1
|
Zúñiga-Santamaría T, Pérez-Aldana BE, Fricke-Galindo I, González-González M, Trujillo-de Los Santos ZG, Boll-Woehrlen MC, Rodríguez-García R, López-López M, Yescas-Gómez P. Variants in Neurotransmitter-Related Genes Are Associated with Alzheimer's Disease Risk and Cognitive Functioning but Not Short-Term Treatment Response. Neurol Int 2025; 17:65. [PMID: 40423221 DOI: 10.3390/neurolint17050065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/28/2025] Open
Abstract
Background/Objectives: Several genetic factors are related to the risk of Alzheimer's disease (AD) and the response to cholinesterase inhibitors (ChEIs) (donepezil, galantamine, and rivastigmine) or memantine. However, findings have been controversial, and, to the best of our knowledge, admixed populations have not been previously evaluated. We aimed to determine the impact of genetic and non-genetic factors on the risk of AD and the short-term response to ChEIs and memantine in patients with AD from Mexico. Methods: This study included 117 patients from two specialty hospitals in Mexico City, Mexico. We evaluated cognitive performance via clinical evaluations and neuropsychological tests. Nineteen variants in ABCB1, ACHE, APOE, BCHE, CHAT, CYP2D6, CYP3A5, CHRNA7, NR1I2, and POR were assessed through TaqMan assays or PCR. Results: Minor alleles of the ABCB1 rs1045642, ACHE rs17884589, and CHAT rs2177370 and rs3793790 variants were associated with the risk of AD; meanwhile, CHRNA7 rs6494223 and CYP3A5 rs776746 were identified as low-risk variants in AD. BCHE rs1803274 was associated with worse cognitive functioning. None of the genetic and non-genetic factors studied were associated with the response to pharmacological treatment. Conclusions: We identified potential genetic variants related to the risk of AD; meanwhile, no factor was observed to impact the response to pharmacological therapy in patients with AD from Mexico.
Collapse
Affiliation(s)
- Tirso Zúñiga-Santamaría
- Department of Genetics, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Blanca Estela Pérez-Aldana
- Master's Program in Pharmaceutical Sciences, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico
| | - Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 04530, Mexico
| | - Margarita González-González
- Unidad de Cognición y Conducta, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | | | - Marie Catherine Boll-Woehrlen
- Clinical Research Laboratory, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Rosalía Rodríguez-García
- Geriatrics Service, Hospital Regional "Lic. Adolfo López Mateos", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City 01030, Mexico
| | - Marisol López-López
- Department of Biological Systems, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico
| | - Petra Yescas-Gómez
- Department of Genetics, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| |
Collapse
|
2
|
Tripathi A, Pandey VK, Sharma G, Sharma AR, Taufeeq A, Jha AK, Kim JC. Genomic Insights into Dementia: Precision Medicine and the Impact of Gene-Environment Interaction. Aging Dis 2024; 15:2113-2135. [PMID: 38607741 PMCID: PMC11346410 DOI: 10.14336/ad.2024.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The diagnosis, treatment, and management of dementia provide significant challenges due to its chronic cognitive impairment. The complexity of this condition is further highlighted by the impact of gene-environment interactions. A recent strategy combines advanced genomics and precision medicine methods to explore the complex genetic foundations of dementia. Utilizing the most recent research in the field of neurogenetics, the importance of precise genetic data in explaining the variation seen in dementia patients can be investigated. Gene-environment interactions are important because they influence genetic susceptibilities and aid in the development and progression of dementia. Modified to each patient's genetic profile, precision medicine has the potential to detect groups at risk and make previously unheard-of predictions about the course of diseases. Precision medicine techniques have the potential to completely transform treatment and diagnosis methods. Targeted medications that target genetic abnormalities will probably appear, providing the possibility for more efficient and customized medical interventions. Investigating the relationship between genes and the environment may lead to preventive measures that would enable people to change their surroundings and minimize the risk of dementia, leading to the improved lifestyle of affected people. This paper provides a comprehensive overview of the genomic insights into dementia, emphasizing the pivotal role of precision medicine, and gene-environment interactions.
Collapse
Affiliation(s)
- Anjali Tripathi
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vinay Kumar Pandey
- Division of Research & Innovation (DRI), School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Anam Taufeeq
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Caban KM, Seßenhausen P, Stöckl JB, Popper B, Mayerhofer A, Fröhlich T. Proteome profile of the cerebellum from α7 nicotinic acetylcholine receptor deficient mice. Proteomics 2024; 24:e2300384. [PMID: 38185761 DOI: 10.1002/pmic.202300384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
The alpha7 nicotinic acetylcholine receptor (α7 nAChR; CHRNA7) is expressed in the nervous system and in non-neuronal tissues. Within the central nervous system, it is involved in various cognitive and sensory processes such as learning, attention, and memory. It is also expressed in the cerebellum, where its roles are; however, not as well understood as in the other brain regions. To investigate the consequences of absence of CHRNA7 on the cerebellum proteome, we performed a quantitative nano-LC-MS/MS analysis of samples from CHRNA7 knockout (KO) mice and corresponding wild type (WT) controls. Liver, an organ which does not express this receptor, was analyzed, in comparison. While the liver proteome remained relatively unaltered (three proteins more abundant in KOs), 90 more and 20 less abundant proteins were detected in the cerebellum proteome of the KO mice. The gene ontology analysis of the differentially abundant proteins indicates that the absence of CHRNA7 leads to alterations in the glutamatergic system and myelin sheath in the cerebellum. In conclusion, our dataset provides new insights in the role of CHRNA7 in the cerebellum, which may serve as a basis for future in depth-investigations.
Collapse
Affiliation(s)
| | - Pia Seßenhausen
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Jan Bernard Stöckl
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, München, Germany
| | - Bastian Popper
- Biomedical Center (BMC), Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, München, Germany
| |
Collapse
|
4
|
Pradhan A, Mounford H, Peixinho J, Rea E, Epeslidou E, Scott JS, Cull J, Maxwell S, Webster R, Beeson D, Dong YY, Prekovic S, Bermudez I, Newbury DF. Unraveling the molecular interactions between α7 nicotinic receptor and a RIC3 variant associated with backward speech. Cell Mol Life Sci 2024; 81:129. [PMID: 38472514 PMCID: PMC10933150 DOI: 10.1007/s00018-024-05149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
Recent work putatively linked a rare genetic variant of the chaperone Resistant to Inhibitors of acetylcholinesterase (RIC3) (NM_024557.4:c.262G > A, NP_078833.3:p.G88R) to a unique ability to speak backwards, a language skill that is associated with exceptional working memory capacity. RIC3 is important for the folding, maturation, and functional expression of α7 nicotinic acetylcholine receptors (nAChR). We compared and contrasted the effects of RIC3G88R on assembly, cell surface expression, and function of human α7 receptors using fluorescent protein tagged α7 nAChR and Förster resonance energy transfer (FRET) microscopy imaging in combination with functional assays and 125I-α-bungarotoxin binding. As expected, the wild-type RIC3 protein was found to increase both cell surface and functional expression of α7 receptors. In contrast, the variant form of RIC3 decreased both. FRET analysis showed that RICG88R increased the interactions between RIC3 and α7 protein in the endoplasmic reticulum. These results provide interesting and novel data to show that a RIC3 variant alters the interaction of RIC3 and α7, which translates to decreased cell surface and functional expression of α7 nAChR.
Collapse
Affiliation(s)
- Aditi Pradhan
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, England
| | - Hayley Mounford
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, England
| | - Jessica Peixinho
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, England
| | - Edward Rea
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, England
- Oxford Brookes Centre for Bioimaging, Oxford Brookes University, Oxford, OX3 0BP, England
| | - Emmanouela Epeslidou
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Julia S Scott
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joanna Cull
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, England
| | - Susan Maxwell
- Neurosciences Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, OX3 9DS, England
| | - Richard Webster
- Neurosciences Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, OX3 9DS, England
| | - David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, OX3 9DS, England
| | - Yin Yao Dong
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DS, England
| | - Stefan Prekovic
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Isabel Bermudez
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, England
| | - Dianne F Newbury
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, England.
| |
Collapse
|
5
|
Almahasneh F, Gerges RH, Abu-El-Rub E, Khasawneh RR. Nicotine Abuse and Neurodegeneration: Novel Pharmacogenetic Targets to Aid Quitting and Reduce the Risk of Dementia. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:2-8. [PMID: 36803746 DOI: 10.2174/1871527322666230220121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 02/22/2023]
Abstract
Nicotine dependence has deleterious neurological impacts. Previous studies found an association between cigarette smoking and accelerating age-related thinning of the brain's cortex and subsequent cognitive decline. Smoking is considered the third most common risk factor for dementia, which prompted the inclusion of smoking cessation in dementia prevention strategies. Traditional pharmacologic options for smoking cessation include nicotine transdermal patches, bupropion and varenicline. However, based on smokers' genetic makeup, pharmacogenetics can be used to develop novel therapies to replace these traditional approaches. Genetic variability of cytochrome P450 2A6 has a major impact on smokers' behavior and their response to quitting therapies. Gene polymorphism in nicotinic acetylcholine receptor subunits also has a great influence on the ability to quit smoking. In addition, polymorphism of certain nicotinic acetylcholine receptors was found to affect the risk of dementia and the impact of tobacco smoking on the development of Alzheimer's disease. Nicotine dependence involves the activation of pleasure response through the stimulation of dopamine release. Central dopamine receptors, catechol-o-methyltransferase and the dopamine transporter protein, regulate synaptic dopamine levels. The genes of these molecules are potential targets for novel smoking cessation drugs. Pharmacogenetic studies of smoking cessation also investigated other molecules, such as ANKK1 and dopamine-beta-hydroxylase (DBH). In this perspective article, we aim to highlight the promising role of pharmacogenetics in the development of effective drugs for smoking cessation, which can increase the success rate of smoking quitting plans and ultimately reduce the incidence of neurodegeneration and dementia.
Collapse
Affiliation(s)
- Fatimah Almahasneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Romany H Gerges
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ejlal Abu-El-Rub
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ramada R Khasawneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| |
Collapse
|
6
|
Leonard S, Benfante R. Unanswered questions in the regulation and function of the duplicated α7 nicotinic receptor gene CHRFAM7A. Pharmacol Res 2023; 192:106783. [PMID: 37164281 DOI: 10.1016/j.phrs.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
The α7 nicotinic receptor (α7 nAChR) is an important entry point for Ca2+ into the cell, which has broad and important effects on gene expression and function. The gene (CHRNA7), mapping to chromosome (15q14), has been genetically linked to a large number of diseases, many of which involve defects in cognition. While numerous mutations in CHRNA7 are associated with mental illness and inflammation, an important control point may be the function of a recently discovered partial duplication CHRNA7, CHRFAM7A, that negatively regulates the function of the α7 receptor, through the formation of heteropentamers; other functions cannot be excluded. The deregulation of this human specific gene (CHRFAM7A) has been linked to neurodevelopmental, neurodegenerative, and inflammatory disorders and has important copy number variations. Much effort is being made to understand its function and regulation both in healthy and pathological conditions. However, many questions remain to be answered regarding its functional role, its regulation, and its role in the etiogenesis of neurological and inflammatory disorders. Missing knowledge on the pharmacology of the heteroreceptor has limited the discovery of new molecules capable of modulating its activity. Here we review the state of the art on the role of CHRFAM7A, highlighting unanswered questions to be addressed. A possible therapeutic approach based on genome editing protocols is also discussed.
Collapse
Affiliation(s)
- Sherry Leonard
- Department of Psychiatry - University of Colorado Anschutz, Aurora, Colorado, USA
| | - Roberta Benfante
- CNR - Institute of Neuroscience, Vedano al Lambro (MB), Italy; Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; NeuroMI - Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
7
|
Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18:643-660. [PMID: 36180553 DOI: 10.1038/s41582-022-00714-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
With the exception of a few monogenic forms, Alzheimer disease (AD) has a complex aetiology that is likely to involve multiple susceptibility genes and environmental factors. The role of environmental factors is difficult to determine and, until a few years ago, the molecular mechanisms underlying gene-environment (G × E) interactions in AD were largely unknown. Here, we review evidence that has emerged over the past two decades to explain how environmental factors, such as diet, lifestyle, alcohol, smoking and pollutants, might interact with the human genome. In particular, we discuss how various environmental AD risk factors can induce epigenetic modifications of key AD-related genes and pathways and consider how epigenetic mechanisms could contribute to the effects of oxidative stress on AD onset. Studies on early-life exposures are helping to uncover critical time windows of sensitivity to epigenetic influences from environmental factors, thereby laying the foundations for future primary preventative approaches. We conclude that epigenetic modifications need to be considered when assessing G × E interactions in AD.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy. .,Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy.
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Mohammadi S, Mahmoudi J, Farajdokht F, Asadi M, Pirsarabi P, Kazeminiaei SF, Parvizpour S, Sadigh-Eteghad S. Polymorphisms of nicotinic acetylcholine receptors in Alzheimer’s disease: a systematic review and data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Objective
This study was conducted to accomplish a better insight into the impact of single nucleotide polymorphisms (SNPs) of nicotinic acetylcholine receptors (nAChR) at the risk of Alzheimer’s disease (AD) and their possible pathogenicity.
Methods
We carried out a systemic review of accessible studies. The case–control studies were assessed by an electronic search of international and local databases to identify relevant studies on SNPs relating to nAChR genes in AD. Two reviewers evaluated the inclusion/exclusion criteria, summarized, and analyzed the extracted data. We used odds ratios (ORs) with 95% confidence intervals (CIs) for reporting our data. Online databases were checked for possible pathogenicity of statistically significant SNPs. Also, online databases, including NCBI, NIH, ClinVar, RegulomeDB, and Ensemble, were used to analyze and identify structure and function, DNA features, and flank sequencing in SNPs.
Results
Among all collected SNPs, rs4779978 and rs1827294 on CHRNA7, rs1044394 on CHRNA4, and rs1127314 on CHRNB2 showed statistically significant between AD cases and controls.
Conclusions
Some SNPs from the reviewed reports show evidence supporting their possible involvement in AD pathology. However, more comprehensive studies are necessary to identify the exact correlation and their role on the pathogenicity of disease.
Collapse
|
9
|
Lee AJ, Raghavan NS, Bhattarai P, Siddiqui T, Sariya S, Reyes-Dumeyer D, Flowers XE, Cardoso SAL, De Jager PL, Bennett DA, Schneider JA, Menon V, Wang Y, Lantigua RA, Medrano M, Rivera D, Jiménez-Velázquez IZ, Kukull WA, Brickman AM, Manly JJ, Tosto G, Kizil C, Vardarajan BN, Mayeux R. FMNL2 regulates gliovascular interactions and is associated with vascular risk factors and cerebrovascular pathology in Alzheimer's disease. Acta Neuropathol 2022; 144:59-79. [PMID: 35608697 PMCID: PMC9217776 DOI: 10.1007/s00401-022-02431-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) has been associated with cardiovascular and cerebrovascular risk factors (CVRFs) during middle age and later and is frequently accompanied by cerebrovascular pathology at death. An interaction between CVRFs and genetic variants might explain the pathogenesis. Genome-wide, gene by CVRF interaction analyses for AD, in 6568 patients and 8101 controls identified FMNL2 (p = 6.6 × 10-7). A significant increase in FMNL2 expression was observed in the brains of patients with brain infarcts and AD pathology and was associated with amyloid and phosphorylated tau deposition. FMNL2 was also prominent in astroglia in AD among those with cerebrovascular pathology. Amyloid toxicity in zebrafish increased fmnl2a expression in astroglia with detachment of astroglial end feet from blood vessels. Knockdown of fmnl2a prevented gliovascular remodeling, reduced microglial activity and enhanced amyloidosis. APP/PS1dE9 AD mice also displayed increased Fmnl2 expression and reduced the gliovascular contacts independent of the gliotic response. Based on this work, we propose that FMNL2 regulates pathology-dependent plasticity of the blood-brain-barrier by controlling gliovascular interactions and stimulating the clearance of extracellular aggregates. Therefore, in AD cerebrovascular risk factors promote cerebrovascular pathology which in turn, interacts with FMNL2 altering the normal astroglial-vascular mechanisms underlying the clearance of amyloid and tau increasing their deposition in brain.
Collapse
Affiliation(s)
- Annie J Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Neha S Raghavan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Prabesh Bhattarai
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tatzberg 41, 01307, Dresden, Germany
| | - Tohid Siddiqui
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tatzberg 41, 01307, Dresden, Germany
| | - Sanjeev Sariya
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Xena E Flowers
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Sarah A L Cardoso
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Philip L De Jager
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Vilas Menon
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Rafael A Lantigua
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Medicine, College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 630 West 168th Street, New York, NY, 10032, USA
| | - Martin Medrano
- School of Medicine, Pontificia Universidad Catolica Madre y Maestra (PUCMM), Santiago, Dominican Republic
| | - Diones Rivera
- Department of Neurology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
- School of Medicine, Universidad Pedro Henriquez Urena (UNPHU), Santo Domingo, Dominican Republic
| | - Ivonne Z Jiménez-Velázquez
- Department of Medicine, Medical Sciences Campus, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, 00936, USA
| | - Walter A Kukull
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, 98195, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Jennifer J Manly
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Tatzberg 41, 01307, Dresden, Germany
| | - Badri N Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, 10032, USA.
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA.
| |
Collapse
|
10
|
Pattanaik B, Hammarlund M, Mjörnstedt F, Ulleryd MA, Zhong W, Uhlén M, Gummesson A, Bergström G, Johansson ME. Polymorphisms in alpha 7 nicotinic acetylcholine receptor gene, CHRNA7, and its partially duplicated gene, CHRFAM7A, associate with increased inflammatory response in human peripheral mononuclear cells. FASEB J 2022; 36:e22271. [PMID: 35344211 DOI: 10.1096/fj.202101898r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 01/16/2023]
Abstract
The vagus nerve can, via the alpha 7 nicotinic acetylcholine receptor (α7nAChR), regulate inflammation. The gene coding for the α7nAChR, CHRNA7, can be partially duplicated, that is, CHRFAM7A, which is reported to impair the anti-inflammatory effect mediated via the α7nAChR. Several single nucleotide polymorphisms (SNPs) have been described in both CHRNA7 and CHRFAM7A, however, the functional role of these SNPs for immune responses remains to be investigated. In the current study, we set out to investigate whether genetic variants of CHRNA7 and CHRFAM7A can influence immune responses. By investigating data available from the Swedish SciLifeLab SCAPIS Wellness Profiling (S3WP) study, in combination with droplet digital PCR and freshly isolated PBMCs from the S3WP participants, challenged with lipopolysaccharide (LPS), we show that CHRNA7 and CHRFAM7A are expressed in human PBMCs, with approximately four times higher expression of CHRFAM7A compared with CHRNA7. One SNP in CHRFAM7A, rs34007223, is positively associated with hsCRP in healthy individuals. Furthermore, gene ontology (GO)-terms analysis of plasma proteins associated with gene expression of CHRNA7 and CHRFAM7A demonstrated an involvement for these genes in immune responses. This was further supported by in vitro data showing that several SNPs in both CHRNA7 and CHRFAM7A are significantly associated with cytokine response. In conclusion, genetic variants of CHRNA7 and CHRFAM7A alters cytokine responses. Furthermore, given that CHRFAM7A SNP rs34007223 is associated with inflammatory marker hsCRP in healthy individuals suggests that CHRFAM7A may have a more pronounced role in regulating inflammatory processes in humans than previously been recognized.
Collapse
Affiliation(s)
- Bagmi Pattanaik
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Hammarlund
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Filip Mjörnstedt
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus A Ulleryd
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Wen Zhong
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anders Gummesson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Maria E Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
The potential roles of genetic factors in predicting ageing-related cognitive change and Alzheimer's disease. Ageing Res Rev 2021; 70:101402. [PMID: 34242808 DOI: 10.1016/j.arr.2021.101402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a complex neurological disorder of uncertain aetiology, although substantial research has been conducted to explore important factors related to risk of onset and progression. Both lifestyle (e.g., complex mental stimulation, vascular health) and genetic factors (e.g., APOE, BDNF, PICALM, CLU, APP, PSEN1, PSEN2, and other genes) have been associated with AD risk. Despite more than thirty years of genetic research, much of the heritability of AD is not explained by measured loci. This suggests that the missing heritability of AD might be potentially related to rare variants, gene-environment and gene-gene interactions, and potentially epigenetic modulators. Moreover, while ageing is the most substantial factor risk for AD, there are limited longitudinal studies examining the association of genetic factors with decline in cognitive function due to ageing and the preclinical stages of this condition. This review summarises findings from currently available research on the genetic factors of ageing-related cognitive change and AD and suggests some future research directions.
Collapse
|
12
|
Agarwala S, Veerappa AM, Ramachandra NB. Identification of primary copy number variations reveal enrichment of Calcium, and MAPK pathways sensitizing secondary sites for autism. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autism is a neurodevelopmental condition with genetic heterogeneity. It is characterized by difficulties in reciprocal social interactions with strong repetitive behaviors and stereotyped interests. Copy number variations (CNVs) are genomic structural variations altering the genomic structure either by duplication or deletion. De novo or inherited CNVs are found in 5–10% of autistic subjects with a size range of few kilobases to several megabases. CNVs predispose humans to various diseases by altering gene regulation, generation of chimeric genes, and disruption of the coding region or through position effect. Although, CNVs are not the initiating event in pathogenesis; additional preceding mutations might be essential for disease manifestation. The present study is aimed to identify the primary CNVs responsible for autism susceptibility in healthy cohorts to sensitize secondary-hits. In the current investigation, primary-hit autism gene CNVs are characterized in 1715 healthy cohorts of varying ethnicities across 12 populations using Affymetrix high-resolution array study. Thirty-eight individuals from twelve families residing in Karnataka, India, with the age group of 13–73 years are included for the comparative CNV analysis. The findings are validated against global 179 autism whole-exome sequence datasets derived from Simons Simplex Collection. These datasets are deposited at the Simons Foundation Autism Research Initiative (SFARI) database.
Results
The study revealed that 34.8% of the subjects carried 2% primary-hit CNV burden with 73 singleton-autism genes in different clusters. Of these, three conserved CNV breakpoints were identified with ARHGAP11B, DUSP22, and CHRNA7 as the target genes across 12 populations. Enrichment analysis of the population-specific autism genes revealed two signaling pathways—calcium and mitogen-activated protein kinases (MAPK) in the CNV identified regions. These impaired pathways affected the downstream cascades of neuronal function and physiology, leading to autism behavior. The pathway analysis of enriched genes unravelled complex protein interaction networks, which sensitized secondary sites for autism. Further, the identification of miRNA targets associated with autism gene CNVs added severity to the condition.
Conclusion
These findings contribute to an atlas of primary-hit genes to detect autism susceptibility in healthy cohorts, indicating their impact on secondary sites for manifestation.
Collapse
|
13
|
Li XY, Zhang M, Xu W, Li JQ, Cao XP, Yu JT, Tan L. Midlife Modifiable Risk Factors for Dementia: A Systematic Review and Meta-analysis of 34 Prospective Cohort Studies. Curr Alzheimer Res 2020; 16:1254-1268. [PMID: 31902364 DOI: 10.2174/1567205017666200103111253] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 11/25/2019] [Accepted: 12/29/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The aim of this study is to assess the association between midlife risk factors and dementia. METHODS PubMed and Cochrane library were systematically searched on May 24, 2018, to retrieve prospective cohort studies. The summary Relative Risk (RR) and 95% Confidence Interval (CI) were calculated by the random-effect model to explore the association between midlife risk factors and dementia. Sensitivity analysis and meta-regression were conducted to explore the source of heterogeneity. Publication bias was examined using Begg's and Egger's tests. RESULTS Thirty-four prospective cohort studies were included, among which 24 were eligible for metaanalysis. A total of 159,594 non-demented adults were enrolled at baseline before 65 years and 13,540 people were diagnosed with dementia after follow-up. The pooled results revealed that five factors could significantly increase the dementia risk by 41 to 78%, including obesity (RR, 1.78; 95% CI: 1.31-2.41), diabetes mellitus (RR, 1.69; 95% CI: 1.38-2.07), current smoking (RR, 1.61; 95%, CI: 1.32-1.95), hypercholesterolemia (RR, 1.57; 95% CI: 1.19-2.07), and hypertension (borderline blood pressure RR, 1.41; 95% CI: 1.23-1.62 and high Systolic Blood Pressure (SBP) RR, 1.72; 95% CI: 1.25-2.37). However, the sensitivity analyses found that the results of hypercholesterolemia and high SBP were not reliable, which need to be confirmed by more high-quality studies. No influences due to publication bias were revealed. In the systematic review, another three factors (hyperhomocysteinemia, psychological stress, and heavy drinking) were found to be associated with elevated dementia risk. In addition, physical exercise, a healthy diet, and hormone therapy in middle age were associated with the reduction of dementia risk. CONCLUSIONS Middle-aged people with obesity, diabetes, hypertension, or hypercholesterolemia, and current smokers in midlife are at higher risk of developing dementia later in life.
Collapse
Affiliation(s)
- Xiao-Ying Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Min Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Jie-Qiong Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.,Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.,College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| |
Collapse
|
14
|
Cacabelos R. Pharmacogenetic considerations when prescribing cholinesterase inhibitors for the treatment of Alzheimer's disease. Expert Opin Drug Metab Toxicol 2020; 16:673-701. [PMID: 32520597 DOI: 10.1080/17425255.2020.1779700] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cholinergic dysfunction, demonstrated in the late 1970s and early 1980s, led to the introduction of acetylcholinesterase inhibitors (AChEIs) in 1993 (Tacrine) to enhance cholinergic neurotransmission as the first line of treatment against Alzheimer's disease (AD). The new generation of AChEIs, represented by Donepezil (1996), Galantamine (2001) and Rivastigmine (2002), is the only treatment for AD to date, together with Memantine (2003). AChEIs are not devoid of side-effects and their cost-effectiveness is limited. An option to optimize the correct use of AChEIs is the implementation of pharmacogenetics (PGx) in the clinical practice. AREAS COVERED (i) The cholinergic system in AD, (ii) principles of AD PGx, (iii) PGx of Donepezil, Galantamine, Rivastigmine, Huperzine and other treatments, and (iv) practical recommendations. EXPERT OPINION The most relevant genes influencing AChEI efficacy and safety are APOE and CYPs. APOE-4 carriers are the worst responders to AChEIs. With the exception of Rivastigmine (UGT2B7, BCHE-K), the other AChEIs are primarily metabolized via CYP2D6, CYP3A4, and UGT enzymes, with involvement of ABC transporters and cholinergic genes (CHAT, ACHE, BCHE, SLC5A7, SLC18A3, CHRNA7) in most ethnic groups. Defective variants may affect the clinical response to AChEIs. PGx geno-phenotyping is highly recommended prior to treatment.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine , Bergondo, Corunna, Spain
| |
Collapse
|
15
|
Caton M, Ochoa ELM, Barrantes FJ. The role of nicotinic cholinergic neurotransmission in delusional thinking. NPJ SCHIZOPHRENIA 2020; 6:16. [PMID: 32532978 PMCID: PMC7293341 DOI: 10.1038/s41537-020-0105-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Delusions are a difficult-to-treat and intellectually fascinating aspect of many psychiatric illnesses. Although scientific progress on this complex topic has been challenging, some recent advances focus on dysfunction in neural circuits, specifically in those involving dopaminergic and glutamatergic neurotransmission. Here we review the role of cholinergic neurotransmission in delusions, with a focus on nicotinic receptors, which are known to play a part in some illnesses where these symptoms appear, including delirium, schizophrenia spectrum disorders, bipolar disorder, Parkinson, Huntington, and Alzheimer diseases. Beginning with what we know about the emergence of delusions in these illnesses, we advance a hypothesis of cholinergic disturbance in the dorsal striatum where nicotinic receptors are operative. Striosomes are proposed to play a central role in the formation of delusions. This hypothesis is consistent with our current knowledge about the mechanism of action of cholinergic drugs and with our abstract models of basic cognitive mechanisms at the molecular and circuit levels. We conclude by pointing out the need for further research both at the clinical and translational levels.
Collapse
Affiliation(s)
- Michael Caton
- The Permanente Medical Group, Kaiser Santa Rosa Department of Psychiatry, 2235 Mercury Way, Santa Rosa, CA, 95047, USA
- Heritage Oaks Hospital, 4250 Auburn Boulevard, Sacramento, CA, 95841, USA
| | - Enrique L M Ochoa
- Heritage Oaks Hospital, 4250 Auburn Boulevard, Sacramento, CA, 95841, USA
- Volunteer Clinical Faculty, Department of Psychiatry and Behavioral Sciences, University of California at Davis, 2230 Stockton Boulevard, Sacramento, CA, 95817, USA
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), Faculty of Medical Sciences, UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Sumirtanurdin R, Thalib AY, Cantona K, Abdulah R. Effect of genetic polymorphisms on Alzheimer's disease treatment outcomes: an update. Clin Interv Aging 2019; 14:631-642. [PMID: 30992661 PMCID: PMC6445219 DOI: 10.2147/cia.s200109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genetic variations in individuals may cause differences in the response to cholinesterase inhibitor drugs used in the treatment of Alzheimer's disease (AD). Through this review, we aimed to understand the potential relationship between genetic polymorphisms and treatment response in AD. We conducted a systematic review of the studies published from 2006 to 2018 that assessed the relationship between genetic polymorphisms and the pharmacotherapeutic outcomes of patients with AD. Via several possible mechanisms, genetic polymorphisms of many genes, including ABCA1, ApoE3, CYP2D6, CHAT, CHRNA7, and ESR1, appear to have strong correlations with the treatment response of patients with AD. Indeed, these genetic polymorphisms, either in the form of single nucleotide polymorphisms or direct changes to one or more amino acids, have been shown to cause differences in the therapeutic response. In summary, our findings indicate that genetic polymorphisms should be considered in the management of AD to achieve both effective and efficient treatment outcomes in terms of cost and prognosis.
Collapse
Affiliation(s)
- Riyadi Sumirtanurdin
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia,
| | - Amirah Y Thalib
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia,
| | - Kelvin Cantona
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia,
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia, .,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia,
| |
Collapse
|
17
|
Eid A, Mhatre I, Richardson JR. Gene-environment interactions in Alzheimer's disease: A potential path to precision medicine. Pharmacol Ther 2019; 199:173-187. [PMID: 30877021 DOI: 10.1016/j.pharmthera.2019.03.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the United States and afflicts >5.7 million Americans in 2018. Therapeutic options remain extremely limited to those that are symptom targeting, while no drugs have been approved for the modification or reversal of the disease itself. Risk factors for AD including aging, the female sex, as well as carrying an APOE4 genotype. These risk factors have been extensively examined in the literature, while less attention has been paid to modifiable risk factors, including lifestyle, and environmental risk factors such as exposures to air pollution and pesticides. This review highlights the most recent data on risk factors in AD and identifies gene by environment interactions that have been investigated. It also provides a suggested framework for a personalized therapeutic approach to AD, by combining genetic, environmental and lifestyle risk factors. Understanding modifiable risk factors and their interaction with non-modifiable factors (age, susceptibility alleles, and sex) is paramount for designing personalized therapeutic interventions.
Collapse
Affiliation(s)
- Aseel Eid
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America
| | - Isha Mhatre
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America; Department of Neurosciences, School of Biomedical Sciences, Kent State University, Kent, OH
| | - Jason R Richardson
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America.
| |
Collapse
|
18
|
G SBA, Choi S, Krishnan J, K R. Cigarette smoke and related risk factors in neurological disorders: An update. Biomed Pharmacother 2016; 85:79-86. [PMID: 27930990 DOI: 10.1016/j.biopha.2016.11.118] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/07/2016] [Accepted: 11/27/2016] [Indexed: 01/12/2023] Open
Abstract
Cigarette smoking is known to be harmful to health, and is considered the main cause of death worldwide, especially in India. Among the well-distinguished diseases related to smoking are, chronic obstructive pulmonary disease, oral and peripheral cancers, and cardiovascular complications. However, the impact of cigarette smoking on neurocognitive and neuropathological effects, including anxiety, Alzheimer's disease, Parkinson's disease, ischemic stroke, and blood-brain barrier dysfunction, still remains unclear. Cigarette smoke consists of more than 4500 toxic chemicals that combine to form free radicals, which lead to oxidative stress-associated neurological disorders. Herein, we discuss the role of antioxidant agents in delaying or attenuating disease complications. In addition, in this review, we discuss the neuropathological effect of cigarette smoke and its interference in neurodegeneration.
Collapse
Affiliation(s)
- Smilin Bell Aseervatham G
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries, Anna University, BIT campus, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Jayalakshmi Krishnan
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Ruckmani K
- National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries, Anna University, BIT campus, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
19
|
Chen Y, Cao D, Gao J, Yuan Z. Discovering Pair-wise Synergies in Microarray Data. Sci Rep 2016; 6:30672. [PMID: 27470995 PMCID: PMC4965793 DOI: 10.1038/srep30672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023] Open
Abstract
Informative gene selection can have important implications for the improvement of cancer diagnosis and the identification of new drug targets. Individual-gene-ranking methods ignore interactions between genes. Furthermore, popular pair-wise gene evaluation methods, e.g. TSP and TSG, are helpless for discovering pair-wise interactions. Several efforts to discover pair-wise synergy have been made based on the information approach, such as EMBP and FeatKNN. However, the methods which are employed to estimate mutual information, e.g. binarization, histogram-based and KNN estimators, depend on known data or domain characteristics. Recently, Reshef et al. proposed a novel maximal information coefficient (MIC) measure to capture a wide range of associations between two variables that has the property of generality. An extension from MIC(X; Y) to MIC(X1; X2; Y) is therefore desired. We developed an approximation algorithm for estimating MIC(X1; X2; Y) where Y is a discrete variable. MIC(X1; X2; Y) is employed to detect pair-wise synergy in simulation and cancer microarray data. The results indicate that MIC(X1; X2; Y) also has the property of generality. It can discover synergic genes that are undetectable by reference feature selection methods such as MIC(X; Y) and TSG. Synergic genes can distinguish different phenotypes. Finally, the biological relevance of these synergic genes is validated with GO annotation and OUgene database.
Collapse
Affiliation(s)
- Yuan Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Dan Cao
- Orient Science &Technology College of Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jun Gao
- College of Resources &Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Zheming Yuan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|