1
|
Ingebriktsen LM, Humlevik ROC, Svanøe AA, Sæle AKM, Winge I, Toska K, Kalvenes MB, Davidsen B, Heie A, Knutsvik G, Askeland C, Stefansson IM, Hoivik EA, Akslen LA, Wik E. Elevated expression of Aurora-A/AURKA in breast cancer associates with younger age and aggressive features. Breast Cancer Res 2024; 26:126. [PMID: 39198859 PMCID: PMC11360479 DOI: 10.1186/s13058-024-01882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Aurora kinase A (AURKA) is reported to be overexpressed in breast cancer. In addition to its role in regulating cell cycle and mitosis, studies have reported AURKA involvements in oncogenic signaling in suppressing BRCA1 and BRCA2. We aimed to characterize AURKA protein and mRNA expression in a breast cancer cohort of the young, investigating its relation to clinico-pathologic features and survival, and exploring age-related AURKA-associated biological processes. METHODS Aurora kinase A immunohistochemical staining was performed on tissue microarrays of primary tumors from an in-house breast cancer cohort (n = 355) with information on clinico-pathologic data, molecular markers, and long and complete follow-up. A subset of the in-house cohort (n = 127) was studied by the NanoString Breast Cancer 360 expression panel for exploration of mRNA expression. METABRIC cohorts < 50 years at breast cancer diagnosis (n = 368) were investigated for differentially expressed genes and enriched gene sets in AURKA mRNA high tumors stratified by age. Differentially expressed genes and gene sets were investigated using network analyses and g:Profiler. RESULTS High Aurora kinase A protein expression associated with aggressive clinico-pathologic features, a basal-like subtype, and high risk of recurrence score. These patterns were confirmed using mRNA data. High AURKA gene expression demonstrated independent prognostic value when adjusted for traditional clinico-pathologic features and molecular subtypes. Notably, high AURKA expression significantly associated with reduced disease-specific survival within patients below 50 years, also within the luminal A subtype. Tumors of high AURKA expression showed gene expression patterns reflecting increased DNA damage activation and higher BRCAness score. CONCLUSIONS Our findings indicate higher AURKA expression in young breast cancer, and associations between high Aurora-A/AURKA and aggressive tumor features, including higher tumor cell proliferation, and shorter survival, in the young. Our findings point to AURKA as a marker for increased DNA damage and DNA repair deficiency and suggest AURKA as a biomarker of clinical relevance in young breast cancer.
Collapse
Grants
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- F-12143 Helse Vest Research Fund
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- 223250 University of Bergen, Research Council of Norway, Center of Excellence funding scheme
- University of Bergen (incl Haukeland University Hospital)
Collapse
Affiliation(s)
- L M Ingebriktsen
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - R O C Humlevik
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - A A Svanøe
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - A K M Sæle
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - I Winge
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - K Toska
- Section for Cancer Genomics, Haukeland University Hospital, Bergen, Norway
| | - M B Kalvenes
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - B Davidsen
- Department of Surgery, Section for Breast and Endocrine Surgery, Haukeland University Hospital, Bergen, Norway
| | - A Heie
- Department of Surgery, Section for Breast and Endocrine Surgery, Haukeland University Hospital, Bergen, Norway
| | - G Knutsvik
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - C Askeland
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - I M Stefansson
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - E A Hoivik
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - L A Akslen
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - E Wik
- Department of Clinical Medicine, Section for Pathology, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway.
- Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
2
|
Dymerska D, Marusiak AA. Drivers of cancer metastasis - Arise early and remain present. Biochim Biophys Acta Rev Cancer 2024; 1879:189060. [PMID: 38151195 DOI: 10.1016/j.bbcan.2023.189060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Cancer and its metastases arise from mutations of genes, drivers that promote a tumor's growth. Analyses of driver events provide insights into cancer cell history and may lead to a better understanding of oncogenesis. We reviewed 27 metastatic research studies, including pan-cancer studies, individual cancer studies, and phylogenetic analyses, and summarized our current knowledge of metastatic drivers. All of the analyzed studies had a high level of consistency of driver mutations between primary tumors and metastasis, indicating that most drivers appear early in cancer progression and are maintained in metastatic cells. Additionally, we reviewed data from around 50,000 metastatic cancer patients and compiled a list of genes altered in metastatic lesions. We performed Gene Ontology analysis and confirmed that the most significantly enriched processes in metastatic lesions were the epigenetic regulation of gene expression, signal transduction, cell cycle, programmed cell death, DNA damage, hypoxia and EMT. In this review, we explore the most recent discoveries regarding genetic factors in the advancement of cancer, specifically those that drive metastasis.
Collapse
Affiliation(s)
- Dagmara Dymerska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.
| | - Anna A Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
3
|
Shrestha P, Kim G, Kang H, Bhattarai PY, Choi HS. The PIN1-YTHDF1 axis promotes breast tumorigenesis via the m 6A-dependent stabilization of AURKA mRNA. Arch Pharm Res 2024; 47:66-81. [PMID: 38147203 DOI: 10.1007/s12272-023-01480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
The post-transcriptional processing of N6-methyladenosine (m6A)-modified mRNA by YTH domain-containing family protein 1 (YTHDF1) plays a crucial role in the regulation of gene expression. Although YTHDF1 expression is frequently upregulated in breast cancer, the regulatory mechanisms for this remain unclear. In this study, we examined the role of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) in regulating YTHDF1 stability in breast cancer cells. The WW domain of PIN1 interacted with YTHDF1 in a phosphorylation-dependent manner. Additionally, PIN1 overexpression increased YTHDF1 stability by preventing ubiquitin-dependent proteasomal degradation. Furthermore, using the MS2-tagged RNA pull-down assay, we identified Aurora kinase A (AURKA) mRNA as a bona fide substrate of YTHDF1. PIN1-mediated YTHDF1 stabilization increased the stability of AURKA mRNA in an m6A-dependent manner. Furthermore, YTHDF1 knockout reduced AURKA protein expression levels, resulting in anticancer effects in breast cancer cells, including decreased cell proliferation, cell cycle arrest at the G0/G1 phase, apoptotic cell death, and decreased spheroid formation. The anticancer effects induced by YTHDF1 knockout were reversed by AURKA overexpression. Similarly, the knockout of PIN1 produced comparable anticancer effects to those observed in YTHDF1-knockout cells, and these effects were reversed upon overexpression of YTHDF1. In conclusion, the findings of our study suggest that increased YTHDF1 stability induced by PIN1 promotes breast tumorigenesis via the stabilization of AURKA mRNA. Targeting the PIN1/YTHDF1 axis may represent a novel therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
| | - Garam Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hyelim Kang
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | | | - Hong Seok Choi
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
4
|
Kumari P, Beeraka NM, Tengli A, Bannimath G, Baath RK, Patil M. Recent Updates on Oncogenic Signaling of Aurora Kinases in Chemosensitive, Chemoresistant Cancers: Novel Medicinal Chemistry Approaches for Targeting Aurora Kinases. Curr Med Chem 2024; 31:3502-3528. [PMID: 37138483 DOI: 10.2174/0929867330666230503124408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 05/05/2023]
Abstract
The Aurora Kinase family (AKI) is composed of serine-threonine protein kinases involved in the modulation of the cell cycle and mitosis. These kinases are required for regulating the adherence of hereditary-related data. Members of this family can be categorized into aurora kinase A (Ark-A), aurora kinase B (Ark-B), and aurora kinase C (Ark-C), consisting of highly conserved threonine protein kinases. These kinases can modulate cell processes such as spindle assembly, checkpoint pathway, and cytokinesis during cell division. The main aim of this review is to explore recent updates on the oncogenic signaling of aurora kinases in chemosensitive/chemoresistant cancers and to explore the various medicinal chemistry approaches to target these kinases. We searched Pubmed, Scopus, NLM, Pubchem, and Relemed to obtain information pertinent to the updated signaling role of aurora kinases and medicinal chemistry approaches and discussed the recently updated roles of each aurora kinases and their downstream signaling cascades in the progression of several chemosensitive/chemoresistant cancers; subsequently, we discussed the natural products (scoulerine, Corynoline, Hesperidin Jadomycin-B, fisetin), and synthetic, medicinal chemistry molecules as aurora kinase inhibitors (AKIs). Several natural products' efficacy was explained as AKIs in chemosensitization and chemoresistant cancers. For instance, novel triazole molecules have been used against gastric cancer, whereas cyanopyridines are used against colorectal cancer and trifluoroacetate derivatives could be used for esophageal cancer. Furthermore, quinolone hydrazine derivatives can be used to target breast cancer and cervical cancer. In contrast, the indole derivatives can be preferred to target oral cancer whereas thiosemicarbazone-indole could be used against prostate cancer, as reported in an earlier investigation against cancerous cells. Moreover, these chemical derivatives can be examined as AKIs through preclinical studies. In addition, the synthesis of novel AKIs through these medicinal chemistry substrates in the laboratory using in silico and synthetic routes could be beneficial to develop prospective novel AKIs to target chemoresistant cancers. This study is beneficial to oncologists, chemists, and medicinal chemists to explore novel chemical moiety synthesis to target specifically the peptide sequences of aurora kinases in several chemoresistant cancer cell types.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha Murthy Beeraka
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya str., Moscow 119991, Russia
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Gurupadayya Bannimath
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Ramandeep Kaur Baath
- Department of Pharmaceautics, IFTM University, Lodhipur Rajput, NH-24 Delhi Road, Moradabad 244102, Uttar Pradesh, India
| | - Mayuri Patil
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
5
|
Ordaz-Ramos A, Tellez-Jimenez O, Vazquez-Santillan K. Signaling pathways governing the maintenance of breast cancer stem cells and their therapeutic implications. Front Cell Dev Biol 2023; 11:1221175. [PMID: 37492224 PMCID: PMC10363614 DOI: 10.3389/fcell.2023.1221175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Breast cancer stem cells (BCSCs) represent a distinct subpopulation of cells with the ability to self-renewal and differentiate into phenotypically diverse tumor cells. The involvement of CSC in treatment resistance and cancer recurrence has been well established. Numerous studies have provided compelling evidence that the self-renewal ability of cancer stem cells is tightly regulated by specific signaling pathways, which exert critical roles to maintain an undifferentiated phenotype and prevent the differentiation of CSCs. Signaling pathways such as Wnt/β-catenin, NF-κB, Notch, Hedgehog, TGF-β, and Hippo have been implicated in the promotion of self-renewal of many normal and cancer stem cells. Given the pivotal role of BCSCs in driving breast cancer aggressiveness, targeting self-renewal signaling pathways holds promise as a viable therapeutic strategy for combating this disease. In this review, we will discuss the main signaling pathways involved in the maintenance of the self-renewal ability of BCSC, while also highlighting current strategies employed to disrupt the signaling molecules associated with stemness.
Collapse
Affiliation(s)
- Alejandro Ordaz-Ramos
- Innovation in Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, México
| | - Olivia Tellez-Jimenez
- Innovation in Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, México
| | - Karla Vazquez-Santillan
- Innovation in Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, México
| |
Collapse
|
6
|
Fatma H, Siddique HR. AURORA KINASE A and related downstream molecules: A potential network for cancer therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:115-145. [PMID: 36858732 DOI: 10.1016/bs.apcsb.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aurora-A kinase (AURKA) belongs to the serine/threonine kinase family specific to cell division. In normal cells, activation of the AURKA protein is essential for regulating chromosomal segregation and centrosome maturation. The physiological concentration of AURKA accumulation has utmost importance during cell division. AURKA starts accumulating during the S phase of the cell cycle, gets functionally activated during the G2/M phase, attaches to the microtubule, and gets degraded during mitotic exit. Overexpression of AURKA could lead to deregulated cell cycle division, which is intrinsic to numerous cancers. Moreover, dysregulated AURKA affects various downstream molecules that aid in cancer pathogenesis. AURKA phosphorylates its substrates, including oncoproteins, transcriptional factors, tumor suppressor proteins, or other kinases central to various oncogenic signaling pathways critical to cancer. Considering the central role of AURKA in cell proliferation and tumorigenesis, targeting AURKA can be a novel alternative to cancer management. Several AURKA inhibitors have shown promising responses against different cancers either as a single agent or combined with various therapies. This chapter briefly discusses the role of AURKA and its downstream molecules in cancer vis-à-vis the role of AURKA inhibitor in chemoprevention.
Collapse
Affiliation(s)
- Homa Fatma
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
7
|
Zheng D, Li J, Yan H, Zhang G, Li W, Chu E, Wei N. Emerging roles of Aurora-A kinase in cancer therapy resistance. Acta Pharm Sin B 2023. [PMID: 37521867 PMCID: PMC10372834 DOI: 10.1016/j.apsb.2023.03.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Aurora kinase A (Aurora-A), a serine/threonine kinase, plays a pivotal role in various cellular processes, including mitotic entry, centrosome maturation and spindle formation. Overexpression or gene-amplification/mutation of Aurora-A kinase occurs in different types of cancer, including lung cancer, colorectal cancer, and breast cancer. Alteration of Aurora-A impacts multiple cancer hallmarks, especially, immortalization, energy metabolism, immune escape and cell death resistance which are involved in cancer progression and resistance. This review highlights the most recent advances in the oncogenic roles and related multiple cancer hallmarks of Aurora-A kinase-driving cancer therapy resistance, including chemoresistance (taxanes, cisplatin, cyclophosphamide), targeted therapy resistance (osimertinib, imatinib, sorafenib, etc.), endocrine therapy resistance (tamoxifen, fulvestrant) and radioresistance. Specifically, the mechanisms of Aurora-A kinase promote acquired resistance through modulating DNA damage repair, feedback activation bypass pathways, resistance to apoptosis, necroptosis and autophagy, metastasis, and stemness. Noticeably, our review also summarizes the promising synthetic lethality strategy for Aurora-A inhibitors in RB1, ARID1A and MYC gene mutation tumors, and potential synergistic strategy for mTOR, PAK1, MDM2, MEK inhibitors or PD-L1 antibodies combined with targeting Aurora-A kinase. In addition, we discuss the design and development of the novel class of Aurora-A inhibitors in precision medicine for cancer treatment.
Collapse
|
8
|
Budi HS, Younus LA, Lafta MH, Parveen S, Mohammad HJ, Al-qaim ZH, Jawad MA, Parra RMR, Mustafa YF, Alhachami FR, Karampoor S, Mirzaei R. The role of miR-128 in cancer development, prevention, drug resistance, and immunotherapy. Front Oncol 2023; 12:1067974. [PMID: 36793341 PMCID: PMC9923359 DOI: 10.3389/fonc.2022.1067974] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/30/2022] [Indexed: 02/03/2023] Open
Abstract
A growing body of evidence has revealed that microRNA (miRNA) expression is dysregulated in cancer, and they can act as either oncogenes or suppressors under certain conditions. Furthermore, some studies have discovered that miRNAs play a role in cancer cell drug resistance by targeting drug-resistance-related genes or influencing genes involved in cell proliferation, cell cycle, and apoptosis. In this regard, the abnormal expression of miRNA-128 (miR-128) has been found in various human malignancies, and its verified target genes are essential in cancer-related processes, including apoptosis, cell propagation, and differentiation. This review will discuss the functions and processes of miR-128 in multiple cancer types. Furthermore, the possible involvement of miR-128 in cancer drug resistance and tumor immunotherapeutic will be addressed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Laith A. Younus
- Department of Clinical Laboratory Sciences, Faculty of Pharmacy, Jabir Ibn, Hayyan Medical University, Al Najaf Al Ashraf, Iraq
| | | | - Sameena Parveen
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | | | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Li G, Tian Y, Gao Z. The role of AURKA/miR-199b-3p in hepatocellular carcinoma cells. J Clin Lab Anal 2022; 36:e24758. [PMID: 36377304 PMCID: PMC9756977 DOI: 10.1002/jcla.24758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Previous studies proved that AURKA functions as an oncogene in several cancers. This article aimed to probe the miRNA-induced regulatory mechanism of AURKA in hepatocellular carcinoma (HCC). METHODS Differentially expressed genes in TCGA-LIHC dataset were screened by bioinformatics methods. Levels of miR-199b-3p and AURKA mRNA were examined by qRT-PCR. Western blot was utilized to evaluate protein levels of AURKA, p-AKT, and AKT. Dual-luciferase assay was introduced to explore their interaction. MTT, colony formation, scratch healing, transwell, and flow cytometry assays were introduced into cell proliferation, migration, invasion, and apoptosis assessment. The impact of miR-199b-3p/AURKA axis on HCC tumor growth was determined in a tumor xenograft model. RESULTS We found that AURKA was highly expressed in HCC and was coupled to poor prognosis of HCC. As manifested by cellular assays, compared to the normal cells HL-7702, AURKA presented notably high expression in HCC cell lines. Overexpressed AURKA evidently impelled the proliferation, colony formation, migration, and invasion of HCC cells while suppressing apoptosis. The regulatory gene upstream of AURKA was predicted to be miR-199b-3p by bioinformatics method, and there was a markedly negative correlation between the two. Overexpressed miR-199b-3p constrained HCC cell proliferation, migration, and invasion while fostering apoptosis, which could be counteracted by upregulating AURKA. MiR-199b-3p repressed the tumor growth in vivo by targeting AURKA and affected PI3K/AKT signaling pathway. CONCLUSION To summarize, this study implied the regulatory mechanism of miR-199b-3p/AURKA axis in HCC, and supplied optional therapeutic targets for HCC patients.
Collapse
Affiliation(s)
- Guogang Li
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated Hospital Zhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Yang Tian
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated Hospital Zhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Zhenzhen Gao
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated Hospital Zhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| |
Collapse
|
10
|
Cancer Grade Model: a multi-gene machine learning-based risk classification for improving prognosis in breast cancer. Br J Cancer 2021; 125:748-758. [PMID: 34131308 PMCID: PMC8405688 DOI: 10.1038/s41416-021-01455-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/29/2021] [Accepted: 05/28/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Prognostic stratification of breast cancers remains a challenge to improve clinical decision making. We employ machine learning on breast cancer transcriptomics from multiple studies to link the expression of specific genes to histological grade and classify tumours into a more or less aggressive prognostic type. MATERIALS AND METHODS Microarray data of 5031 untreated breast tumours spanning 33 published datasets and corresponding clinical data were integrated. A machine learning model based on gradient boosted trees was trained on histological grade-1 and grade-3 samples. The resulting predictive model (Cancer Grade Model, CGM) was applied on samples of grade-2 and unknown-grade (3029) for prognostic risk classification. RESULTS A 70-gene signature for assessing clinical risk was identified and was shown to be 90% accurate when tested on known histological-grade samples. The predictive framework was validated through survival analysis and showed robust prognostic performance. CGM was cross-referenced with existing genomic tests and demonstrated the competitive predictive power of tumour risk. CONCLUSIONS CGM is able to classify tumours into better-defined prognostic categories without employing information on tumour size, stage, or subgroups. The model offers means to improve prognosis and support the clinical decision and precision treatments, thereby potentially contributing to preventing underdiagnosis of high-risk tumours and minimising over-treatment of low-risk disease.
Collapse
|
11
|
Fadaka AO, Sibuyi NRS, Madiehe AM, Meyer M. MicroRNA-based regulation of Aurora A kinase in breast cancer. Oncotarget 2020; 11:4306-4324. [PMID: 33245732 PMCID: PMC7679040 DOI: 10.18632/oncotarget.27811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
The involvement of non-coding RNAs (ncRNAs) in cellular physiology and disease pathogenesis is becoming increasingly relevant in recent years specifically in cancer research. Breast cancer (BC) has become a health concern and accounts for most of the cancer-related incidences and mortalities reported amongst females. In spite of the presence of promising tools for BC therapy, the mortality rate of metastatic BC cases is still high. Therefore, the genomic exploration of the BC subtype and the use of ncRNAs for possible regulation is pivotal. The expression and prognostic values of AURKA gene were assessed by Oncomine, GEPIA, KM-plotter, and bc-GenExMiner v4.4, respectively. Associated proteins and functional enrichment were evaluated by Cytoscape and DAVID databases. Additionally, molecular docking approach was employed to investigate the regulatory role of hsa-miR-32-3p assisted argonaute (AGO) protein of AURKA gene in BC. AURKA gene was highly expressed in patients with BC relative to normal counterpart and significantly correlated with poor survival. The docking result suggested that AURKA could be regulated by hsa-miR-32-3p as confirmed by the reported binding energy and specific interactions. The study gives some insights into role of AURKA and its regulation by microRNAs through AGO protein. It also provides exciting opportunities for cancer therapeutic intervention.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa.,Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
12
|
Zhang Y, Tian J, Qu C, Peng Y, Lei J, Sun L, Zong B, Liu S. A look into the link between centrosome amplification and breast cancer. Biomed Pharmacother 2020; 132:110924. [PMID: 33128942 DOI: 10.1016/j.biopha.2020.110924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Centrosome amplification (CA) is a common feature of human tumors, but it is not clear whether this is a cause or a consequence of cancer. The centrosome amplification observed in tumor cells may be explained by a series of events, such as failure of cell division, dysregulation of centrosome cycle checkpoints, and de novo centriole biogenesis disorder. The formation and progression of breast cancer are characterized by genomic abnormality. The centrosomes in breast cancer cells show characteristic structural aberrations, caused by centrosome amplification, which include: an increase in the number and volume of centrosomes, excessive increase of pericentriolar material (PCM), inappropriate phosphorylation of centrosomal molecular, and centrosome clustering formation induced by the dysregulation of important genes. The mechanism of intracellular centrosome amplification, the impact of which on breast cancer and the latest breast cancer target treatment options for centrosome amplification are exhaustively elaborated in this review.
Collapse
Affiliation(s)
- Yingzi Zhang
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Jiao Tian
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Chi Qu
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Yang Peng
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Jinwei Lei
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Lu Sun
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Beige Zong
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Shengchun Liu
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
13
|
Cao D, Zhu H, Zhao Q, Huang J, Zhou C, He J, Liang Y. MiR-128 suppresses metastatic capacity by targeting metadherin in breast cancer cells. Biol Res 2020; 53:43. [PMID: 32993809 PMCID: PMC7526227 DOI: 10.1186/s40659-020-00311-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/17/2020] [Indexed: 01/17/2023] Open
Abstract
Background Breast cancer, the most common cancer in women worldwide, causes the vast majority of cancer-related deaths. Undoubtedly, tumor metastasis and recurrence are responsible for more than 90 percent of these deaths. MicroRNAs are endogenous noncoding RNAs that have been integrated into almost all the physiological and pathological processes, including metastasis. In the present study, the role of miR-128 in breast cancer was investigated. Results Compared to the corresponding adjacent normal tissue, the expression of miR-128 was significantly suppressed in human breast cancer specimens. More importantly, its expression level was reversely correlated to histological grade of the cancer. Ectopic expression of miR-128 in the aggressive breast cancer cell line MDA-MB-231 could inhibit cell motility and invasive capacity remarkably. Afterwards, Metadherin (MTDH), also known as AEG-1 (Astrocyte Elevated Gene 1) and Lyric that implicated in various aspects of cancer progression and metastasis, was further identified as a direct target gene of miR-128 and its expression level was up-regulated in clinical samples as expected. Moreover, knockdown of MTDH in MDA-MB-231 cells obviously impaired the migration and invasion capabilities, whereas re-expression of MTDH abrogated the suppressive effect caused by miR-128. Conclusions Overall, these findings demonstrate that miR-128 could serve as a novel biomarker for breast cancer metastasis and a potent target for treatment in the future.
Collapse
Affiliation(s)
- Danxia Cao
- Comprehensive Breast Health Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui-Jin Er Road, Shanghai, 200025, China
| | - Han Zhu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800, Gong-Wei Road, Shanghai, 201399, China
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, No. 280, Chong-Qing South Road, Shanghai, 200025, China
| | - Jianming Huang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800, Gong-Wei Road, Shanghai, 201399, China
| | - Cixiang Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, No. 280, Chong-Qing South Road, Shanghai, 200025, China
| | - Jianrong He
- Comprehensive Breast Health Center, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui-Jin Er Road, Shanghai, 200025, China.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800, Gong-Wei Road, Shanghai, 201399, China.
| |
Collapse
|
14
|
Yin Y, Chen F, Li J, Yang J, Li Q, Jin P. AURKA Enhances Autophagy of Adipose Derived Stem Cells to Promote Diabetic Wound Repair via Targeting FOXO3a. J Invest Dermatol 2020; 140:1639-1649.e4. [PMID: 32004564 DOI: 10.1016/j.jid.2019.12.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022]
Abstract
AURKA regulates apoptosis and autophagy in a diverse range of diseases and exhibits promising clinical efficacy; however, the role of AURKA in regulating adipose-derived stem cells (ADSCs) and repairing diabetic wound remains unclear. Here, we showed that ADSCs subjected to high glucose stress displayed an obvious induction of AURKA and FOXO3a, and a significant increase in autophagy and apoptosis. AURKA was confirmed to regulate autophagy through FOXO3a. AURKA-mediated autophagy inhibited high-glucose-induced apoptosis of ADSCs. Furthermore, co-immunoprecipitation and chromatin immunoprecipitation assays were employed to investigate the interaction of AURKA and FOXO3a. FOXO3a bound to its own promoter and transactivated its own expression. AURKA was found to interact with FOXO3a to regulate FOXO3a activity. In diabetic mice, ADSCs overexpressing AURKA led to a decrease of apoptosis of ADSCs and promoted wound healing in the skin. Taken together, our data suggest that transcriptional regulation of FOXO3a by high-glucose-mediated AURKA is necessary for ADSCs autophagy. Our data reveal a potential therapeutic strategy for targeting AURKA involved in high-glucose-induced anti-apoptotic autophagy in ADSCs.
Collapse
Affiliation(s)
- Yating Yin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feifei Chen
- Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Cancer Biotherapy Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Jianhua Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
15
|
Stress hormone-mediated acceleration of breast cancer metastasis is halted by inhibition of nitric oxide synthase. Cancer Lett 2019; 459:59-71. [PMID: 31132432 DOI: 10.1016/j.canlet.2019.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/02/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
Stress hormones have been shown to be important mediators in driving malignant growth and reducing treatment efficacy in breast cancer. Glucocorticoids can induce DNA damage through an inducible nitric oxide synthase (iNOS) mediated pathway to increase levels of nitric oxide (NO). Using an immune competent mouse breast cancer model and 66CL4 breast cancer cells we identified a novel role of NOS inhibition to reduce stress-induced breast cancer metastasis. On a mechanistic level we show that the glucocorticoid cortisol induces expression of keys genes associated with angiogenesis, as well as pro-tumourigenic immunomodulation. Transcriptomics analysis confirmed that in the lungs of tumour-bearing mice, stress significantly enriched pathways associated with tumourigenesis, some of which could be regulated with NOS inhibition. These results demonstrate the detrimental involvement of NOS in stress hormone signalling, and the potential future benefits of NOS inhibition in highly stressed patients.
Collapse
|
16
|
Wu H, Li Y, Hou Q, Zhou R, Li Z, Wu S, Yu J, Jiang M. Single‑cell intratumoral stemness analysis reveals the involvement of cell cycle and DNA damage repair in two different types of esophageal cancer. Oncol Rep 2019; 41:3201-3208. [PMID: 31002369 PMCID: PMC6489016 DOI: 10.3892/or.2019.7117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/05/2019] [Indexed: 12/14/2022] Open
Abstract
Intratumoral heterogeneity, particularly the potential cancer stemness of single cancer cells, has not yet been fully elucidated in human esophageal cancer. Single‑cell transcriptome sequencing of two types of esophageal adenocarcinoma (EAC) and two types of esophageal squamous cell carcinoma (ESCC) tissues was performed, and the intratumoral cancer stemness of the types of esophageal cancer were characterized at the single‑cell level in the present study. By comparing the transcriptomic profiles of single cancer cells with high and low stemness in individual patients, it was revealed that the overexpression of cell cycle‑associated genes in EAC cells was highly correlated with stemness, whereas overexpression of genes involved in the signaling pathways of DNA replication and DNA damage repair was significantly correlated with stemness in ESCC. High expression of these stemness‑associated genes was correlated with poor prognosis of patients. Additionally, poly [ADP‑ribose] polymerase(PARP)4 was identified as a novel cancer stemness‑associated gene in ESCC and its association with survival was validated in a cohort of 121 patients with ESCC. These findings have profound potential implications for the use of cell cycle inhibitors in EAC and PARP inhibitors in ESCC, which may provide novel mechanistic insights into the plasticity of esophageal cancer.
Collapse
Affiliation(s)
- Hongjin Wu
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 320000, P.R. China
| | - Ying Li
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 320000, P.R. China
| | - Qiang Hou
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 320000, P.R. China
| | - Rongjin Zhou
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 320000, P.R. China
| | - Ziwei Li
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 320000, P.R. China
| | - Shixiu Wu
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 320000, P.R. China
| | - Juehua Yu
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Mingfeng Jiang
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 320000, P.R. China
| |
Collapse
|
17
|
Nozaki M, Yabuta N, Fukuzawa M, Mukai S, Okamoto A, Sasakura T, Fukushima K, Naito Y, Longmore GD, Nojima H. LATS1/2 kinases trigger self-renewal of cancer stem cells in aggressive oral cancer. Oncotarget 2019; 10:1014-1030. [PMID: 30800215 PMCID: PMC6383686 DOI: 10.18632/oncotarget.26583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs), which play important roles in tumor initiation and progression, are resistant to many types of therapies. However, the regulatory mechanisms underlying CSC-specific properties, including self-renewal, are poorly understood. Here, we found that LATS1/2, the core Hippo pathway-kinases, were highly expressed in the oral squamous cell carcinoma line SAS, which exhibits high capacity of CSCs, and that depletion of these kinases prevented SAS cells from forming spheres under serum-free conditions. Detailed examination of the expression and activation of LATS kinases and related proteins over a time course of sphere formation revealed that LATS1/2 were more highly expressed and markedly activated before initiation of self-renewal. Moreover, TAZ, SNAIL, CHK1/2, and Aurora-A were expressed in hierarchical, oscillating patterns during sphere formation, suggesting that the process consists of four sequential steps. Our results indicate that LATS1/2 trigger self-renewal of CSCs by regulating the Hippo pathway, the EMT, and cell division.
Collapse
Affiliation(s)
- Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Moe Fukuzawa
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satomi Mukai
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cancer Biology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya City, Aichi 464-8681, Japan
| | - Ayumi Okamoto
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Towa Sasakura
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohshiro Fukushima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoko Naito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya City, Aichi 464-8681, Japan
| | | | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Pan J, Zhou C, Zhao X, He J, Tian H, Shen W, Han Y, Chen J, Fang S, Meng X, Jin X, Gong Z. A two-miRNA signature (miR-33a-5p and miR-128-3p) in whole blood as potential biomarker for early diagnosis of lung cancer. Sci Rep 2018; 8:16699. [PMID: 30420640 PMCID: PMC6232109 DOI: 10.1038/s41598-018-35139-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/29/2018] [Indexed: 01/18/2023] Open
Abstract
MicroRNAs (MiRNAs) have been found to be dysregulated in lung cancer tissues compared to their matched paracancerous tissues. However, the roles of miRNAs in peripheral blood as potential biomarkers for early diagnosis of lung cancer remain poorly understood. Here we found that miR-33a-5p and miR-128-3p were down-regulated in lung cancer tissues and cell lines. The expression levels of miR-33a-5p and miR-128-3p in lung cancer tissues were significantly correlated to TNM stages. MiR-128-3p in lung cancer tissues was also remarkably related to smoking and tumor size. The relative expression levels of miR-33a-5p and miR-128-3p were positively correlated in lung cancer tissues. Notably, miR-33a-5p and miR-128-3p in whole blood of lung cancer patients or early-stage lung cancer patients (TNM stage I-II) were lowly expressed as compared with that in healthy controls. The receiver operating characteristic curve (ROC) analyses revealed higher area under the ROC curve (AUC) values and higher sensitivity/specificity of miR-33a-5p and miR-128-3p alone and in combination were superior to that of traditional tumor markers (CYFR21-1, NSE and CA72-4). Importantly, both miR-33a-5p and miR-128-3p in whole blood were highly stable even under different harsh conditions. The results demonstrate that tumor suppressor miR-33a-5p/miR-128-3p in whole blood can serve as novel biomarkers for the early detection of lung cancer.
Collapse
Affiliation(s)
- Jinchang Pan
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Chengwei Zhou
- Department of Thoracic Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
| | - Xiaodong Zhao
- Department of Thoracic Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
| | - Jinxian He
- Department of Thoracic Surgery, The Affiliated Ningbo Medical Center Lihuili Eastern Hospital of Medical School of Ningbo University, Ningbo, 315048, China
| | - Hui Tian
- Department of Thoracic Surgery, The Affiliated Ningbo Medical Center Lihuili Eastern Hospital of Medical School of Ningbo University, Ningbo, 315048, China
| | - Weiyu Shen
- Department of Thoracic Surgery, The Affiliated Ningbo Medical Center Lihuili Eastern Hospital of Medical School of Ningbo University, Ningbo, 315048, China
| | - Ying Han
- Department of Radiation Oncology, The Affiliated Yinzhou Renmin Hospital of Medical School of Ningbo University, Ningbo, 315040, China
| | - Jun Chen
- Department of Radiation Oncology, The Affiliated Yinzhou Renmin Hospital of Medical School of Ningbo University, Ningbo, 315040, China
| | - Shuai Fang
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Zhaohui Gong
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo, 315211, China.
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
19
|
Li T, Chen Y, Zhang J, Liu S. LncRNA TUG1 promotes cells proliferation and inhibits cells apoptosis through regulating AURKA in epithelial ovarian cancer cells. Medicine (Baltimore) 2018; 97:e12131. [PMID: 30200102 PMCID: PMC6133603 DOI: 10.1097/md.0000000000012131] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study aimed to assess the effect of long noncoding RNAs (lncRNAs) taurine-upregulated gene 1 (TUG1) on cells proliferation and apoptosis as well as its targeting genes in epithelial ovarian cancer (EOC) cells.Blank mimic, lncRNA TUG1 mimic, blank inhibitor, and lncRNA TUG1 inhibitor plasmids were transfected into SK-OV-3 (SKOV3) cells. Rescue experiment was performed by the transfection of lncRNA TUG1 inhibitor and Aurora kinase A (AURKA) mimic plasmids into SKOV3 cells. Cell counting kit-8 (CKK-8), annexin V-FITC (AV)-propidium iodide (PI) (AV-PI), quantitative polymerase chain reaction (qPCR), and western blot assays were performed to detect cells proliferation, apoptosis, RNA expression, and protein expression respectively.Cells proliferation was increased in lncRNA TUG1 mimic group and decreased in lncRNA TUG1 inhibitor group than normal control (NC) groups. Cells apoptosis rate was repressed after treatment with lncRNA TUG1 mimic and promoted after treatment with lncRNA TUG1 inhibitor. AURKA expression but not CLDN3, SERPINE1, or ETS1 expression was adversely regulated by lncRNA TUG1 mimic and inhibitor. After transferring lncRNA TUG1 (-) and AURKA (+) plasmids, cells proliferation was increased, while cells apoptosis rate was decreased in AURKA mimic (+)/lncRNA TUG1 inhibitor (-) group than NC (+)/lncRNA TUG1 (-) group, which suggested lncRNA TUG1 regulated cells proliferation and cells apoptosis through targeting AURKA.LncRNA TUG1 promotes cells proliferation and inhibits cells apoptosis through regulating AURKA in EOC cells.
Collapse
Affiliation(s)
| | - Yan Chen
- Department of Gynaecology and Obstetrics
| | - Jingjing Zhang
- Department of Imaging, People's Hospital of Lishui City, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | | |
Collapse
|
20
|
Keup C, Mach P, Aktas B, Tewes M, Kolberg HC, Hauch S, Sprenger-Haussels M, Kimmig R, Kasimir-Bauer S. RNA Profiles of Circulating Tumor Cells and Extracellular Vesicles for Therapy Stratification of Metastatic Breast Cancer Patients. Clin Chem 2018; 64:1054-1062. [DOI: 10.1373/clinchem.2017.283531] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/27/2018] [Indexed: 12/16/2022]
Abstract
Abstract
BACKGROUND
Liquid biopsies are discussed to provide surrogate markers for therapy stratification and monitoring. We compared messenger RNA (mRNA) profiles of circulating tumor cells (CTCs) and extracellular vesicles (EVs) in patients with metastatic breast cancer (MBC) to estimate their utility in therapy management.
METHODS
Blood was collected from 35 hormone receptor-positive/HER2-negative patients with MBC at the time of disease progression and at 2 consecutive staging time points. CTCs were isolated from 5 mL of blood by positive immunomagnetic selection, and EVs from 4 mL of plasma by a membrane affinity-based procedure. mRNA was reverse transcribed, preamplified, and analyzed for 18 genes by multimarker quantitative polymerase chain reaction (qPCR) assays. RNA profiles were normalized to healthy donor controls (n = 20), and results were correlated with therapy outcome.
RESULTS
There were great differences in mRNA profiles of EVs and CTCs, with only 5% (21/403) of positive signals identical in both fractions. Transcripts involved in the PI3K signaling pathway were frequently overexpressed in CTCs, and AURKA, PARP1, and SRC signals appeared more often in EVs. Of all patients, 40% and 34% showed ERBB2 and ERBB3 signals, respectively, in CTCs, which was significantly associated with disease progression (P = 0.007). Whereas MTOR signals in CTCs significantly correlated with response (P = 0.046), signals in EVs indicated therapy failure (P = 0.011). The presence of AURKA signals in EVs seemed to be a marker for the indication of unsuccessful treatment of bone metastasis.
CONCLUSIONS
These results emphasize the potential of CTCs and EVs for therapy monitoring and the need for critical evaluation of the implementation of any liquid biopsy in clinical practice.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, Germany
| | - Pawel Mach
- Department of Gynecology and Obstetrics, University Hospital of Essen, Germany
| | - Bahriye Aktas
- Department of Gynecology and Obstetrics, University Hospital of Essen, Germany
- Department of Gynecology, University Hospital of Leipzig, Germany
| | - Mitra Tewes
- Department of Internal Medicine (Cancer Research), University Hospital of Essen, Germany
| | | | | | | | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Germany
| | | |
Collapse
|
21
|
Wang X, Zhang L, Zhao F, Xu R, Jiang J, Zhang C, Liu H, Huang H. Long non-coding RNA taurine-upregulated gene 1 correlates with poor prognosis, induces cell proliferation, and represses cell apoptosis via targeting aurora kinase A in adult acute myeloid leukemia. Ann Hematol 2018; 97:1375-1389. [PMID: 29654398 DOI: 10.1007/s00277-018-3315-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 01/02/2023]
Abstract
This study aimed to investigate the correlation of long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) with clinicopathological feature and prognosis, and to explore its effect on cell proliferation and apoptosis as well as the relevant target genes in adult acute myeloid leukemia (AML). LncRNA TUG1 expression was detected in bone marrow samples from 186 AML patients and 62 controls. Blank mimic, lncRNA TUG1 mimic, blank inhibitor, and lncRNA TUG1 inhibitor lentivirus vectors were transfected in KG-1 cells. Rescue experiment was performed by transfection of lncRNA TUG1 inhibitor and aurora kinase A (AURKA) mimic lentivirus vectors. Cell proliferation, apoptosis, RNA, and protein expressions were determined by CKK-8, annexin V-FITC-propidium iodide, quantitative polymerase chain reaction, and western blot assays. LncRNA TUG1 expression was higher in AML patients compared to controls and correlated with higher white blood cell counts, monosomal karyotype, FLT3-ITD mutation, poor-risk stratification, and poor prognosis, which independently predicted worse event-free survival and overall survival. In vitro, lncRNA TUG1 expression was higher in AML cell lines (KG-1, MOLM-14, HL-60, NB-4, and THP-1 cells) compared to controls. LncRNA TUG1 mimic promoted cell proliferation and decreased cell apoptosis rate, while lncRNA TUG1 inhibitor repressed cell proliferation and increased cell apoptosis rate. Rescue experiment showed that AURKA attenuated the influence of lncRNA TUG1 on AML cell proliferation and apoptosis. In conclusion, lncRNA TUG1 associates with advanced disease and worse prognosis in adult AML patients, and it induces AML cell proliferation and represses cell apoptosis via targeting AURKA.
Collapse
Affiliation(s)
- Xinfeng Wang
- Department of Hematology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Lina Zhang
- Department of Hematology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Fan Zhao
- Department of Hematology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Ruirong Xu
- Department of Hematology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Jie Jiang
- Department of Hematology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Chenglu Zhang
- Department of Hematology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Hong Liu
- Department of Hematology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China.
| | - Hongming Huang
- Department of Hematology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China.
| |
Collapse
|
22
|
Golmohammadi R, Namazi MJ, Going JJ, Derakhshan MH. A single nucleotide polymorphism in codon F31I and V57I of the AURKA gene in invasive ductal breast carcinoma in Middle East. Medicine (Baltimore) 2017; 96:e7933. [PMID: 28906374 PMCID: PMC5604643 DOI: 10.1097/md.0000000000007933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although few studies have suggested a carcinogenic role for polymorphism of F31I and V57I codons of AURKA gene in invasive ductal carcinoma, contradictory results from different populations mandates regional investigations. We aimed to determine polymorphisms of F31I and V57I codons of AURKA gene and their association with cancer prognosis in patients compared with controls in an eastern population of Iran.A case-control study was conducted on specimens from 100 patients and 100 age- and gender-matched controls. DNA was extracted and the codons F31I and V57I were amplified. The different genotypes were analyzed by PCR-RFLP and electrophoresis.In codon F31I, the frequency of Phe/Ile was 70% and 82% in patients and healthy controls respectively, whereas (Ile/Ile) was 30% in patients and 18% in healthy (P = .047). Analyzing V57I genotypes showed a higher homozygote Val/Val genotype in patients compared with controls (76% vs 68%), whereas the frequency of heterozygous Val/Ile genotype was lower in patients (17%) than controls (30%), yielding a marginal association between breast cancer and Val/Val genotype (P = .048). No association was observed between SNPs of either F31I or V57I genotypes and histological grades. However, there was a significant association between tumor stages and F31I genotype (P for trend = .003).This is the first report of F31I and V57I polymorphisms in AURKA gene in breast cancer in Iran. Determination of allelic polymorphism of those codons will help to understand background genetic predisposition and could have prognostic value in management of breast cancer in the target population.
Collapse
Affiliation(s)
- Rahim Golmohammadi
- Department of Anatomy, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Javed Namazi
- Department of Microbiology and Immunology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Academic Unit of Medical Genetics and Pathology, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - James J. Going
- Academic Unit of Medical Genetics and Pathology, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mohammad H. Derakhshan
- Academic Unit of Medical Genetics and Pathology, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
23
|
Lu C, He Y, Duan J, Yang Y, Zhong C, Zhang J, Liao W, Huang X, Zhu R, Li M. Expression of Wnt3a in hepatocellular carcinoma and its effects on cell cycle and metastasis. Int J Oncol 2017; 51:1135-1145. [PMID: 28902357 PMCID: PMC5592886 DOI: 10.3892/ijo.2017.4112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
Invasion and metastasis are the primary causes of mortality from hepatocellular carcinoma (HCC). Effective inhibition against participants in the tumourigenesis and metastasis process is critical for treatment of HCC. Wnt3a is involved in the development and metastasis of many malignant tumours. However, the specific mechanisms of Wnt3a-mediated cell proliferation, invasion and metastasis in HCC remain unclear. In this study, we found that Wnt3a and its target gene c-Myc showed higher expression in tumour tissues than normal liver tissues in HCC patients; 71.8% of the cases studied had high Wnt3a and c-Myc expression levels (n=32); Wnt3a expression positively correlated with its target genes MMP-7 and c-Myc. Intriguingly, the expression of Wnt3a, MMP-7 and c-Myc is significantly correlated with Notch3 and Hes1 expression. In vitro experiments showed that Wnt3a was highly expressed in MHcc97H and SK-Hep-1 cells. Therefore, Wnt3a expression was silenced with siRNA, and then, MTT, flow cytometry, wound healing and Transwell assays were performed to analyse cell proliferation, cycle, migration and invasion. The results demonstrated that downregulation of Wnt3a expression inhibited cell viability and induced G0/G1 cell cycle arrest via decreased expression of cyclin D1 and c-Myc and increased expression of p21 and p27. In addition, deletion of Wnt3a significantly inhibited migration and invasion by downregulating MMP-2/-7/-9 expression via the MAPK (p38, ERK1/2 and JNK) pathway. In conclusion, our data show that Wnt3a is involved in HCC development. Wnt3a may be an effective target for treatment of HCC.
Collapse
Affiliation(s)
- Caijie Lu
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Yifeng He
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Juan Duan
- Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yongguang Yang
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Chunqiang Zhong
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Jian Zhang
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Weiguo Liao
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Xiaojie Huang
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Runzhi Zhu
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Mingyi Li
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
24
|
Bao Z, Lu L, Liu X, Guo B, Zhai Y, Li Y, Wang Y, Xie B, Ren Q, Cao P, Han Y, Jia W, Chen M, Liang X, Wang X, Zeng YX, He F, Zhang H, Cui Y, Zhou G. Association between the functional polymorphism Ile31Phe in the AURKA gene and susceptibility of hepatocellular carcinoma in chronic hepatitis B virus carriers. Oncotarget 2017; 8:54904-54912. [PMID: 28903390 PMCID: PMC5589629 DOI: 10.18632/oncotarget.18613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/22/2017] [Indexed: 11/25/2022] Open
Abstract
Aurora kinase A (AURKA) is a serine threonine kinase which affects chromosomal separation and mitotic spindle stability through interaction with the centrosome during mitosis. Two functional nonsynonymous polymorphisms of the AURKA gene (Ile31Phe and Val57Ile) have been reported recently. We analyzed the association between the two polymorphisms and risk of the occurrence of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) in the Guangxi population consisting of 348 patients with HCC and 359 control subjects, and then validated the significant association in the Guangdong population consisting of 440 cases and 456 controls. All of the participants were of Chinese origin and HBV carriers. The two polymorphisms were genotyped by polymerase chain reaction-restriction fragment length polymorphism assay or Sequenom MassARRAY iPLEX platform. In the Guangxi population, carriers of the AURKA 31Phe allele (Ile/Phe + Phe/Phe) were significantly associated with decreased susceptibility to HBV-related HCC when compared with noncarriers (Ile/Ile) (odds ratio [OR] = 0.63, 95% confidence interval [CI] = 0.46-0.86, P = 3.4 × 10-3). On the contrary, no significant association was found between Val57Ile and HBV-related HCC occurrence. The association of Ile31Phe with HBV-related HCC occurrence was confirmed in the Guangdong population (OR = 0.64, 95% CI = 0.49-0.83, P = 8.0 × 10-4). The pooled analysis gave a joint P value of 5.5 × 10-6 (joint OR = 0.63, 95% CI = 0.52-0.77). Our findings suggest that AURKA Ile31Phe may play a role in mediating the susceptibility to HBV-related HCC among Chinese.
Collapse
Affiliation(s)
- Zhiyu Bao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.,Guangxi Medical University, Nanning, China.,Affiliated Hospital of Jining Medical University, Jining, China.,National Engineering Research Center for Protein Drugs, Beijing, China.,National Center for Protein Sciences Beijing, Beijing, China
| | - Lei Lu
- Department of Surgical Oncology, Bayi Hospital Affiliated Nanjing University of Chinese Medicine, Jindu Hospital, Nanjing, China
| | - Xinyi Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.,National Engineering Research Center for Protein Drugs, Beijing, China.,National Center for Protein Sciences Beijing, Beijing, China
| | - Bingqian Guo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.,National Engineering Research Center for Protein Drugs, Beijing, China.,National Center for Protein Sciences Beijing, Beijing, China
| | - Yun Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.,National Engineering Research Center for Protein Drugs, Beijing, China.,National Center for Protein Sciences Beijing, Beijing, China
| | - Yuanfeng Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.,National Engineering Research Center for Protein Drugs, Beijing, China.,National Center for Protein Sciences Beijing, Beijing, China
| | - Yahui Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.,National Engineering Research Center for Protein Drugs, Beijing, China.,National Center for Protein Sciences Beijing, Beijing, China
| | - Bobo Xie
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.,National Engineering Research Center for Protein Drugs, Beijing, China.,National Center for Protein Sciences Beijing, Beijing, China
| | - Qian Ren
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.,National Engineering Research Center for Protein Drugs, Beijing, China.,National Center for Protein Sciences Beijing, Beijing, China
| | - Pengbo Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.,National Engineering Research Center for Protein Drugs, Beijing, China.,National Center for Protein Sciences Beijing, Beijing, China
| | - Yuqing Han
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.,National Engineering Research Center for Protein Drugs, Beijing, China.,National Center for Protein Sciences Beijing, Beijing, China
| | - Weihua Jia
- State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Minshan Chen
- Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | - Xuan Wang
- Department of Surgical Oncology, Bayi Hospital Affiliated Nanjing University of Chinese Medicine, Jindu Hospital, Nanjing, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.,National Engineering Research Center for Protein Drugs, Beijing, China.,National Center for Protein Sciences Beijing, Beijing, China
| | - Hongxing Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.,National Engineering Research Center for Protein Drugs, Beijing, China.,National Center for Protein Sciences Beijing, Beijing, China
| | - Ying Cui
- Guangxi Medical University, Nanning, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.,National Engineering Research Center for Protein Drugs, Beijing, China.,National Center for Protein Sciences Beijing, Beijing, China.,Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|