, South Africa
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Geraldine D Kavembe
- School of Dryland Agriculture Science and Technology, South Eastern Kenya University, PO Box 170, Kitui 90200, Kenya
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Michael B Papah
- Department of Animal and Food Sciences, University of Delaware, 531 S. College Ave., Newark, DE 19716, USA
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Mosiany L Kisipan
- Department of Veterinary Anatomy and Physiology, Egerton University, Njoro Campus PO Box 536, Egerton 20115, Kenya
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| | - Rodi O Ojoo
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, Chiromo Campus, PO Box 30197-00100, Nairobi 30197, Kenya
| |
Collapse
|
9
|
Jung EH, Brix KV, Brauner CJ. The effect of temperature acclimation on thermal tolerance, hypoxia tolerance and aerobic scope in two subspecies of sheepshead minnow; Cyprinodon variegatus variegatus and Cyprinodon variegatus hubbsi. Comp Biochem Physiol A Mol Integr Physiol 2019; 232:28-33. [DOI: 10.1016/j.cbpa.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
|
10
|
Burggren WW, Mendez-Sanchez JF, Martínez Bautista G, Peña E, Martínez García R, Alvarez González CA. Developmental changes in oxygen consumption and hypoxia tolerance in the heat and hypoxia-adapted tabasco line of the Nile tilapia Oreochromis niloticus, with a survey of the metabolic literature for the genus Oreochromis. JOURNAL OF FISH BIOLOGY 2019; 94:732-744. [PMID: 30847924 DOI: 10.1111/jfb.13945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
The genus Oreochromis is among the most popular of the tilapiine cichlid tribe for aquaculture. However, their temperature and hypoxia tolerance, if tested at all, is usually tested at temperatures of 20-25°C, rather than at the considerably higher temperatures of 30-35°C typical of tropical aquaculture. We hypothesized that both larvae and adults of the heat and hypoxia-adapted Tabasco-line of the Nile tilapia Oreochromis niloticus would be relatively hypoxia-tolerant. Oxygen consumption rate ( M ˙ O 2 ), Q10 and aquatic surface respiration (ASR) was measured using closed respirometry at 2 (c. 0.2 g), 30 (c. 2-5 g), 105 c. (10-15 g) and 240 (c. 250 g) days of development, at 25°C, 30°C and 35°C. M ˙ O 2 at 30°C was inversely related to body mass: c. 90 μM O2 g-1 /h in larvae down to c. 1 μM O2 g-1 /h in young adults. Q10 for M ˙ O 2 was typical for fish over the range 25-35°C of 1.5-2.0. ASR was exhibited by 50% of the fish at pO2 of 15-50 mmHg in a temperature-dependent fashion. However, the largest adults showed notable ASR only when pO2 fell to below 10 mmHg. Remarkably, pcrit for M ˙ O 2 was 12-17 mmHg at 25-30°C and still only 20-25 mmHg across development at 35°C. These values are among the lowest measured for teleost fishes. Noteworthy is that all fish maintain equilibrium, ventilated their gills and showed routine locomotor action for 10-20 min after M ˙ O 2 ceased at near anoxia and when then returned to oxygenated waters, all fish survived, further indicating a remarkable hypoxic tolerance. Remarkably, data assembled for M ˙ O 2 from >30 studies showed a > x2000 difference, which we attribute to calculation or conversion errors. Nonetheless, pcrit was very low for all Oreochromis sp. and lowest in the heat and hypoxia-adapted Tabasco line.
Collapse
Affiliation(s)
- Warren W Burggren
- Developmental Integrative Biology Group, Department of Biology, University of North Texas, Denton, Texas, USA
| | - Jose F Mendez-Sanchez
- Laboratorio de Ecofisiología Animal, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Gil Martínez Bautista
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Emyr Peña
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Rafael Martínez García
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Carlos A Alvarez González
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| |
Collapse
|
11
|
Land Cover, Land Use, and Climate Change Impacts on Endemic Cichlid Habitats in Northern Tanzania. REMOTE SENSING 2017. [DOI: 10.3390/rs9060623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
van de Pol I, Flik G, Gorissen M. Comparative Physiology of Energy Metabolism: Fishing for Endocrine Signals in the Early Vertebrate Pool. Front Endocrinol (Lausanne) 2017; 8:36. [PMID: 28303116 PMCID: PMC5332387 DOI: 10.3389/fendo.2017.00036] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/10/2017] [Indexed: 01/23/2023] Open
Abstract
Energy is the common currency of life. To guarantee a homeostatic supply of energy, multiple neuro-endocrine systems have evolved in vertebrates; systems that regulate food intake, metabolism, and distribution of energy. Even subtle (lasting) dysregulation of the delicate balance of energy intake and expenditure may result in severe pathologies. Feeding-related pathologies have fueled research on mammals, including of course the human species. The mechanisms regulating food intake and body mass are well-characterized in these vertebrates. The majority of animal life is ectothermic, only birds and mammals are endotherms. What can we learn from a (comparative) study on energy homeostasis in teleostean fishes, ectotherms, with a very different energy budget and expenditure? We present several adaptation strategies in fish. In recent years, the components that regulate food intake in fishes have been identified. Although there is homology of the major genetic machinery with mammals (i.e., there is a vertebrate blueprint), in many cases this does not imply analogy. Although both mammals and fish must gain their energy from food, the expenditure of the energy obtained is different. Mammals need to spend vast amounts of energy to maintain body temperature; fishes seem to utilize a broader metabolic range to their advantage. In this review, we briefly discuss ecto- and endothermy and their consequences for energy balance. Next, we argue that the evolution of endothermy and its (dis-)advantages may explain very different strategies in endocrine regulation of energy homeostasis among vertebrates. We follow a comparative and evolutionary line of thought: we discuss similarities and differences between fish and mammals. Moreover, given the extraordinary radiation of teleostean fishes (with an estimated number of 33,400 contemporary species, or over 50% of vertebrate life forms), we also compare strategies in energy homeostasis between teleostean species. We present recent developments in the field of (neuro)endocrine regulation of energy balance in teleosts, with a focus on leptin.
Collapse
Affiliation(s)
- Iris van de Pol
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
- *Correspondence: Gert Flik,
| | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
13
|
Ford AGP, Rüber L, Newton J, Dasmahapatra KK, Balarin JD, Bruun K, Day JJ. Niche divergence facilitated by fine-scale ecological partitioning in a recent cichlid fish adaptive radiation. Evolution 2016; 70:2718-2735. [PMID: 27659769 PMCID: PMC5132037 DOI: 10.1111/evo.13072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/29/2016] [Accepted: 09/10/2016] [Indexed: 12/22/2022]
Abstract
Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype‐environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large‐scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi.
Collapse
Affiliation(s)
- Antonia G P Ford
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom.,Current Address: School of Biological Sciences, Bangor University, ECW Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, Wales, United Kingdom
| | - Lukas Rüber
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005, Bern, Switzerland.,Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Jason Newton
- NERC Life Sciences Mass Spectrometry Facility, SUERC, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, United Kingdom
| | | | | | - Kristoffer Bruun
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| | - Julia J Day
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
14
|
Alderman S. Some like it hotter than others. J Exp Biol 2016. [DOI: 10.1242/jeb.130310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|