1
|
Khare D, Pimple MV, Acharya C. A novel Zn (II)/Cd (II)/Pb (II)-translocating P IB-type ATPase mediates metal resistance in Chryseobacterium sp. strain PMSZPI in metal-enriched soil of uranium ore deposit. Int J Biol Macromol 2025; 305:141189. [PMID: 39978524 DOI: 10.1016/j.ijbiomac.2025.141189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/31/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Transition metals at higher concentrations are toxic to the cells. Membrane bound, ATP-driven efflux pumps belonging to the P-type ATPase superfamily maintain metal homeostasis by transporting metals/ions across the biological membranes. A soil bacterium, Chryseobacterium sp. strain PMSZPI, residing in metal enriched environment of uranium ore deposit exhibited high tolerance to multiple heavy metals. In an attempt to unveil one of the molecular determinants of metal resistance in PMSZPI, we characterized an unannotated, novel metal exporting PIB-2-ATPase that was categorized as Zn (II)/Cd (II)/Pb(II) PIB-2-ATPase based on amino-acid sequence alignment and the substrate specificities. The heterologously expressed and purified PIB-2-ATPase exhibited zinc/cadmium/lead dependent ATP hydrolysis activity, ATP dependent phosphorylation and activity inhibition in the presence of vanadate. In-vivo metal tolerance assays and analysis of intracellular metal contents indicated involvement of PIB-2-ATPase in metal efflux. The disordered N-terminal metal binding domain of PIB-2-ATPase was found to be inconsequential for its function. Mutagenesis studies revealed the role of the conserved transmembrane (TM) residues (cysteine, aspartate and lysine) in metal translocation. Overall, our data establishes the vital role of Zn(II)/Cd(II)/Pb(II) PIB-2-ATPase in conferring metal resistance in PMSZPI.
Collapse
Affiliation(s)
- Devanshi Khare
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Mehzabin Vivek Pimple
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
2
|
Wang X, Jia X, Zhao Y, Xie Y, Meng X, Wang F. Diversity of nifH Gene in Culturable Rhizobia from Black Locust ( Robinia pseudoacacia L.) Grown in Cadmium-Contaminated Soils. BIOLOGY 2025; 14:362. [PMID: 40282227 PMCID: PMC12024803 DOI: 10.3390/biology14040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025]
Abstract
(1) Background: Rhizobia can promote plant growth by providing essential nutrients such as NH4+ and PO43-; thus, rhizobia that can tolerate the stress of heavy metals will be conducive to the phytoremediation of heavy-metal-contaminated soils. Therefore, understanding the dominant heavy-metal-tolerant rhizobia that can be cultured is important for the establishment of an indigenous legume-rhizobia symbiotic remediation system; (2) Methods: Here, we investigated nifH gene diversity in culturable rhizobia from black locust (Robinia pseudoacacia L.) grown in cadmium (Cd)-contaminated soils using high-throughput sequencing.; (3) Results: A total of 16 genera and 26 species were identified from the cultures of root nodules of black locust exposed to five Cd levels. Cadmium did not show a significant effect on the abundance, diversity, and evenness of the culturable rhizobia community. However, Cd significantly affected the community structure of culturable rhizobia containing nifH. Mesorhizobium, Sinorhizobium, and Rhizobium were the absolute dominant genera present in the cultures under five Cd treatments. Additionally, Cd significantly affected the relative abundance of Azohydromonas, Xanthobacter, Skermanella, Bradyrhizobium, Paenibacillus, and Pseudacidovorax in the cultures. Soil pH, total Cd, DTPA-Cd, and C/H ratio were the significant factors on culturable rhizobia community.; (4) Conclusions: Cd showed a negative effect on nifH gene community of culturable rhizobia from black locust, which will provide insight into the selection of excellent strains that can promote phytoremediation of heavy-metal-contaminated soils.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, School of Water and Environment, Chang’an University, Xi’an 710054, China; (X.W.)
| | - Xia Jia
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, School of Water and Environment, Chang’an University, Xi’an 710054, China; (X.W.)
| | - Yonghua Zhao
- School of Land Engineering, Chang’an University, Xi’an 710054, China
| | - Yuan Xie
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, School of Water and Environment, Chang’an University, Xi’an 710054, China; (X.W.)
| | - Xiuxin Meng
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, School of Water and Environment, Chang’an University, Xi’an 710054, China; (X.W.)
| | - Fang Wang
- School of Land Engineering, Chang’an University, Xi’an 710054, China
| |
Collapse
|
3
|
Sun Y, Tao H, Han H, Zou Y, Xue Y, Chen S, Tao F. Identification and expression analysis of P-type ATPase IIIA subfamily in Puccinia Striiformis f. sp. tritici. BMC Genomics 2025; 26:68. [PMID: 39856561 PMCID: PMC11759449 DOI: 10.1186/s12864-025-11219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Puccinia striiformis f. sp. tritici (Pst) causes wheat stripe (yellow) rust disease, which is one of the most destructive diseases affecting wheat worldwide. ATPases, a class of membrane proteins, play an important role in material exchange and signal transduction both within and outside biological cells by transporting ions and phospholipids. In plant pathogens, P-type ATPases primarily participate in pathogen development and virulence regulation. However, the P-type ATPase of subfamily IIIA (PMA) has not yet been identified in Pst. To investigate the potential functions of the PMA gene family in Pst, we conducted a genome-wide bioinformatics analysis and examined the expression profiles of the PMA gene family. RESULTS Six PMA genes were identified in the genome of P. striiformis f. sp. tritici (CYR34 race). The PMA proteins encoded by these genes ranged in length from 811 to 960 amino acids (aa). Each of the six PMA genes contained a typical ATPase IIIA H superfamily domain and was distributed across four chromosomes. Thirty-six major cis-regulatory elements were detected within the PMA gene family members. Elements such as the CGTCA-motif and TGACG-motif play significant roles in responding to environmental stresses and hormone signals. Quantitative PCR analysis revealed that the expression of the PMA04 gene was generally higher at 9 °C under various temperature stresses. The PMA06 gene typically exhibited higher expression levels at 16 °C. During the infection of Pst, the expression levels of PMA04, PMA05, and PMA06 were elevated at 72 h post treatment. CONCLUSIONS Our results indicate that the PMA gene family in the CYR34 strain comprises six PMA genes, which are crucial for managing temperature stress and pathogen infection, and exhibit a distinctive splicing pattern. This study not only identifies a target and direction for the development of new, efficient, and environmentally friendly control agents for wheat stripe rust but also establishes a foundation for analyzing its pathogenic mechanisms.
Collapse
Affiliation(s)
- Yingjie Sun
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hong Tao
- Forest Seedling Service Station of Linxia Hui Autonomous Prefecture, Linxia, 731100, China
| | - Hong Han
- Academy of Agricultural Sciences of Linxia Hui Autonomous Prefecture, Linxia, 731100, China
| | - Yiping Zou
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China
| | - Yingyu Xue
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Shiwen Chen
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fei Tao
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Bhat A, Sharma R, Desigan K, Lucas MM, Mishra A, Bowers RM, Woyke T, Epstein B, Tiffin P, Pueyo JJ, Paape T. Horizontal gene transfer of the Mer operon is associated with large effects on the transcriptome and increased tolerance to mercury in nitrogen-fixing bacteria. BMC Microbiol 2024; 24:247. [PMID: 38971740 PMCID: PMC11227200 DOI: 10.1186/s12866-024-03391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/19/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Mercury (Hg) is highly toxic and has the potential to cause severe health problems for humans and foraging animals when transported into edible plant parts. Soil rhizobia that form symbiosis with legumes may possess mechanisms to prevent heavy metal translocation from roots to shoots in plants by exporting metals from nodules or compartmentalizing metal ions inside nodules. Horizontal gene transfer has potential to confer immediate de novo adaptations to stress. We used comparative genomics of high quality de novo assemblies to identify structural differences in the genomes of nitrogen-fixing rhizobia that were isolated from a mercury (Hg) mine site that show high variation in their tolerance to Hg. RESULTS Our analyses identified multiple structurally conserved merA homologs in the genomes of Sinorhizobium medicae and Rhizobium leguminosarum but only the strains that possessed a Mer operon exhibited 10-fold increased tolerance to Hg. RNAseq analysis revealed nearly all genes in the Mer operon were significantly up-regulated in response to Hg stress in free-living conditions and in nodules. In both free-living and nodule environments, we found the Hg-tolerant strains with a Mer operon exhibited the fewest number of differentially expressed genes (DEGs) in the genome, indicating a rapid and efficient detoxification of Hg from the cells that reduced general stress responses to the Hg-treatment. Expression changes in S. medicae while in bacteroids showed that both rhizobia strain and host-plant tolerance affected the number of DEGs. Aside from Mer operon genes, nif genes which are involved in nitrogenase activity in S. medicae showed significant up-regulation in the most Hg-tolerant strain while inside the most Hg-accumulating host-plant. Transfer of a plasmid containing the Mer operon from the most tolerant strain to low-tolerant strains resulted in an immediate increase in Hg tolerance, indicating that the Mer operon is able to confer hyper tolerance to Hg. CONCLUSIONS Mer operons have not been previously reported in nitrogen-fixing rhizobia. This study demonstrates a pivotal role of the Mer operon in effective mercury detoxification and hypertolerance in nitrogen-fixing rhizobia. This finding has major implications not only for soil bioremediation, but also host plants growing in mercury contaminated soils.
Collapse
Affiliation(s)
- Aditi Bhat
- Brookhaven National Laboratory, Upton, USA
| | | | | | | | - Ankita Mishra
- Institute for Advancing Health Through Agriculture, Texas A&M, College Station, TX, USA
| | - Robert M Bowers
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brendan Epstein
- Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - José J Pueyo
- Institute of Agricultural Sciences, ICA-CSIC, Madrid, Spain
| | - Tim Paape
- Institute for Advancing Health Through Agriculture, Texas A&M, College Station, TX, USA.
- USDA-ARS Children's Nutrition Research Center, Houston, TX, USA.
| |
Collapse
|
5
|
Impact of lead (Pb 2+) on the growth and biological activity of Serratia marcescens selected for wastewater treatment and identification of its zntR gene-a metal efflux regulator. World J Microbiol Biotechnol 2023; 39:91. [PMID: 36752862 DOI: 10.1007/s11274-023-03535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Microorganisms isolated from contaminated areas play an important role in bioremediation processes. They promote heavy metal removal from the environment by adsorbing ions onto the cell wall surface, accumulating them inside the cells, or reducing, complexing, or precipitating these substances in the environment. Microorganism-based bioremediation processes can be highly efficient, low-cost and have low environmental impact. Thus, the present study aimed to select Pb2+-resistant bacteria and evaluate the growth rate, biological activity, and the presence of genes associated with metal resistance. Serratia marcescens CCMA 1010, that was previously isolated from coffee processing wastewater, was selected since was able to growth in Pb2+ concentrations of up to 4.0 mM. The growth rate and generation time did not differ from those of the control (without Pb2+), although biological activity decreased in the first hour of exposure to these ions and stabilized after this period. The presence of the zntR, zntA and pbrA genes was analysed, and only zntR was detected. The zntR gene encodes a protein responsible for regulating the production of ZntA, a transmembrane protein that facilitates Pb2+ extrusion out of the cell. S. marcescens CCMA 1010 demonstrated a potential for use as bioindicator that has potential to be used in bioremediation processes due to its resistance to high concentrations of Pb2+, ability to grow until 24 h of exposure, and possession of a gene that indicates the existence of mechanisms associated with resistance to lead (Pb2+).
Collapse
|
6
|
Pirhanov GG. Sinorhizobium meliloti AS A PERSPECTIVE OBJECT FOR MODERN BIOTECHNOLOGY. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sinorhizobium meliloti is a Gram-negative soil nitrogen-fixing bacterium that increases the yield of legumes. There is information in the literature about the complete genome sequence of this bacterium, in addition, the polysaccharide composition of the biofilm, which is actively involved in nitrogen fixation, has been studied. The well-known nucleotide sequence, as well as the genetic and biochemical features of S. meliloti make this organism an ideal model for biotechnological research. The purpose of this work was to analyze the current data provided in the literature on the symbiotic interaction of Sinorhizobium meliloti with the host plant, and to characterize the main directions of the use of this bacterium in agriculture, bioremediation and medicine.
Collapse
|
7
|
Characterization of a Bacillus megaterium strain with metal bioremediation potential and in silico discovery of novel cadmium binding motifs in the regulator, CadC. Appl Microbiol Biotechnol 2021; 105:2573-2586. [PMID: 33651131 DOI: 10.1007/s00253-021-11193-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Bioremediation of toxic metal ions using bacterial strains is a promising tool. Metal binding motifs in microbial proteins are involved in the regulation and transport of such toxic metals for metal detoxification. A bacterial strain designated TWSL_4 with metal (Cu, Cd, and Pb) resistance and removal ability was isolated and identified as a Bacillus megaterium strain using 16S rRNA gene analysis. An operon with 2 open reading frames (ORFs) was identified, cloned, and sequenced. ORF1 and ORF2 were identical to the cadmium efflux system accessory protein (CadC) and cadmium-translocating P-type ATPases (CadA) of B. megaterium strain YC4-R4 respectively. A protein homology search using Swiss model retrieved no crystal structures for CadC and CadA of Bacillus sp.. CadC of TWSL_4 had a sequence identity of 53% to the CadC (121aa) protein and 51.69% to the CadC crystal structure (1U2W.1.B; GMQE=0.75) of Staphylococcus sp. pI258. Molecular dynamic simulation studies revealed the presence of three metal binding regions in CadC of TWSL_4, [ASP7-TYR9], [ASP100-HIS102], and [LYS113-ASP116]. This is the first report showing evidence for the presence of Cd2+ and Zn2+ metal binding motifs in the CadC regulator of the Bacillus megaterium cad operon. The bacterial strain TWSL_4 was also found to contain two different P type ATPases encoding genes, cadA and zosA involved in metal resistance. Furthermore, the metal bioremediation potential of strain TWSL_4 was confirmed using an industrial effluent. KEY POINTS: • Isolation of a metal-resistant bacterial strain with potential for industrial bioremediation. • Discovery of novel Cd binding sites in CadC of the cad operon from B. megaterium. • Involvement of aspartic acid in the coordination of metal ions (Cd2+).
Collapse
|
8
|
Steunou AS, Durand A, Bourbon ML, Babot M, Tambosi R, Liotenberg S, Ouchane S. Cadmium and Copper Cross-Tolerance. Cu + Alleviates Cd 2 + Toxicity, and Both Cations Target Heme and Chlorophyll Biosynthesis Pathway in Rubrivivax gelatinosus. Front Microbiol 2020; 11:893. [PMID: 32582041 PMCID: PMC7283390 DOI: 10.3389/fmicb.2020.00893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/16/2020] [Indexed: 11/17/2022] Open
Abstract
Cadmium, although not redox active is highly toxic. Yet, the underlying mechanisms driving toxicity are still to be characterized. In this study, we took advantage of the purple bacterium Rubrivivax gelatinosus strain with defective Cd2 +-efflux system to identify targets of this metal. Exposure of the ΔcadA strain to Cd2 + causes a decrease in the photosystem amount and in the activity of respiratory complexes. As in case of Cu+ toxicity, the data indicated that Cd2 + targets the porphyrin biosynthesis pathway at the level of HemN, a S-adenosylmethionine and CxxxCxxC coordinated [4Fe-4S] containing enzyme. Cd2 + exposure therefore results in a deficiency in heme and chlorophyll dependent proteins and metabolic pathways. Given the importance of porphyrin biosynthesis, HemN represents a key metal target to account for toxicity. In the environment, microorganisms are exposed to mixture of metals. Nevertheless, the biological effects of such mixtures, and the toxicity mechanisms remain poorly addressed. To highlight a potential cross-talk between Cd2 + and Cu+ -efflux systems, we show (i) that Cd2 + induces the expression of the Cd2 +-efflux pump CadA and the Cu+ detoxification system CopA and CopI; and (ii) that Cu+ ions improve tolerance towards Cd2 +, demonstrating thus that metal mixtures could also represent a selective advantage in the environment.
Collapse
Affiliation(s)
- Anne Soisig Steunou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anne Durand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marie-Line Bourbon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marion Babot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Reem Tambosi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sylviane Liotenberg
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Soufian Ouchane
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
9
|
Abreu I, Mihelj P, Raimunda D. Transition metal transporters in rhizobia: tuning the inorganic micronutrient requirements to different living styles. Metallomics 2020; 11:735-755. [PMID: 30734808 DOI: 10.1039/c8mt00372f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A group of bacteria known as rhizobia are key players in symbiotic nitrogen fixation (SNF) in partnership with legumes. After a molecular exchange, the bacteria end surrounded by a plant membrane forming symbiosomes, organelle-like structures, where they differentiate to bacteroids and fix nitrogen. This symbiotic process is highly dependent on dynamic nutrient exchanges between the partners. Among these are transition metals (TM) participating as inorganic and organic cofactors of fundamental enzymes. While the understanding of how plant transporters facilitate TMs to the very near environment of the bacteroid is expanding, our knowledge on how bacteroid transporters integrate to TM homeostasis mechanisms in the plant host is still limited. This is significantly relevant considering the low solubility and scarcity of TMs in soils, and the in crescendo gradient of TM bioavailability rhizobia faces during the infection and bacteroid differentiation processes. In the present work, we review the main metal transporter families found in rhizobia, their role in free-living conditions and, when known, in symbiosis. We focus on discussing those transporters which could play a significant role in TM-dependent biochemical and physiological processes in the bacteroid, thus paving the way towards an optimized SNF.
Collapse
Affiliation(s)
- Isidro Abreu
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | |
Collapse
|
10
|
Sharma A, Sharma D, Verma SK. Zinc binding proteome of a phytopathogen Xanthomonas translucens pv. undulosa. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190369. [PMID: 31598288 PMCID: PMC6774946 DOI: 10.1098/rsos.190369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/21/2019] [Indexed: 05/15/2023]
Abstract
Xanthomonas translucens pv. undulosa (Xtu) is a proteobacteria which causes bacterial leaf streak (BLS) or bacterial chaff disease in wheat and barley. The constant competition for zinc (Zn) metal nutrients contributes significantly in plant-pathogen interactions. In this study, we have employed a systematic in silico approach to study the Zn-binding proteins of Xtu. From the whole proteome of Xtu, we have identified approximately 7.9% of proteins having Zn-binding sequence and structural motifs. Further, 115 proteins were found homologous to plant-pathogen interaction database. Among these 115 proteins, 11 were predicted as putative secretory proteins. The functional diversity in Zn-binding proteins was revealed by functional domain, gene ontology and subcellular localization analysis. The roles of Zn-binding proteins were found to be varied in the range from metabolism, proteolysis, protein biosynthesis, transport, cell signalling, protein folding, transcription regulation, DNA repair, response to oxidative stress, RNA processing, antimicrobial resistance, DNA replication and DNA integration. This study provides preliminary information on putative Zn-binding proteins of Xtu which may further help in designing new metal-based antimicrobial agents for controlling BLS and bacterial chaff infections on staple crops.
Collapse
|
11
|
Fagorzi C, Checcucci A, diCenzo GC, Debiec-Andrzejewska K, Dziewit L, Pini F, Mengoni A. Harnessing Rhizobia to Improve Heavy-Metal Phytoremediation by Legumes. Genes (Basel) 2018; 9:genes9110542. [PMID: 30413093 PMCID: PMC6266702 DOI: 10.3390/genes9110542] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
Rhizobia are bacteria that can form symbiotic associations with plants of the Fabaceae family, during which they reduce atmospheric di-nitrogen to ammonia. The symbiosis between rhizobia and leguminous plants is a fundamental contributor to nitrogen cycling in natural and agricultural ecosystems. Rhizobial microsymbionts are a major reason why legumes can colonize marginal lands and nitrogen-deficient soils. Several leguminous species have been found in metal-contaminated areas, and they often harbor metal-tolerant rhizobia. In recent years, there have been numerous efforts and discoveries related to the genetic determinants of metal resistance by rhizobia, and on the effectiveness of such rhizobia to increase the metal tolerance of host plants. Here, we review the main findings on the metal resistance of rhizobia: the physiological role, evolution, and genetic determinants, and the potential to use native and genetically-manipulated rhizobia as inoculants for legumes in phytoremediation practices.
Collapse
Affiliation(s)
- Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| | - Alice Checcucci
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| | - George C diCenzo
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| | - Klaudia Debiec-Andrzejewska
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Francesco Pini
- Department of Agri-food Production and Environmental Science, University of Florence, 50144 Florence, Italy.
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
12
|
Li Z, Song X, Wang J, Bai X, Gao E, Wei G. Nickel and cobalt resistance properties of Sinorhizobium meliloti isolated from Medicago lupulina growing in gold mine tailing. PeerJ 2018; 6:e5202. [PMID: 30018859 PMCID: PMC6044271 DOI: 10.7717/peerj.5202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
Sinorhizobium meliloti CCNWSX0020, isolated from root nodules of Medicago lupulina growing in gold mine tailings in the northwest of China, displayed multiple heavy metal resistance and growth promotion of M. lupulina. In our previous work, the expression level of dmeR and dmeF genes were induced by Cu2+ through comparative transcriptome approach. Based on protein analysis, the dmeF encoded for a protein which showed a 37% similarity to the cation transporter DmeF of Cupriavidus metallidurans, whereas dmeR encoded transcriptional regulator which was highly homologous with DmeR belonging to RcnR/CsoR family metal-responsive transcriptional regulator. In addition to copper, quantitative real-time PCR analysis showed that dmeR and dmeF were also induced by nickel and cobalt. To investigate the functions of dmeR and dmeF in S. meliloti CCNWSX0020, the dmeR and dmeF deletion mutants were constructed. The dmeF mutant was more sensitive to Co2 + and Ni2 + than the wild type strain. Pot experiments were carried out to determine whether the growth of M. lupulina was affected when the dmeF gene was knocked out in the presence of nickel or cobalt. Results indicated that the nodule number of the host plant inoculated with the dmeF deletion mutant was significantly less than the S. meliloti CCNWSX0020 wild-type in the presence of Co2 + or Ni2 +. However, when standardized by nodule fresh weight, the nitrogenase activities of nodules infected by the dmeF deletion mutant was similar to nitrogenase activity of the wild type nodule.
Collapse
Affiliation(s)
- Zhefei Li
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shannxi, China
| | - Xiuyong Song
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shannxi, China
| | - Juanjuan Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shannxi, China
| | - Xiaoli Bai
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shannxi, China
| | - Engting Gao
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shannxi, China
| | - Gehong Wei
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shannxi, China.,Northwest A and F University, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil. Appl Environ Microbiol 2017; 83:AEM.01244-17. [PMID: 28778889 DOI: 10.1128/aem.01244-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/26/2017] [Indexed: 01/16/2023] Open
Abstract
The symbiosis of the highly metal-resistant Sinorhizobium meliloti CCNWSX0020 and Medicago lupulina has been considered an efficient tool for bioremediation of heavy metal-polluted soils. However, the metal resistance mechanisms of S. meliloti CCNWSX00200 have not been elucidated in detail. Here we employed a comparative transcriptome approach to analyze the defense mechanisms of S. meliloti CCNWSX00200 against Cu or Zn exposure. Six highly upregulated transcripts involved in Cu and Zn resistance were identified through deletion mutagenesis, including genes encoding a multicopper oxidase (CueO), an outer membrane protein (Omp), sulfite oxidoreductases (YedYZ), and three hypothetical proteins (a CusA-like protein, a FixH-like protein, and an unknown protein), and the corresponding mutant strains showed various degrees of sensitivity to multiple metals. The Cu-sensitive mutant (ΔcueO) and three mutants that were both Cu and Zn sensitive (ΔyedYZ, ΔcusA-like, and ΔfixH-like) were selected for further study of the effects of these metal resistance determinants on bioremediation. The results showed that inoculation with the ΔcueO mutant severely inhibited infection establishment and nodulation of M. lupulina under Cu stress, while inoculation with the ΔyedYZ and ΔfixH-like mutants decreased just the early infection frequency and nodulation under Cu and Zn stresses. In contrast, inoculation with the ΔcusA-like mutant almost led to loss of the symbiotic capacity of M. lupulina to even grow in uncontaminated soil. Moreover, the antioxidant enzyme activity and metal accumulation in roots of M. lupulina inoculated with all mutants were lower than those with the wild-type strain. These results suggest that heavy metal resistance determinants may promote bioremediation by directly or indirectly influencing formation of the rhizobium-legume symbiosis.IMPORTANCE Rhizobium-legume symbiosis has been promoted as an appropriate tool for bioremediation of heavy metal-contaminated soils. Considering the plant-growth-promoting traits and survival advantage of metal-resistant rhizobia in contaminated environments, more heavy metal-resistant rhizobia and genetically manipulated strains were investigated. In view of the genetic diversity of metal resistance determinants in rhizobia, their effects on phytoremediation by the rhizobium-legume symbiosis must be different and depend on their specific assigned functions. Our work provides a better understanding of the mechanism of heavy metal resistance determinants involved in the rhizobium-legume symbiosis, and in further studies, genetically modified rhizobia harboring effective heavy metal resistance determinants may be engineered for the practical application of rhizobium-legume symbiosis for bioremediation in metal-contaminated soils.
Collapse
|
14
|
Romaniuk K, Dziewit L, Decewicz P, Mielnicki S, Radlinska M, Drewniak L. Molecular characterization of the pSinB plasmid of the arsenite oxidizing, metallotolerant Sinorhizobium sp. M14 - insight into the heavy metal resistome of sinorhizobial extrachromosomal replicons. FEMS Microbiol Ecol 2017; 93:fiw215. [PMID: 27797963 DOI: 10.1093/femsec/fiw215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 11/13/2022] Open
Abstract
Sinorhizobium sp. M14 is an As(III)-oxidizing, psychrotolerant strain, capable of growth in the presence of extremely high concentrations of arsenic and many other heavy metals. Metallotolerant abilities of the M14 strain depend upon the presence of two extrachromosomal replicons: pSinA (∼ 109 kb) and pSinB (∼ 300 kb). The latter was subjected to complex analysis. The performed analysis demonstrated that the plasmid pSinB is a narrow-host-range repABC-type replicon, which is fully stabilized by the phd-vapC-like toxin-antitoxin stabilizing system. In silico analysis showed that among the phenotypic gene clusters of the plasmid pSinB, eight modules are potentially involved in heavy metals resistance (HMR). These modules carry genes encoding efflux pumps, permeases, transporters and copper oxidases, which provide resistance to arsenic, cadmium, cobalt, copper, iron, mercury, nickel, silver and zinc. The functional analysis revealed that the HMR modules are active and have an effect on the minimal inhibitory concentration (MIC) values observed for the heterological host cells. The phenotype was manifested by an increase or decrease of the MICs of heavy metals and it was strain specific. The analysis of distribution of the heavy metal resistance genes, i.e. resistome, in Sinorhizobium spp. plasmids, revealed that the HMR modules are common in these replicons.
Collapse
Affiliation(s)
- Krzysztof Romaniuk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Przemyslaw Decewicz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Sebastian Mielnicki
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Monika Radlinska
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Lukasz Drewniak
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|