1
|
Liu J, Fang L, Gong C, Li J, Liu Y, Zeng P, Fan Y, Liu Y, Guo J, Wang L, Li Y. Neurotoxicity study of cenobamate-induced zebrafish early developmental stages. Toxicol Appl Pharmacol 2025; 495:117201. [PMID: 39667564 DOI: 10.1016/j.taap.2024.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Cenobamate (CNB) is a novel anti-seizure medication with significant efficacy in treating epilepsy. However, in clinical trials, the most common adverse reactions observed in patients are central nervous system (CNS) symptoms. In animal studies, administration of CNB during pregnancy or lactation has been associated with adverse effects on neurodevelopment in offspring. To optimize the clinical use of CNB, we investigated the neurotoxicity of different concentrations of CNB (10, 20, 40, 80, and 160 μM) on zebrafish embryos. Following exposure, zebrafish embryos exhibited abnormal phenotypes such as shortened body length, impaired yolk sac absorption, and decreased heart rate. Behavioral experiments showed that CNB caused abnormal movements such as decreased spontaneous tail curling frequency, shortened total movement distance, and reduced average movement speed. We also found that CNB leads to increased acetylcholinesterase (AChE) activity levels in zebrafish embryos, along with differential expression of neurodevelopment-related genes such as nestin, gfap, synapsin IIa, and gap43. In summary, our research findings indicated that CNB may induce developmental and neurotoxic effects in zebrafish embryos by altering neurotransmitter systems and the expression of neurodevelopmental genes, thereby influencing behavior. This study will provide information for the clinical use of CNB, aiming to benefit more epilepsy patients through its appropriate administration.
Collapse
Affiliation(s)
- Jiahao Liu
- Heilongjiang Provincial Key Laboratory of Child Neurorehabilitation, School of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Liya Fang
- Heilongjiang Provincial Key Laboratory of Child Neurorehabilitation, School of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Chao Gong
- Heilongjiang Provincial Key Laboratory of Child Neurorehabilitation, School of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Jiawei Li
- Heilongjiang Provincial Key Laboratory of Child Neurorehabilitation, School of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Yuanyuan Liu
- Heilongjiang Provincial Key Laboratory of Child Neurorehabilitation, School of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Pei Zeng
- The Third Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Yanping Fan
- The Third Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Yao Liu
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Jin Guo
- The Third Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China.
| | - Luchuan Wang
- The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China.
| | - Yue Li
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154000, PR China.
| |
Collapse
|
2
|
Navajas Acedo J. Complete persistence of the primary somatosensory system in zebrafish. Dev Biol 2024; 515:178-185. [PMID: 39021074 DOI: 10.1016/j.ydbio.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/20/2024] [Accepted: 05/07/2024] [Indexed: 07/20/2024]
Abstract
The somatosensory system detects peripheral stimuli that are translated into behaviors necessary for survival. Fishes and amphibians possess two somatosensory systems in the trunk: the primary somatosensory system, formed by the Rohon-Beard neurons, and the secondary somatosensory system, formed by the neural crest cell-derived neurons of the Dorsal Root Ganglia. Rohon-Beard neurons have been characterized as a transient population that mostly disappears during the first days of life and is functionally replaced by the Dorsal Root Ganglia. Here, I follow Rohon-Beard neurons in vivo and show that the entire repertoire remains present in zebrafish from 1-day post-fertilization until the juvenile stage, 15-days post-fertilization. These data indicate that zebrafish retain two complete somatosensory systems until at least a developmental stage when the animals display complex behavioral repertoires.
Collapse
Affiliation(s)
- Joaquín Navajas Acedo
- Biozentrum at University of Basel, Spitalstrasse 41, Basel, Switzerland; Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Thompson WA, Shvartsburd Z, Vijayan MM. The antidepressant venlafaxine perturbs cardiac development and function in larval zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106041. [PMID: 34856460 DOI: 10.1016/j.aquatox.2021.106041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Venlafaxine, a selective serotonin and norepinephrine reuptake inhibitor, is a highly prescribed antidepressant and is detected at µg/L concentrations in waterways receiving municipal wastewater effluents. We previously showed that early-life venlafaxine exposure disrupted the normal development of the nervous system and reduces larval activity in zebrafish (Danio rerio). However, it is unclear whether the reduced swimming activity may be associated with impaired cardiac function. Here we tested the hypothesis that zygotic exposure to venlafaxine impacts the development and function of the larval zebrafish heart. Venlafaxine (0, 1 or 10 ng) was administered by microinjection into freshly fertilized zebrafish embryos (1-4 cell stage) to assess heart development and function during early-life stages. Venlafaxine deposition in the zygote led to precocious development of the embryo heart, including the timing of the first heartbeat, increased heart size, and a higher heart rate at 24- and 48-hours post-fertilization (hpf). Also, waterborne exposure to environmental levels of this antidepressant during early development increased the heart rate at 48 hpf of zebrafish larvae mimicking the zygotic deposition. The venlafaxine-induced higher heart rate in the embryos was abolished in the presence of NAN-190, an antagonist of the 5HT1A receptor. Also, heart rate dropped below control levels in the 10 ng, but not 1 ng venlafaxine group at 72 and 96 hpf. An acute stressor reduced the venlafaxine-induced heart rate at 48 hpf but did not affect the already reduced heart rate at 72 and 96 hpf in the 10 ng venlafaxine group. Our results suggest that the higher heart rate in the venlafaxine group may be due to an enhanced serotonin stimulation of the 5HT1A receptor. Taken together, early-life venlafaxine exposure disrupts cardiac development and has the potential to compromise the cardiovascular performance of larval zebrafish.
Collapse
Affiliation(s)
- W Andrew Thompson
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Zachary Shvartsburd
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| |
Collapse
|
4
|
A specialized spinal circuit for command amplification and directionality during escape behavior. Proc Natl Acad Sci U S A 2021; 118:2106785118. [PMID: 34663699 PMCID: PMC8545473 DOI: 10.1073/pnas.2106785118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
We are constantly faced with a choice moving to the left or right; understanding how the brain solves the selection of action direction is of tremendous interest both from biological and clinical perspectives. In vertebrates, action selection is often considered to be the realm of higher cognitive processing. However, by combining electrophysiology, serial block-face electron microscopy, and behavioral analyses in zebrafish, we have revealed a pivotal role, as well as the full functional connectome of a specialized spinal circuit relying on strong axo-axonic synaptic connections. This includes identifying a class of cholinergic V2a interneurons and establishing that they act as a segmentally repeating hub that receives and amplifies escape commands from the brain to ensure the appropriate escape directionality. In vertebrates, action selection often involves higher cognition entailing an evaluative process. However, urgent tasks, such as defensive escape, require an immediate implementation of the directionality of escape trajectory, necessitating local circuits. Here we reveal a specialized spinal circuit for the execution of escape direction in adult zebrafish. A central component of this circuit is a unique class of segmentally repeating cholinergic V2a interneurons expressing the transcription factor Chx10. These interneurons amplify brainstem-initiated escape commands and rapidly deliver the excitation via a feedforward circuit to all fast motor neurons and commissural interneurons to direct the escape maneuver. The information transfer within this circuit relies on fast and reliable axo-axonic synaptic connections, bypassing soma and dendrites. Unilateral ablation of cholinergic V2a interneurons eliminated escape command propagation. Thus, in vertebrates, local spinal circuits can implement directionality of urgent motor actions vital for survival.
Collapse
|
5
|
Abstract
Locomotion requires the segmental coordination of activity along the body. A new study in zebrafish reveals that spinal inhibitory interneurons are wired to execute different functions depending on whether their targets are nearby or further away.
Collapse
Affiliation(s)
- Michael Jay
- Department of Neurobiology, Northwestern University, Evanston, IL 60201, USA
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
6
|
Di Mauro G, Rauti R, Casani R, Chimowa G, Galibert AM, Flahaut E, Cellot G, Ballerini L. Tuning the Reduction of Graphene Oxide Nanoflakes Differently Affects Neuronal Networks in the Zebrafish. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2161. [PMID: 34578477 PMCID: PMC8468975 DOI: 10.3390/nano11092161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 01/05/2023]
Abstract
The increasing engineering of biomedical devices and the design of drug-delivery platforms enriched by graphene-based components demand careful investigations of the impact of graphene-related materials (GRMs) on the nervous system. In addition, the enhanced diffusion of GRM-based products and technologies that might favor the dispersion in the environment of GRMs nanoparticles urgently requires the potential neurotoxicity of these compounds to be addressed. One of the challenges in providing definite evidence supporting the harmful or safe use of GRMs is addressing the variety of this family of materials, with GRMs differing for size and chemistry. Such a diversity impairs reaching a unique and predictive picture of the effects of GRMs on the nervous system. Here, by exploiting the thermal reduction of graphene oxide nanoflakes (GO) to generate materials with different oxygen/carbon ratios, we used a high-throughput analysis of early-stage zebrafish locomotor behavior to investigate if modifications of a specific GRM chemical property influenced how these nanomaterials affect vertebrate sensory-motor neurophysiology-exposing zebrafish to GO downregulated their swimming performance. Conversely, reduced GO (rGO) treatments boosted locomotor activity. We concluded that the tuning of single GRM chemical properties is sufficient to produce differential effects on nervous system physiology, likely interfering with different signaling pathways.
Collapse
Affiliation(s)
- Giuseppe Di Mauro
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| | - Rossana Rauti
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| | - Raffaele Casani
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| | - George Chimowa
- CIRIMAT, UMR CNRS 5085, Université Toulouse Paul Sabatier, Bat. CIRIMAT, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (G.C.); (A.M.G.); (E.F.)
| | - Anne Marie Galibert
- CIRIMAT, UMR CNRS 5085, Université Toulouse Paul Sabatier, Bat. CIRIMAT, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (G.C.); (A.M.G.); (E.F.)
| | - Emmanuel Flahaut
- CIRIMAT, UMR CNRS 5085, Université Toulouse Paul Sabatier, Bat. CIRIMAT, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (G.C.); (A.M.G.); (E.F.)
| | - Giada Cellot
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| | - Laura Ballerini
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| |
Collapse
|
7
|
Abstract
Optogenetics brought noninvasive neural activation in living organisms. Transparent zebrafish larva is one of the suitable animal models that receive the full benefit of this technique and provides behavioral studies based on intact individual nervous system. In this chapter, we describe methods to introduce optogenetic genes into zebrafish, and desirable apparatus for photostimulation and motion analysis with an example from our studies.
Collapse
|
8
|
Hassan AT, Kwong RWM. The neurophysiological effects of iron in early life stages of zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115625. [PMID: 33254686 DOI: 10.1016/j.envpol.2020.115625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
Trace metal/ion homeostasis, neurophysiological performance, and molecular responses to iron (Fe) exposure were investigated in the model organism zebrafish (Danio rerio). The findings demonstrated that exposure to a sublethal concentration of ferric iron (Fe3+) increased Fe contents in both the whole body and head region of developing zebrafish. Among the various trace metals and major ion examined, a dysregulation in manganese, zinc, nickel, and calcium balance was also observed in Fe-exposed larvae. Further biochemical assay and in-vivo imaging revealed that Fe exposure resulted in possible oxidative stress-induced damage, and an increased generation of reactive oxygen species in specific regions of the larvae. Using a droplet digital PCR (ddPCR) technology, it was found that the expression levels of various oxidative stress-responsive genes were temporally modulated by Fe exposure. Additionally, Fe-exposed larvae exhibited an impairment in escape response and a decrease in swimming activity. These larvae also appeared to exhibit a reduced anxiety-like behaviour. Together, our research suggested that larvae experiencing an increased Fe loading exhibited a dysregulation in metal homeostasis and a decrease in neurophysiological performance. These results suggested that neurophysiological assessments are sensitive methods to evaluate Fe toxicity in developing fish.
Collapse
Affiliation(s)
- Ayaat T Hassan
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
9
|
Henderson KW, Roche A, Menelaou E, Hale ME. Hindbrain and Spinal Cord Contributions to the Cutaneous Sensory Innervation of the Larval Zebrafish Pectoral Fin. Front Neuroanat 2020; 14:581821. [PMID: 33192344 PMCID: PMC7607007 DOI: 10.3389/fnana.2020.581821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Vertebrate forelimbs contain arrays of sensory neuron fibers that transmit signals from the skin to the nervous system. We used the genetic toolkit and optical clarity of the larval zebrafish to conduct a live imaging study of the sensory neurons innervating the pectoral fin skin. Sensory neurons in both the hindbrain and the spinal cord innervate the fin, with most cells located in the hindbrain. The hindbrain somas are located in rhombomere seven/eight, laterally and dorsally displaced from the pectoral fin motor pool. The spinal cord somas are located in the most anterior part of the cord, aligned with myomere four. Single cell reconstructions were used to map afferent processes and compare the distributions of processes to soma locations. Reconstructions indicate that this sensory system breaks from the canonical somatotopic organization of sensory systems by lacking a clear organization with reference to fin region. Arborizations from a single cell branch widely over the skin, innervating the axial skin, lateral fin surface, and medial fin surface. The extensive branching over the fin and the surrounding axial surface suggests that these fin sensory neurons report on general conditions of the fin area rather than providing fine location specificity, as has been demonstrated in other vertebrate limbs. With neuron reconstructions that span the full primary afferent arborization from the soma to the peripheral cutaneous innervation, this neuroanatomical study describes a system of primary sensory neurons and lays the groundwork for future functional studies.
Collapse
Affiliation(s)
- Katharine W Henderson
- Department of Organismal Biology and Anatomy, College of the University of Chicago, Chicago, IL, United States
| | - Alexander Roche
- Department of Organismal Biology and Anatomy, College of the University of Chicago, Chicago, IL, United States
| | - Evdokia Menelaou
- Department of Organismal Biology and Anatomy, College of the University of Chicago, Chicago, IL, United States
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, College of the University of Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Katz HR, Menelaou E, Hale ME. Morphological and physiological properties of Rohon-Beard neurons along the zebrafish spinal cord. J Comp Neurol 2020; 529:1499-1515. [PMID: 32935362 DOI: 10.1002/cne.25033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/21/2020] [Accepted: 09/11/2020] [Indexed: 01/05/2023]
Abstract
Primary mechanosensory neurons play an important role in converting mechanical forces into the sense of touch. In zebrafish, Rohon-Beard (RB) neurons serve this role at embryonic and larval stages of development. Here we examine the morphology and physiology of RBs in larval zebrafish to better understand how mechanosensory stimuli are represented along the spinal cord. We report that the morphology of RB neurons differs along the rostrocaudal body axis. Rostral RB neurons arborize in the skin near the cell body whereas caudal cells arborize at a distance posterior to their cell body. Using a novel electrophysiological approach, we also found longitudinal differences in the mechanosensitivity and physiological properties of RB neurons. Rostral RB neurons respond to mechanical stimulations close to the soma and produce up to three spikes with increasing stimulus intensity, whereas caudal cells respond at more distal locations and can produce four or more spikes when the intensity of the mechanical stimulus increases. The mechanosensory properties of RB neurons are consistent with those of rapidly adapting mechanoreceptors and can signal the onset, offset and intensity of mechanical stimulation. This is the first report of the intensity encoding properties of RB neurons, where an increase in spike number and a decrease in spike latency are observed with increasing stimulation intensity. This study reveals an unappreciated complexity of the larval zebrafish mechanosensory system and demonstrates how differences in the morphological and physiological properties of RBs related to their rostrocaudal location can influence the signals that enter the spinal cord.
Collapse
Affiliation(s)
- Hilary R Katz
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA.,Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Evdokia Menelaou
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Williams K, Ribera AB. Long-lived zebrafish Rohon-Beard cells. Dev Biol 2020; 464:45-52. [PMID: 32473165 DOI: 10.1016/j.ydbio.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
During normal development of the nervous system, extensive neuronal proliferation as well as death occurs. The extent of development death varies considerably between neuronal populations from little to almost 100%. Early born somatosensory neurons, known as Rohon-Beard cells, have served as an example of neurons that disappear during early developmental stages, presumably as their function is taken over by later developing dorsal root ganglion neurons. However, recent studies have raised questions about the extent to which zebrafish Rohon-Beard cells die during embryogenesis. While Rohon-Beard cells have distinguishing morphological features during embryonic stages development, they subsequently undergo substantial changes in their shape, size and position that hinder their unambiguous identification at later stages. To overcome this obstacle, we identify Rohon-Beard cells at one day, and using a combination of mosaic and stable transgenic labeling and repeated observation, follow them for 13-16 days post fertilization. We find that about 40% survive to late larval stages. Our studies also reveal that Rohon-Beard cells display an unusual repertoire of cell death properties. At one day, about 25% Rohon-Beard cells expose phosphatidyl serine at the surface membrane, but less than one Rohon-Beard cell/embryo expresses activated-caspase-3. Further, the temporal delay between detection of cell death markers and loss of the soma ranges from <one to several days. The fact many Rohon-Beard cells survive for several weeks raises questions about potential unrecognized roles for Rohon-Beard cells in larval zebrafish.
Collapse
Affiliation(s)
- Kristina Williams
- Department of Physiology and Biophysics, University of Colorado School of Medicine, 12800 E. 19th Avenue, RC1N-7129, Aurora, CO, 80045, USA
| | - Angeles B Ribera
- Department of Physiology and Biophysics, University of Colorado School of Medicine, 12800 E. 19th Avenue, RC1N-7129, Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
Hierarchical control of locomotion by distinct types of spinal V2a interneurons in zebrafish. Nat Commun 2019; 10:4197. [PMID: 31519892 PMCID: PMC6744451 DOI: 10.1038/s41467-019-12240-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
In all vertebrates, excitatory spinal interneurons execute dynamic adjustments in the timing and amplitude of locomotor movements. Currently, it is unclear whether interneurons responsible for timing control are distinct from those involved in amplitude control. Here, we show that in larval zebrafish, molecularly, morphologically and electrophysiologically distinct types of V2a neurons exhibit complementary patterns of connectivity. Stronger higher-order connections from type I neurons to other excitatory V2a and inhibitory V0d interneurons provide timing control, while stronger last-order connections from type II neurons to motor neurons provide amplitude control. Thus, timing and amplitude are coordinated by distinct interneurons distinguished not by their occupation of hierarchically-arranged anatomical layers, but rather by differences in the reliability and probability of higher-order and last-order connections that ultimately form a single anatomical layer. These findings contribute to our understanding of the origins of timing and amplitude control in the spinal cord. V2a excitatory interneurons in the spinal cord are important for coordinating locomotion. Here the authors describe two types of V2a neuron with differences in higher order and lower order connectivity in larval zebrafish.
Collapse
|
13
|
Kimura H, Kawabata Y. Effect of initial body orientation on escape probability of prey fish escaping from predators. Biol Open 2018; 7:bio.023812. [PMID: 29945875 PMCID: PMC6078344 DOI: 10.1242/bio.023812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The kinematic and behavioral components of the escape response can affect the outcomes of predator-prey interactions. For example, because sensory perception range can have spatial bias, and because turn duration before the initiation of escape locomotion can be smaller when prey is oriented away from predators, the prey's body orientation relative to a predator at the onset of the escape response (initial orientation) could affect whether prey successfully evade predators. We tested this hypothesis by recording the escape responses of juvenile red sea bream (Pagrus major) to the predatory scorpion fish (Sebastiscus marmoratus). Flight initiation distance tended to be small when prey were attacked from behind, suggesting that prey have spatial bias in detecting attacking predators. An increase in flight initiation distance increased escape probability. An increase in initial orientation decreased turn duration and increased escape probability when the effect of flight initiation distance was offset. These results suggest that initial orientation affects escape probability through two different pathways: changes in flight initiation distance and turn duration. These findings highlight the importance of incorporating initial orientation into other studies of the kinematics of predator-prey interactions. Summary: Our predator-prey experiments reveal that prey's initial body orientation relative to a predator affects the flight initiation distance and turn duration of prey and consequently affects escape probability.
Collapse
Affiliation(s)
- Hibiki Kimura
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yuuki Kawabata
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
14
|
A Simple Setup to Perform 3D Locomotion Tracking in Zebrafish by Using a Single Camera. INVENTIONS 2018. [DOI: 10.3390/inventions3010011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Umeda K, Shoji W. From neuron to behavior: Sensory-motor coordination of zebrafish turning behavior. Dev Growth Differ 2017; 59:107-114. [DOI: 10.1111/dgd.12345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Keiko Umeda
- Frontier Research Institute for Interdisciplinary Sciences; Tohoku University; Sendai 9808578 Japan
| | - Wataru Shoji
- Frontier Research Institute for Interdisciplinary Sciences; Tohoku University; Sendai 9808578 Japan
- Department of Project Programs; Institute of Development, Aging and Cancer; Tohoku University; Sendai 9808575 Japan
| |
Collapse
|