1
|
Chen YN, Cui YZ, Chen XR, Wang JY, Li BZ, Yuan YJ. Direct cloning strategies for large genomic fragments: A review. Biotechnol Adv 2025; 79:108494. [PMID: 39637950 DOI: 10.1016/j.biotechadv.2024.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/08/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Mining large-scale functional regions of the genome helps to understand the essence of cellular life. The rapid accumulation of genomic information provides a wealth of material for genomic functional, evolutionary, and structural research. DNA cloning technology is an important tool for understanding, analyzing, and manipulating the genetic code of organisms. As synthetic biologists engineer greater and broader genetic pathways and expand their research into new organisms, efficient tools capable of manipulating large-scale DNA will offer momentum to the ability to design, modify, and construct engineering life. In this review, we discuss the recent advances in the field of direct cloning of large genomic fragments, particularly of 50-150 kb genomic fragments. We specifically introduce the technological advances in the targeted release and capture steps of these cloning strategies. Additionally, the applications of large fragment cloning in functional genomics and natural product mining are also summarized. Finally, we further discuss the challenges and prospects for these technologies in the future.
Collapse
Affiliation(s)
- Ya-Nan Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Xiang-Rong Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Jun-Yi Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 30072, China
| |
Collapse
|
2
|
Guo Y, Cai G, Li H, Lin Z, Shi S, Jin J, Liu Z. A CRISPR-Cas9-Mediated Large-Fragment Assembly Method for Cloning Genomes and Biosynthetic Gene Cluster. Microorganisms 2024; 12:1462. [PMID: 39065230 PMCID: PMC11279360 DOI: 10.3390/microorganisms12071462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The ability to clone large DNA fragments from genomes is valuable for both basic and applied research, such as the construction of synthetic genomes, and the expression of biosynthetic gene clusters (BGCs) for natural product discovery. Here, we report a fast and efficient platform for the direct capture of genome DNAs, by combining CRISPR and Gibson assembly. We demonstrate this method with the ability of cloning large DNA fragments ranging from 30 to 77 kb from various host genomes, achieving a near 100% cloning fidelity for DNA fragments below 50 kb. We next demonstrate this method by the cloning of a 40 kb fragment from Streptomyces ceruleus A3(2), which is rich in BGCs for natural products; and used this method cloning the 40 kb fengycin synthetic gene cluster from B. subtilis 168, encoding for a class of peptides with bioactivity. This method provides efficient and simple opportunities for assembling large DNA constructs from distant sources.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China (S.S.)
| | - Zihe Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China (S.S.)
| |
Collapse
|
3
|
Colicins of Escherichia coli Lead to Resistance against the Diarrhea-Causing Pathogen Enterotoxigenic E. coli in Pigs. Microbiol Spectr 2022; 10:e0139622. [PMID: 36190425 PMCID: PMC9603048 DOI: 10.1128/spectrum.01396-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gut microbes can affect host adaptation to various environment conditions. Escherichia coli is a common gut species, including pathogenic strains and nonpathogenic strains. This study was conducted to investigate the effects of different E. coli strains in the gut on the health of pigs. In this study, the complete genomes of two E. coli strains isolated from pigs were sequenced. The whole genomes of Y18J and the enterotoxigenic E. coli strain W25K were compared to determine their roles in pig adaptation to disease. Y18J was isolated from feces of healthy piglets and showed strong antimicrobial activity against W25K in vitro. Gene knockout experiments and complementation analysis followed by modeling the microbe-microbe interactions demonstrated that the antagonistic mechanism of Y18J against W25K relied on the bacteriocins colicin B and colicin M. Compared to W25K, Y18J is devoid of exotoxin-coding genes and has more secondary-metabolite-biosynthetic gene clusters. W25K carries more genes involved in genome replication, in accordance with a shorter cell cycle observed during a growth experiment. The analysis of gut metagenomes in different pig breeds showed that colicins B and M were enriched in Laiwu pigs, a Chinese local breed, but were scarce in boars and Duroc pigs. IMPORTANCE This study revealed the heterogeneity of E. coli strains from pigs, including two strains studied by both in silico and wet experiments in detail and 14 strains studied by bioinformatics analysis. E. coli Y18J may improve the adaptability of pigs toward disease resistance through the production of colicins B and M. Our findings could shed light on the pathogenic and harmless roles of E. coli in modern animal husbandry, leading to a better understanding of intestinal-microbe-pathogen interactions in the course of evolution.
Collapse
|
4
|
Wang W, Zheng G, Lu Y. Recent Advances in Strategies for the Cloning of Natural Product Biosynthetic Gene Clusters. Front Bioeng Biotechnol 2021; 9:692797. [PMID: 34327194 PMCID: PMC8314000 DOI: 10.3389/fbioe.2021.692797] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial natural products (NPs) are a major source of pharmacological agents. Most NPs are synthesized from specific biosynthetic gene clusters (BGCs). With the rapid increase of sequenced microbial genomes, large numbers of NP BGCs have been discovered, regarded as a treasure trove of novel bioactive compounds. However, many NP BGCs are silent in native hosts under laboratory conditions. In order to explore their therapeutic potential, a main route is to activate these silent NP BGCs in heterologous hosts. To this end, the first step is to accurately and efficiently capture these BGCs. In the past decades, a large number of effective technologies for cloning NP BGCs have been established, which has greatly promoted drug discovery research. Herein, we describe recent advances in strategies for BGC cloning, with a focus on the preparation of high-molecular-weight DNA fragment, selection and optimization of vectors used for carrying large-size DNA, and methods for assembling targeted DNA fragment and appropriate vector. The future direction into novel, universal, and high-efficiency methods for cloning NP BGCs is also prospected.
Collapse
Affiliation(s)
- Wenfang Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Guosong Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, China.,Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
5
|
Lin Z, Nielsen J, Liu Z. Bioprospecting Through Cloning of Whole Natural Product Biosynthetic Gene Clusters. Front Bioeng Biotechnol 2020; 8:526. [PMID: 32582659 PMCID: PMC7290108 DOI: 10.3389/fbioe.2020.00526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of penicillin, natural products and their derivatives have been a valuable resource for drug discovery. With recent development of genome mining approaches in the post-genome era, a great number of natural product biosynthetic gene clusters (BGCs) have been identified and these can potentially be exploited for the discovery of novel natural products that can find application as pharmaceuticals. Since many BGCs are silent or do not express in native hosts under laboratory conditions, heterologous expression of BGCs in genetically tractable hosts becomes an attractive route to activate these BGCs to discover the corresponding products. Here, we highlight recent achievements in cloning and discovery of natural product biosynthetic pathways via intact BGC capturing, and discuss the prospects of high-throughput and multiplexed cloning of rational-designed gene clusters in the future.
Collapse
Affiliation(s)
- Zhenquan Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,BioInnovation Institute, Copenhagen, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
6
|
Nivina A, Yuet KP, Hsu J, Khosla C. Evolution and Diversity of Assembly-Line Polyketide Synthases. Chem Rev 2019; 119:12524-12547. [PMID: 31838842 PMCID: PMC6935866 DOI: 10.1021/acs.chemrev.9b00525] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Indexed: 12/11/2022]
Abstract
Assembly-line polyketide synthases (PKSs) are among the most complex protein machineries known in nature, responsible for the biosynthesis of numerous compounds used in the clinic. Their present-day diversity is the result of an evolutionary path that has involved the emergence of a multimodular architecture and further diversification of assembly-line PKSs. In this review, we provide an overview of previous studies that investigated PKS evolution and propose a model that challenges the currently prevailing view that gene duplication has played a major role in the emergence of multimodularity. We also analyze the ensemble of orphan PKS clusters sequenced so far to evaluate how large the entire diversity of assembly-line PKS clusters and their chemical products could be. Finally, we examine the existing techniques to access the natural PKS diversity in natural and heterologous hosts and describe approaches to further expand this diversity through engineering.
Collapse
Affiliation(s)
- Aleksandra Nivina
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Kai P. Yuet
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Jake Hsu
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Chaitan Khosla
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Tao W, Chen L, Zhao C, Wu J, Yan D, Deng Z, Sun Y. In Vitro Packaging Mediated One-Step Targeted Cloning of Natural Product Pathway. ACS Synth Biol 2019; 8:1991-1997. [PMID: 31487454 DOI: 10.1021/acssynbio.9b00248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Direct cloning of natural product pathways for efficient refactoring and heterologous expression has become an important strategy for microbial natural product research and discovery, especially for those kept silent or poorly expressed in the original strains. Accordingly, the development of convenient and efficient cloning approaches is becoming increasingly necessary. Here we presented an in vitro packaging mediated cloning approach that combines CRISPR/Cas9 system with in vitro λ packaging system, for targeted cloning of natural product pathways. In such a scheme, pathways of Tü3010 (27.4 kb) and sisomicin (40.7 kb) were respectively cloned, and stuR was further depicted to positively regulate Tü3010 production. In vitro packaging mediated approach not only enables to activate cryptic pathways, but also facilitates refactoring or interrogating the pathways in conjunction with various gene editing systems. This approach features an expedited, convenient, and generic manner, and it is conceivable that it may be widely adopted for targeted cloning of the natural product pathways.
Collapse
Affiliation(s)
- Weixin Tao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Li Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Chunhua Zhao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Jing Wu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, People’s Republic of China
| | - Dazhong Yan
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, People’s Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| |
Collapse
|
8
|
Tang Q, Lou C, Liu SJ. Construction of an easy-to-use CRISPR-Cas9 system by patching a newly designed EXIT circuit. J Biol Eng 2017; 11:32. [PMID: 28878819 PMCID: PMC5582390 DOI: 10.1186/s13036-017-0072-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/01/2017] [Indexed: 11/12/2022] Open
Abstract
Background Plasmid-borne genetic editing tools, including the widely used CRISPR-Cas9 system, have greatly facilitated bacterial programming to obtain novel functionalities. However, the lack of effective post-editing plasmid elimination methods impedes follow-up genetic manipulation or application. Conventional strategies including exposure to physical and chemical treatments, or exploiting temperature-sensitive replication origins have several drawbacks (e.g., they are limited for efficiency and are time-consuming). Therefore, the demand is apparent for easy and rapid elimination of the tool plasmids from their bacterial hosts after genetic manipulation. Results To bridge this gap, we designed a novel EXIT circuit with the homing endonuclease, which can be exploited for rapid and efficient elimination of various plasmids with diverse replication origins. As a proof of concept, we validated the EXIT circuit in Escherichia coli by harnessing homing endonuclease I-SceI and its cleavage site. When integrated into multiple plasmids with different origins, the EXIT circuit allowed them to be eliminated from the host cells, simultaneously. By combining the widely used plasmid-borne CRISPR-Cas9 system and the EXIT circuit, we constructed an easy-to-use CRISPR-Cas9 system that eliminated the Cas9- and the single-guide RNA (sgRNA)-encoding plasmids in one-step. Within 3 days, we successfully constructed an atrazine-degrading E. coli strain, thus further demonstrating the advantage of this new CRISPR-Cas9 system for bacterial genome editing. Conclusions Our novel EXIT circuit, which exploits the homing endonuclease I-SceI, enables plasmid(s) with different replication origins to be eliminated from their host cells rapidly and efficiently. We also developed an easy-to-use CRISPR-Cas9 system with the EXIT circuit, and this new system can be widely applied to bacterial genome editing. Electronic supplementary material The online version of this article (doi:10.1186/s13036-017-0072-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiang Tang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chunbo Lou
- CAS Key Laboratory for Microbial Physiology and Metabolic Engineering, Chinese Academy of Sciences, Beijing, 100101 China.,Institute of Microbiology, Chinese Academy of Sciences, Beichen Xilu 1, Chaoyang District, Beijing, 100101 China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Chinese Academy of Sciences, Beijing, 100101 China.,Institute of Microbiology, Chinese Academy of Sciences, Beichen Xilu 1, Chaoyang District, Beijing, 100101 China
| |
Collapse
|
9
|
Döhlemann J, Wagner M, Happel C, Carrillo M, Sobetzko P, Erb TJ, Thanbichler M, Becker A. A Family of Single Copy repABC-Type Shuttle Vectors Stably Maintained in the Alpha-Proteobacterium Sinorhizobium meliloti. ACS Synth Biol 2017; 6:968-984. [PMID: 28264559 PMCID: PMC7610768 DOI: 10.1021/acssynbio.6b00320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
A considerable
share of bacterial species maintains segmented genomes.
Plant symbiotic α-proteobacterial rhizobia contain up to six repABC-type replicons in addition to the primary chromosome.
These low or unit-copy replicons, classified as secondary chromosomes,
chromids, or megaplasmids, are exclusively found in α-proteobacteria.
Replication and faithful partitioning of these replicons to the daughter
cells is mediated by the repABC region. The importance
of α-rhizobial symbiotic nitrogen fixation for sustainable agriculture
and Agrobacterium-mediated plant transformation as
a tool in plant sciences has increasingly moved biological engineering
of these organisms into focus. Plasmids are ideal DNA-carrying vectors
for these engineering efforts. On the basis of repABC regions collected from α-rhizobial secondary replicons, and
origins of replication derived from traditional cloning vectors, we
devised the versatile family of pABC shuttle vectors propagating in Sinorhizobium meliloti, related members of the Rhizobiales, and Escherichia coli. A modular plasmid library
providing the elemental parts for pABC vector assembly was founded.
The standardized design of these vectors involves five basic modules:
(1) repABC cassette, (2) plasmid-derived origin of
replication, (3) RK2/RP4 mobilization site (optional), (4) antibiotic
resistance gene, and (5) multiple cloning site flanked by transcription
terminators. In S. meliloti, pABC vectors showed
high propagation stability and unit-copy number. We demonstrated stable
coexistence of three pABC vectors in addition to the two indigenous
megaplasmids in S. meliloti, suggesting combinability
of multiple compatible pABC plasmids. We further devised an in vivo cloning strategy involving Cre/lox-mediated translocation of large DNA fragments to an autonomously
replicating repABC-based vector, followed by conjugation-mediated
transfer either to compatible rhizobia or E. coli.
Collapse
Affiliation(s)
- Johannes Döhlemann
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Marcel Wagner
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Carina Happel
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Martina Carrillo
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
| | - Tobias J. Erb
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Martin Thanbichler
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| |
Collapse
|
10
|
Ren H, Wang B, Zhao H. Breaking the silence: new strategies for discovering novel natural products. Curr Opin Biotechnol 2017; 48:21-27. [PMID: 28288336 DOI: 10.1016/j.copbio.2017.02.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/17/2017] [Indexed: 12/31/2022]
Abstract
Natural products have been a prolific source of antibacterial and anticancer drugs for decades. One of the major challenges in natural product discovery is that the vast majority of natural product biosynthetic gene clusters (BGCs) have not been characterized, partially due to the fact that they are either transcriptionally silent or expressed at very low levels under standard laboratory conditions. Here we describe the strategies developed in recent years (mostly between 2014-2016) for activating silent BGCs. These strategies can be broadly divided into two categories: approaches in native hosts and approaches in heterologous hosts. In addition, we briefly discuss recent advances in developing new computational tools for identification and characterization of BGCs and high-throughput methods for detection of natural products.
Collapse
Affiliation(s)
- Hengqian Ren
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Bin Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Departments of Chemistry and Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|