1
|
Kryuchkov M, Wang Z, Valnohova J, Savitsky V, Karamehmedović M, Jobin M, Katanaev VL. Smart Bio-Nanocoatings with Simple Post-Synthesis Reversible Adjustment. Biomimetics (Basel) 2025; 10:163. [PMID: 40136817 PMCID: PMC11940101 DOI: 10.3390/biomimetics10030163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Nanopatterning of signal-transmitting proteins is essential for cell physiology and drug delivery but faces challenges such as high cost, limited pattern variability, and non-biofriendly materials. Arthropods, particularly beetles (Coleoptera), offer a natural model for biomimetic nanopatterning due to their diverse corneal nanostructures. Using atomic force microscopy (AFM), we analyzed Coleoptera corneal nanocoatings and identified dimpled nanostructures that can transform into maze-like/nipple-like protrusions. Further analysis suggested that these modifications result from a temporary, self-assembled process influenced by surface adhesion. We identified cuticular protein 7 (CP7) as a key component of dimpled nanocoatings. Biophysical analysis revealed CP7's unique self-assembly properties, allowing us to replicate its nanopatterning ability in vitro. Our findings demonstrate CP7's potential for bioinspired nanocoatings and provide insights into the evolutionary mechanisms of nanostructure formation. This research paves the way for cost-effective, biomimetic nanopatterning strategies with applications in nanotechnology and biomedicine.
Collapse
Affiliation(s)
- Mikhail Kryuchkov
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an 271016, China
| | - Zhehui Wang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an 271016, China
| | - Jana Valnohova
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Vladimir Savitsky
- Zoological Museum, Moscow Lomonosov State University, Bol’shaya Nikitskaya Street 2, Moscow 125009, Russia
| | - Mirza Karamehmedović
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Marc Jobin
- Haute ecole du Paysage, D’ingenierie et D’architecture de Geneve, University of Applied Sciences of Western Switzerland (HES-SO), 4 Rue de la Prairie, CH-1202 Geneva, Switzerland
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| |
Collapse
|
2
|
Feng J, Perry A, Weng X, González-Alcalde AK, Arteaga O, Mencagli MJ, Vuong LT. Polarimetric Compressed Sensing with Hollow, Self-Assembled Diffractive Films. ACS NANO 2025; 19:4222-4232. [PMID: 39847498 PMCID: PMC11803751 DOI: 10.1021/acsnano.4c09641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 01/25/2025]
Abstract
Sensing light's polarization and wavefront direction enables surface curvature assessment, material identification, shadow differentiation, and improved image quality in turbid environments. Traditional polarization cameras utilize multiple sensor measurements per pixel and polarization-filtering optics, which result in reduced image resolution. We propose a nanophotonic pipeline that enables compressive sensing and reduces the sampling requirements with a low-refractive-index, self-assembled optical encoder. These nanostructures scatter light into lattice modes, which encode the wavefront direction and the polarization ellipticity in the linearly polarized components of the diffracted, interference patterns. Combining optical encoders with a neural network, the system predicts pointing and polarization when the interference patterns are adequately sampled. A comparison of "ordered" and "random" optical encoders shows that the latter both blurs the interference patterns and achieves higher resolution. Our work centers on the unexpected modulation and spatial multiplexing of incident light polarization by self-assembled hollow nanocavity arrays as a class of materials distinct from traditional metasurfaces that will not only enable encoding for polarization and optical computing but also for compressed sensing and imaging.
Collapse
Affiliation(s)
- Ji Feng
- Department
of Mechanical Engineering, University of
California at Riverside, Riverside, California 92521, United States
| | - Altai Perry
- Department
of Mechanical Engineering, University of
California at Riverside, Riverside, California 92521, United States
| | - Xiaojing Weng
- Department
of Mechanical Engineering, University of
California at Riverside, Riverside, California 92521, United States
| | - Alma K. González-Alcalde
- Department
of Mechanical Engineering, University of
California at Riverside, Riverside, California 92521, United States
| | - Oriol Arteaga
- Dep.
Física Aplicada, Plat Group, IN2UB, Universitat de Barcelona, Barcelona 08028, Spain
| | - Mario J. Mencagli
- Department
of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Luat T. Vuong
- Department
of Mechanical Engineering, University of
California at Riverside, Riverside, California 92521, United States
| |
Collapse
|
3
|
Pompilio M, Ierides I, Cacialli F. Biomimetic Approaches to "Transparent" Photovoltaics: Current and Future Applications. Molecules 2022; 28:180. [PMID: 36615373 PMCID: PMC9822409 DOI: 10.3390/molecules28010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/28/2022] Open
Abstract
There has been a surge in the interest for (semi)transparent photovoltaics (sTPVs) in recent years, since the more traditional, opaque, devices are not ideally suited for a variety of innovative applications spanning from smart and self-powered windows for buildings to those for vehicle integration. Additional requirements for these photovoltaic applications are a high conversion efficiency (despite the necessary compromise to achieve a degree of transparency) and an aesthetically pleasing design. One potential realm to explore in the attempt to meet such challenges is the biological world, where evolution has led to highly efficient and fascinating light-management structures. In this mini-review, we explore some of the biomimetic approaches that can be used to improve both transparent and semi-transparent photovoltaic cells, such as moth-eye inspired structures for improved performance and stability or tunable, coloured, and semi-transparent devices inspired by beetles' cuticles. Lastly, we briefly discuss possible future developments for bio-inspired and potentially bio-compatible sTPVs.
Collapse
|
4
|
Abstract
Social insects have evolved a variety of architectural formations. Bees and wasps are well known for their ability to achieve compact structures by building hexagonal cells. Polistes wattii, an open nesting paper wasp species, builds planar hexagonal structures. Here, using the pair correlation function approach, we show that their nests exhibit short-range hexagonal order (no long-range order) akin to amorphous materials. Hexagonal orientational order was well preserved globally. We also show the presence of topological defects such as dislocations (pentagon-heptagon disclination pairs) and Stone-Wales quadrupoles, and discuss how these defects were organised in the nest, thereby restoring order. Furthermore, we suggest the possible role of such defects in shaping nesting architectures of other social insect species.
Collapse
|
5
|
Putaux JL, Lancelon-Pin C, Choisnard L, Gèze A, Wouessidjewe D. Topological defects in polycrystalline hexosomes from β-cyclodextrin fatty esters. SOFT MATTER 2022; 18:2028-2038. [PMID: 35191906 DOI: 10.1039/d1sm01831k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colloidal nanoparticles were prepared by aqueous self-assembly of amphiphilic β-cyclodextrins (βCDs) acylated on their secondary face with C14 chains to a total degree of substitution of 7.0, via a thermolysin-catalyzed transesterification process. The small-angle X-ray scattering pattern of the nanoparticles was consistent with a reverse hexagonal organization. Cryo-transmission electron microscopy images revealed particles with spectacular tortuous shapes and consisting of misoriented domains with a regular columnar hexagonal structure, separated by sharp interfaces. Edge dislocations as well as a variety of stepped tilt grain boundaries (GBs) composed of symmetrical and asymmetrical sections, together with one twist GB, were identified from axial views of the columnar organization. The tilt GB structure was analyzed using the concepts of coincidence site lattice and structural units developed to describe the atomic structure of interfaces in various types of polycrystals. The tilt GBs were described using sequences of βCD-C14 columns that differed by the number of neighboring columns (5, 6 or 7) and exhibiting distinctive contrasts. To our knowledge, this is the first time that these types of topological defects are described at the nanometric scale by direct observation of colloidal polycrystalline hexosomes of self-organized amphiphiles.
Collapse
Affiliation(s)
- Jean-Luc Putaux
- Univ. Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France.
| | | | - Luc Choisnard
- Univ. Grenoble Alpes, CNRS, DPM, F-38000 Grenoble, France
| | - Annabelle Gèze
- Univ. Grenoble Alpes, CNRS, DPM, F-38000 Grenoble, France
| | | |
Collapse
|
6
|
Feng J, Weng X, Mandujano MAG, Muminov B, Ahuja G, Méndez ER, Yin Y, Vuong LT. Insect-inspired nanofibrous polyaniline multi-scale films for hybrid polarimetric imaging with scattered light. NANOSCALE HORIZONS 2022; 7:319-327. [PMID: 35166291 DOI: 10.1039/d1nh00465d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We demonstrate a bio-inspired coating for novel imaging and sensing designs: the coating sorts different colors and linear polarizations. This coating, composed of conducting, nanofibrous polyaniline in an inverse opal film (PANI-IOF), is inexpensive and can feasibly be deposited over large areas on a range of flexible and non-flat substrates. With PANI IOFs, light is scattered into azimuthally polarized Debye rings. Subsequently, the diffracted speckle patterns carry compressed representations of the polarized illumination, which we reconstruct using shallow neural networks.
Collapse
Affiliation(s)
- Ji Feng
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA.
| | - Xiaojing Weng
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA.
| | - Miguel A G Mandujano
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA.
| | - Baurzhan Muminov
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA.
| | - Gaurav Ahuja
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA.
| | - Eugenio R Méndez
- División de Física Aplicada, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada, BC, 22860, Mexico
| | - Yadong Yin
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
| | - Luat T Vuong
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
7
|
Varija
Raghu S, Thamankar R. A Comparative Study of Crystallography and Defect Structure of Corneal Nipple Array in Daphnis nerii Moth and Papilio polytes Butterfly Eye. ACS OMEGA 2020; 5:23662-23671. [PMID: 32984686 PMCID: PMC7512438 DOI: 10.1021/acsomega.0c02314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Moth and butterfly ommatidial nanostructures have been extensively studied for their anti-reflective properties. Especially, from the point of view of sub-wavelength anti-reflection phenomena, the moth eye structures are the archetype example. Here, a comparative analysis of corneal nipples in moth eye (both Male and Female) and butterfly eye (both Male and Female) is given. The surface of moth(Male and Female) and butterfly(Male and Female) eye is defined with regularly arranged hexagonal facets filled with corneal nipples. A detailed analysis using high-resolution scanning electron microscopy images show the intricate hexagonal arrangement of corneal nipples within the individual hexagonal facet. Individual nipples in moth are circular with an average diameter of about 140/165 nm (Male/Female) and average internipple separation of 165 nm. The moth eye show the ordered arrangement of the corneal nipples and the butterfly eye (Male/Female) show an even more complex arrangement of the nipples. Structurally, the corneal nipples in both male and female butterflies are not circular but are polygons with 5, 6, and 7 sides. The average center-to-center separation in the butterfly(Male/Female) is about 260 nm/204 nm, respectively. We find that these corneal nipples are organized into much more dense hexagonal packing with the internipple (edge-to-edge) separation ranging from 20 to 25 nm. Each hexagonal facet is divided into multiple grains separated by boundaries spanning one or two crystallographic defects. These defects are seen in both moth and butterfly. These are typical 5-coordinated and 7-coordinated defect sites typical for a solid-state material with the hexagonal atomic arrangement. Even though the isolated defects are a rarity, interwoven (7-5) defects form a grain boundary between perfectly ordered grains. These defects introduce a low-angle dislocation, and a detailed analysis of the defects is done. The butterfly eye (Male/Female) is defined with extremely high-density corneal nipple with no apparent grains. Each corneal nipple is a polygon with "n" sides (n = 5, 6, and 7). While the 5- and 7-coordinated defects exist, they do not initiate a grain rotation as seen in the moth eyes. To find out the similarity and the difference in the reflectivity of these nanostructured surfaces, we used the effective medium theory and calculated the reflectivity in moth and butterfly eyes. From this simple analysis, we find that females have better anti-reflective properties compared to the males in both moth and butterfly.
Collapse
Affiliation(s)
- Shamprasad Varija
Raghu
- Neurogenetics
Lab, Dept of Applied Zoology, Mangalore
University, Mangalagangothri, Karnataka, India 574199
| | - R. Thamankar
- Department
of Physics, School of Advanced Sciences, VIT, Vellore, Tamilnadu, India 632014
| |
Collapse
|
8
|
Ren J, Wang Y, Yao Y, Wang Y, Fei X, Qi P, Lin S, Kaplan DL, Buehler MJ, Ling S. Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chem Rev 2019; 119:12279-12336. [DOI: 10.1021/acs.chemrev.9b00416] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yu Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ping Qi
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Shihui Lin
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
9
|
Spalding A, Shanks K, Bennie J, Potter U, Ffrench-Constant R. Optical Modelling and Phylogenetic Analysis Provide Clues to the Likely Function of Corneal Nipple Arrays in Butterflies and Moths. INSECTS 2019; 10:insects10090262. [PMID: 31443396 PMCID: PMC6780202 DOI: 10.3390/insects10090262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 11/21/2022]
Abstract
The lenses in compound eyes of butterflies and moths contain an array of nipple-shaped protuberances, or corneal nipples. Previous work has suggested that these nipples increase light transmittance and reduce the eye glare of moths that are inactive during the day. This work builds on but goes further than earlier analyses suggesting a functional role for these structures including, for the first time, an explanation of why moths are attracted to UV light. Using a phylogenetic approach and 3D optical modelling, we show empirically that these arrays have been independently lost from different groups of moths and butterflies and vary within families. We find differences in the shape of nipples between nocturnal and diurnal species, and that anti-glow reflectance levels are different at different wave-lengths, a result thereby contradicting the currently accepted theory of eye glow for predator avoidance. We find that there is reduced reflectance, and hence greater photon absorption, at UV light, which is probably a reason why moths are attracted to UV. We note that the effective refractive index at the end of the nipples is very close to the refractive index of water, allowing almost all the species with nipples to see without distortion when the eye is partially or completely wet and providing the potential to keep eyes dry. These observations provide a functional explanation for these arrays. Of special interest is the finding that their repeated and independent loss across lepidopteran phylogeny is inconsistent with the explanation that they are being lost in the ‘higher’, more active butterflies.
Collapse
Affiliation(s)
- Adrian Spalding
- Centre for Ecology and Conservation, University of Exeter in Cornwall, Penryn Campus, Penryn TR10 9FE, UK.
- Spalding Associates (Environmental) Ltd., 10 Walsingham Place, Truro TR1 2RP, UK.
| | - Katie Shanks
- Environment and Sustainability Institute, University of Exeter Penryn Campus, Penryn TR10 9FE, UK
| | - Jon Bennie
- Centre for Geography and Environmental Science, Peter Lanyon Building, Penryn Campus, Treliever Road, Penryn, Cornwall, PenrynTR10 9FE, UK
| | - Ursula Potter
- Microscopy & Analysis Suite, Faculty of Science, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Richard Ffrench-Constant
- Centre for Ecology and Conservation, University of Exeter in Cornwall, Penryn Campus, Penryn TR10 9FE, UK
| |
Collapse
|
10
|
Tadepalli S, Slocik JM, Gupta MK, Naik RR, Singamaneni S. Bio-Optics and Bio-Inspired Optical Materials. Chem Rev 2017; 117:12705-12763. [PMID: 28937748 DOI: 10.1021/acs.chemrev.7b00153] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| |
Collapse
|