1
|
Martínez-Fernández L, Ranković ML, Canon F, Nahon L, Giuliani A, Milosavljević AR, Martin-Somer A. Photodissociation of leucine-enkephalin protonated peptide: an experimental and theoretical perspective. RSC Adv 2024; 14:16809-16820. [PMID: 38784408 PMCID: PMC11112675 DOI: 10.1039/d4ra01690d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Understanding the competing processes that govern far ultraviolet photodissociation (FUV-PD) of biopolymers such as proteins is a challenge. Here, we report a combined experimental and theoretical investigation of FUV-PD of protonated leucine-enkephalin pentapeptide ([YGGFL + H]+) in the gas-phase. Time-dependent density functional theory (TD-DFT) calculations in combination with experiments and previous results for amino acids and shorter peptides help in rationalizing the evolution of the excited states. The results confirm that fragmentation of [YGGFL + H]+ results mainly from vibrationally excited species in the ground electronic state, populated after internal conversion. We also propose fragmentation mechanisms for specific photo-fragments such as tyrosine side chain loss (with an extra hydrogen) or hydrogen loss. In general, we observe the same mechanisms as for smaller peptides or protonated Tyr and Phe, that are not quenched by the presence of other amino acids. Nevertheless, we also found some differences, as for H loss, in part due to the fact that the charge is solvated by the peptide chain and not only by the COOH terminal group.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química Física de Materiales, Instituto de Química Física de Materiales, Instituto de Química Física Blas Cabrera, CSIC 28006 Madrid Spain
| | - Miloš Lj Ranković
- Institute of Physics Belgrade, University of Belgrade Pregrevica 118 11080 Belgrade Serbia
| | - Francis Canon
- SOLEIL l'Orme des Merisiers, St Aubin, BP48, F-91192 Gif sur Yvette Cedex France
| | - Laurent Nahon
- SOLEIL l'Orme des Merisiers, St Aubin, BP48, F-91192 Gif sur Yvette Cedex France
| | - Alexandre Giuliani
- SOLEIL l'Orme des Merisiers, St Aubin, BP48, F-91192 Gif sur Yvette Cedex France
- INRAE, Dpet. Transform UAR1008, Rue de la Géraudière, BP 71627 F-44316 Nantes France
| | | | - Ana Martin-Somer
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid Módulo 14 28049 Spain
| |
Collapse
|
2
|
Takeuchi S, Matsuda T, Tsujimoto M, Fukumoto T, Ono R, Nishigori C. Replication-related genes are upregulated in XP-A cells after UV-C irradiation. J Dermatol Sci 2022; 105:152-158. [DOI: 10.1016/j.jdermsci.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
|
3
|
The Potential Regulatory Roles of lncRNAs in DNA Damage Response in Human Lymphocytes Exposed to UVC Irradiation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8962635. [PMID: 32258156 PMCID: PMC7094206 DOI: 10.1155/2020/8962635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/05/2020] [Accepted: 02/20/2020] [Indexed: 11/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a class of noncoding RNAs that modulate gene expression, thereby participating in the regulation of various cellular processes. However, it is not clear about the expression and underlying mechanism of lncRNAs in irradiation-induced DNA damage response. In the present study, we performed integrative analysis of lncRNA-mRNA expression profile in human lymphocytes irradiated with ultraviolet-C (UVC). The results showed that exposure to UVC irradiation dose-dependently increased the fluorescence intensity of γ-H2AX and induced cell death. Microarray analysis revealed that up-regulated lncRNAs were more common than down-regulated lncRNAs with the increase of radiation dose in UVC-radiated cells. Stem analysis demonstrated the relationship between lncRNA expression level and radiation dose. qPCR results confirmed that LOC338799 and its coexpressed genes such as LCE1F and ISCU showed the increase in expression levels with the increase of UVC radiation dose. We utilized Cytoscape to screen out 5 lncRNAs and 13 coexpressed genes linking to p53, which might participate in the regulation of DNA damage, cell cycle arrest, apoptosis, and cell death. These findings suggest that lncRNAs might play a role in UVC-induced DNA damage response through regulating expression of genes in p53 signaling pathway.
Collapse
|
4
|
Shirato K, Koda T, Takanari J, Sakurai T, Ogasawara J, Imaizumi K, Ohno H, Kizaki T. Anti-Inflammatory Effect of ETAS®50 by Inhibiting Nuclear Factor- κB p65 Nuclear Import in Ultraviolet-B-Irradiated Normal Human Dermal Fibroblasts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:5072986. [PMID: 29967648 PMCID: PMC6008667 DOI: 10.1155/2018/5072986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
Ultraviolet (UV) irradiation induces proinflammatory responses in skin cells, including dermal fibroblasts, accelerating premature skin aging (photoaging). ETAS 50, a standardized extract from the Asparagus officinalis stem, is a novel and unique functional food that suppresses proinflammatory responses of hydrogen peroxide-stimulated skin fibroblasts and interleukin- (IL-) 1β-stimulated hepatocytes. To elucidate its antiphotoaging potencies, we examined whether ETAS 50 treatment after UV-B irradiation attenuates proinflammatory responses of normal human dermal fibroblasts (NHDFs). UV-B-irradiated NHDFs showed reduced levels of the cytosolic inhibitor of nuclear factor-κB α (IκBα) protein and increased levels of nuclear p65 protein. The nuclear factor-κB nuclear translocation inhibitor JSH-23 abolished UV-B irradiation-induced IL-1β mRNA expression, indicating that p65 regulates transcriptional induction. ETAS 50 also markedly suppressed UV-B irradiation-induced increases in IL-1β mRNA levels. Immunofluorescence analysis revealed that ETAS 50 retained p65 in the cytosol after UV-B irradiation. Western blotting also showed that ETAS 50 suppressed the UV-B irradiation-induced increases in nuclear p65 protein. Moreover, ETAS 50 clearly suppressed UV-B irradiation-induced distribution of importin-α protein levels in the nucleus without recovering cytosolic IκBα protein levels. These results suggest that ETAS 50 exerts anti-inflammatory effects on UV-B-irradiated NHDFs by suppressing the nuclear import machinery of p65. Therefore, ETAS 50 may prevent photoaging by suppressing UV irradiation-induced proinflammatory responses of dermal fibroblasts.
Collapse
Affiliation(s)
- Ken Shirato
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Tomoko Koda
- Faculty of Nursing, Tokyo Healthcare University, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8558, Japan
| | - Jun Takanari
- Amino Up Chemical Co. Ltd., 363-32 Shinei, Kiyota, Sapporo, Hokkaido 004-0839, Japan
| | - Takuya Sakurai
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Junetsu Ogasawara
- Department of Health Science, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Kazuhiko Imaizumi
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Hideki Ohno
- Social Medical Corporation, The Yamatokai Foundation, 1-13-12 Nangai, Higashiyamato, Tokyo 207-0014, Japan
| | - Takako Kizaki
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
5
|
Marais TLD, Kluz T, Xu D, Zhang X, Gesumaria L, Matsui MS, Costa M, Sun H. Transcription factors and stress response gene alterations in human keratinocytes following Solar Simulated Ultra Violet Radiation. Sci Rep 2017; 7:13622. [PMID: 29051608 PMCID: PMC5648893 DOI: 10.1038/s41598-017-13765-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
Ultraviolet radiation (UVR) from sunlight is the major effector for skin aging and carcinogenesis. However, genes and pathways altered by solar-simulated UVR (ssUVR), a mixture of UVA and UVB, are not well characterized. Here we report global changes in gene expression as well as associated pathways and upstream transcription factors in human keratinocytes exposed to ssUVR. Human HaCaT keratinocytes were exposed to either a single dose or 5 repetitive doses of ssUVR. Comprehensive analyses of gene expression profiles as well as functional annotation were performed at 24 hours post irradiation. Our results revealed that ssUVR modulated genes with diverse cellular functions changed in a dose-dependent manner. Gene expression in cells exposed to a single dose of ssUVR differed significantly from those that underwent repetitive exposures. While single ssUVR caused a significant inhibition in genes involved in cell cycle progression, especially G2/M checkpoint and mitotic regulation, repetitive ssUVR led to extensive changes in genes related to cell signaling and metabolism. We have also identified a panel of ssUVR target genes that exhibited persistent changes in gene expression even at 1 week after irradiation. These results revealed a complex network of transcriptional regulators and pathways that orchestrate the cellular response to ssUVR.
Collapse
Affiliation(s)
- Thomas L Des Marais
- New York University, Department of Environmental Medicine, Tuxedo, New York, United States of America
| | - Thomas Kluz
- New York University, Department of Environmental Medicine, Tuxedo, New York, United States of America
| | - Dazhong Xu
- New York Medical College School of Medicine, Department of Pathology, Valhalla, New York, United States of America
| | - Xiaoru Zhang
- New York University, Department of Environmental Medicine, Tuxedo, New York, United States of America
| | - Lisa Gesumaria
- New York University, Department of Environmental Medicine, Tuxedo, New York, United States of America
| | - Mary S Matsui
- Estee Lauder Companies, Inc., Melville, New York, United States of America
| | - Max Costa
- New York University, Department of Environmental Medicine, Tuxedo, New York, United States of America.
| | - Hong Sun
- New York University, Department of Environmental Medicine, Tuxedo, New York, United States of America.
| |
Collapse
|