1
|
Gomez Melo S, Wörthmüller D, Gönczy P, Banterle N, Schwarz US. Grand canonical Brownian dynamics simulations of adsorption and self-assembly of SAS-6 rings on a surface. J Chem Phys 2023; 158:085102. [PMID: 36859084 DOI: 10.1063/5.0135349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The Spindle Assembly Abnormal Protein 6 (SAS-6) forms dimers, which then self-assemble into rings that are critical for the nine-fold symmetry of the centriole organelle. It has recently been shown experimentally that the self-assembly of SAS-6 rings is strongly facilitated on a surface, shifting the reaction equilibrium by four orders of magnitude compared to the bulk. Moreover, a fraction of non-canonical symmetries (i.e., different from nine) was observed. In order to understand which aspects of the system are relevant to ensure efficient self-assembly and selection of the nine-fold symmetry, we have performed Brownian dynamics computer simulation with patchy particles and then compared our results with the experimental ones. Adsorption onto the surface was simulated by a grand canonical Monte Carlo procedure and random sequential adsorption kinetics. Furthermore, self-assembly was described by Langevin equations with hydrodynamic mobility matrices. We find that as long as the interaction energies are weak, the assembly kinetics can be described well by coagulation-fragmentation equations in the reaction-limited approximation. By contrast, larger interaction energies lead to kinetic trapping and diffusion-limited assembly. We find that the selection of nine-fold symmetry requires a small value for the angular interaction range. These predictions are confirmed by the experimentally observed reaction constant and angle fluctuations. Overall, our simulations suggest that the SAS-6 system works at the crossover between a relatively weak binding energy that avoids kinetic trapping and a small angular range that favors the nine-fold symmetry.
Collapse
Affiliation(s)
- Santiago Gomez Melo
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Dennis Wörthmüller
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Niccolo Banterle
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ulrich S Schwarz
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture. Nat Commun 2021; 12:6180. [PMID: 34702818 PMCID: PMC8548535 DOI: 10.1038/s41467-021-26329-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
Discovering mechanisms governing organelle assembly is a fundamental pursuit in biology. The centriole is an evolutionarily conserved organelle with a signature 9-fold symmetrical chiral arrangement of microtubules imparted onto the cilium it templates. The first structure in nascent centrioles is a cartwheel, which comprises stacked 9-fold symmetrical SAS-6 ring polymers emerging orthogonal to a surface surrounding each resident centriole. The mechanisms through which SAS-6 polymerization ensures centriole organelle architecture remain elusive. We deploy photothermally-actuated off-resonance tapping high-speed atomic force microscopy to decipher surface SAS-6 self-assembly mechanisms. We show that the surface shifts the reaction equilibrium by ~104 compared to solution. Moreover, coarse-grained molecular dynamics and atomic force microscopy reveal that the surface converts the inherent helical propensity of SAS-6 polymers into 9-fold rings with residual asymmetry, which may guide ring stacking and impart chiral features to centrioles and cilia. Overall, our work reveals fundamental design principles governing centriole assembly. The centriole exhibits an evolutionarily conserved 9-fold radial symmetry that stems from a cartwheel containing vertically stacked ring polymers that harbor 9 homodimers of the protein SAS-6. Here the authors show how dual properties inherent to surface-guided SAS-6 self-assembly possess spatial information that dictates correct scaffolding of centriole architecture.
Collapse
|
3
|
Dias Louro MA, Bettencourt-Dias M, Carneiro J. A first-takes-all model of centriole copy number control based on cartwheel elongation. PLoS Comput Biol 2021; 17:e1008359. [PMID: 33970906 PMCID: PMC8136855 DOI: 10.1371/journal.pcbi.1008359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/20/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
How cells control the numbers of subcellular components is a fundamental question in biology. Given that biosynthetic processes are fundamentally stochastic it is utterly puzzling that some structures display no copy number variation within a cell population. Centriole biogenesis, with each centriole being duplicated once and only once per cell cycle, stands out due to its remarkable fidelity. This is a highly controlled process, which depends on low-abundance rate-limiting factors. How can exactly one centriole copy be produced given the variation in the concentration of these key factors? Hitherto, tentative explanations of this control evoked lateral inhibition- or phase separation-like mechanisms emerging from the dynamics of these rate-limiting factors but how strict centriole number is regulated remains unsolved. Here, a novel solution to centriole copy number control is proposed based on the assembly of a centriolar scaffold, the cartwheel. We assume that cartwheel building blocks accumulate around the mother centriole at supercritical concentrations, sufficient to assemble one or more cartwheels. Our key postulate is that once the first cartwheel is formed it continues to elongate by stacking the intermediate building blocks that would otherwise form supernumerary cartwheels. Using stochastic models and simulations, we show that this mechanism may ensure formation of one and only one cartwheel robustly over a wide range of parameter values. By comparison to alternative models, we conclude that the distinctive signatures of this novel mechanism are an increasing assembly time with cartwheel numbers and the translation of stochasticity in building block concentrations into variation in cartwheel numbers or length.
Collapse
Affiliation(s)
| | | | - Jorge Carneiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova, Oeiras, Portugal
| |
Collapse
|
4
|
Park JE, Zhang L, Bang JK, Andresson T, DiMaio F, Lee KS. Phase separation of Polo-like kinase 4 by autoactivation and clustering drives centriole biogenesis. Nat Commun 2019; 10:4959. [PMID: 31672968 PMCID: PMC6823436 DOI: 10.1038/s41467-019-12619-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/05/2019] [Indexed: 11/09/2022] Open
Abstract
Tight control of centriole duplication is critical for normal chromosome segregation and the maintenance of genomic stability. Polo-like kinase 4 (Plk4) is a key regulator of centriole biogenesis. How Plk4 dynamically promotes its symmetry-breaking relocalization and achieves its procentriole-assembly state remains unknown. Here we show that Plk4 is a unique kinase that utilizes its autophosphorylated noncatalytic cryptic polo-box (CPB) to phase separate and generate a nanoscale spherical condensate. Analyses of the crystal structure of a phospho-mimicking, condensation-proficient CPB mutant reveal that a disordered loop at the CPB PB2-tip region is critically required for Plk4 to generate condensates and induce procentriole assembly. CPB phosphorylation also promotes Plk4's dissociation from the Cep152 tether while binding to downstream STIL, thus allowing Plk4 condensate to serve as an assembling body for centriole biogenesis. This study uncovers the mechanism underlying Plk4 activation and may offer strategies for anti-Plk4 intervention against genomic instability and cancer.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Liang Zhang
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju, 28119, Republic of Korea
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research and Leidos Biomedical Research Inc., 8560 Progress Drive, Frederick, MD, 21702, USA
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, 1705 NE Pacific Street, Seattle, WA, 98195, USA
| | - Kyung S Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Takao D, Watanabe K, Kuroki K, Kitagawa D. Feedback loops in the Plk4-STIL-HsSAS6 network coordinate site selection for procentriole formation. Biol Open 2019; 8:bio047175. [PMID: 31533936 PMCID: PMC6777370 DOI: 10.1242/bio.047175] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Centrioles are duplicated once in every cell cycle, ensuring the bipolarity of the mitotic spindle. How the core components cooperate to achieve high fidelity in centriole duplication remains poorly understood. By live-cell imaging of endogenously tagged proteins in human cells throughout the entire cell cycle, we quantitatively tracked the dynamics of the critical duplication factors: Plk4, STIL and HsSAS6. Centriolar Plk4 peaks and then starts decreasing during the late G1 phase, which coincides with the accumulation of STIL at centrioles. Shortly thereafter, the HsSAS6 level increases steeply at the procentriole assembly site. We also show that both STIL and HsSAS6 are necessary for attenuating Plk4 levels. Furthermore, our mathematical modeling and simulation suggest that the STIL-HsSAS6 complex in the cartwheel has a negative feedback effect on centriolar Plk4. Combined, these findings illustrate how the dynamic behavior of and interactions between critical duplication factors coordinate the centriole-duplication process.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daisuke Takao
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Koki Watanabe
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Kanako Kuroki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Daiju Kitagawa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Busch JMC, Erat MC, Blank ID, Musgaard M, Biggin PC, Vakonakis I. A dynamically interacting flexible loop assists oligomerisation of the Caenorhabditis elegans centriolar protein SAS-6. Sci Rep 2019; 9:3526. [PMID: 30837637 PMCID: PMC6401066 DOI: 10.1038/s41598-019-40294-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/11/2019] [Indexed: 01/12/2023] Open
Abstract
Centrioles are conserved organelles fundamental for the organisation of microtubules in animal cells. Oligomerisation of the spindle assembly abnormal protein 6 (SAS-6) is an essential step in the centriole assembly process and may act as trigger for the formation of these organelles. SAS-6 oligomerisation is driven by two independent interfaces, comprising an extended coiled coil and a dimeric N-terminal globular domain. However, how SAS-6 oligomerisation is controlled remains unclear. Here, we show that in the Caenorhabditis elegans SAS-6, a segment of the N-terminal globular domain, unresolved in crystallographic structures, comprises a flexible loop that assists SAS-6 oligomerisation. Atomistic molecular dynamics simulations and nuclear magnetic resonance experiments suggest that transient interactions of this loop across the N-terminal dimerisation interface stabilise the SAS-6 oligomer. We discuss the possibilities presented by such flexible SAS-6 segments for the control of centriole formation.
Collapse
Affiliation(s)
- Julia M C Busch
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
| | - Michèle C Erat
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
- University of Warwick, Mathematical Institute, Coventry, CV4 7AL, United Kingdom
| | - Iris D Blank
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
| | - Maria Musgaard
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
- University of Ottawa, Department of Chemistry and Biomolecular Sciences, Ottawa, ON, K1N 6N5, Canada
| | - Philip C Biggin
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom
| | - Ioannis Vakonakis
- University of Oxford, Department of Biochemistry, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
7
|
Abstract
The centriole organelle consists of microtubules (MTs) that exhibit a striking 9-fold radial symmetry. Centrioles play fundamental roles across eukaryotes, notably in cell signaling, motility and division. In this Cell Science at a Glance article and accompanying poster, we cover the cellular life cycle of this organelle - from assembly to disappearance - focusing on human centrioles. The journey begins at the end of mitosis when centriole pairs disengage and the newly formed centrioles mature to begin a new duplication cycle. Selection of a single site of procentriole emergence through focusing of polo-like kinase 4 (PLK4) and the resulting assembly of spindle assembly abnormal protein 6 (SAS-6) into a cartwheel element are evoked next. Subsequently, we cover the recruitment of peripheral components that include the pinhead structure, MTs and the MT-connecting A-C linker. The function of centrioles in recruiting pericentriolar material (PCM) and in forming the template of the axoneme are then introduced, followed by a mention of circumstances in which centrioles form de novo or are eliminated.
Collapse
Affiliation(s)
- Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Georgios N Hatzopoulos
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Banterle N, Gönczy P. Centriole Biogenesis: From Identifying the Characters to Understanding the Plot. Annu Rev Cell Dev Biol 2017; 33:23-49. [PMID: 28813178 DOI: 10.1146/annurev-cellbio-100616-060454] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The centriole is a beautiful microtubule-based organelle that is critical for the proper execution of many fundamental cellular processes, including polarity, motility, and division. Centriole biogenesis, the making of this miniature architectural wonder, has emerged as an exemplary model to dissect the mechanisms governing the assembly of a eukaryotic organelle. Centriole biogenesis relies on a set of core proteins whose contributions to the assembly process have begun to be elucidated. Here, we review current knowledge regarding the mechanisms by which these core characters function in an orderly fashion to assemble the centriole. In particular, we discuss how having the correct proteins at the right place and at the right time is critical to first scaffold, then initiate, and finally execute the centriole assembly process, thus underscoring fundamental principles governing organelle biogenesis.
Collapse
Affiliation(s)
- Niccolò Banterle
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland;
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland;
| |
Collapse
|
9
|
Abstract
Multiciliated cells are epithelial cells that are in contact with bodily fluids and are required for the proper function of major organs including the brain, the respiratory system and the reproductive tracts. Their multiple motile cilia beat unidirectionally to remove particles of external origin from their surface and/or drive cells or fluids into the lumen of the organs. Multiciliated cells in the brain are produced once, almost exclusively during embryonic development, whereas in respiratory tracts and oviducts they regenerate throughout life. In this Review, we provide a cell-to-organ overview of multiciliated cells and highlight recent studies that have greatly increased our understanding of the mechanisms driving the development and function of these cells in vertebrates. We discuss cell fate determination and differentiation of multiciliated cells, and provide a comprehensive account of their locations and functions in mammals.
Collapse
|