1
|
Abbott J, Näthke IS. The adenomatous polyposis coli protein 30 years on. Semin Cell Dev Biol 2023:S1084-9521(23)00093-9. [PMID: 37095033 DOI: 10.1016/j.semcdb.2023.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
Mutations in the gene encoding the Adenomatous polyposis coli protein (APC) were discovered as driver mutations in colorectal cancers almost 30 years ago. Since then, the importance of APC in normal tissue homeostasis has been confirmed in a plethora of other (model) organisms spanning a large evolutionary space. APC is a multifunctional protein, with roles as a key scaffold protein in complexes involved in diverse signalling pathways, most prominently the Wnt signalling pathway. APC is also a cytoskeletal regulator with direct and indirect links to and impacts on all three major cytoskeletal networks. Correspondingly, a wide range of APC binding partners have been identified. Mutations in APC are extremely strongly associated with colorectal cancers, particularly those that result in the production of truncated proteins and the loss of significant regions from the remaining protein. Understanding the complement of its role in health and disease requires knowing the relationship between and regulation of its diverse functions and interactions. This in turn requires understanding its structural and biochemical features. Here we set out to provide a brief overview of the roles and function of APC and then explore its conservation and structure using the extensive sequence data, which is now available, and spans a broad range of taxonomy. This revealed conservation of APC across taxonomy and new relationships between different APC protein families.
Collapse
Affiliation(s)
- James Abbott
- Division of Computational Biology & D'Arcy Thompson Unit, University of Dundee, Dow Street, Dundee, DD2 1 EH, United Kingdom.
| | - Inke S Näthke
- Division of Molecular Cell and Developmental Biology, University of Dundee, Dow Street, Dundee DD2 1EH, United Kingdom.
| |
Collapse
|
2
|
Zhao C, Zhang X, Chen G, Shang L. Developing sensor materials for screening intestinal diseases. MATERIALS FUTURES 2022; 1:022401. [DOI: 10.1088/2752-5724/ac48a3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Intestinal diseases that have high mortality and morbidity rates and bring huge encumbrance to the public medical system and economy worldwide, have always been the focus of clinicians and scientific researchers. Early diagnosis and intervention are valuable in the progression of many intestinal diseases. Fortunately, the emergence of sensor materials can effectively assist clinical early diagnosis and health monitoring. By accurately locating the lesion and sensitively analyzing the level of disease markers, these sensor materials can help to precisely diagnose the stage and state of lesions, thereby avoiding delayed treatment. In this review, we provide comprehensive and in-depth knowledge of diagnosing and monitoring intestinal diseases with the assistance of sensor materials, particularly emphasizing their design and application in bioimaging and biodetection. This review is dedicated to conveying practical applications of sensor materials in the intestine, critical analysis of their mechanisms and applications and discussion of their future roles in medicine. We believe that this review will promote multidisciplinary communication between material science, medicine and relevant engineering fields, thus improving the clinical translation of sensor materials.
Collapse
|
3
|
Ultrasound mediated delivery of quantum dots from a proof of concept capsule endoscope to the gastrointestinal wall. Sci Rep 2021; 11:2584. [PMID: 33510366 PMCID: PMC7844260 DOI: 10.1038/s41598-021-82240-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Biologic drugs, defined as therapeutic agents produced from or containing components of a living organism, are of growing importance to the pharmaceutical industry. Though oral delivery of medicine is convenient, biologics require invasive injections because of their poor bioavailability via oral routes. Delivery of biologics to the small intestine using electronic delivery with devices that are similar to capsule endoscopes is a promising means of overcoming this limitation and does not require reformulation of the therapeutic agent. The efficacy of such capsule devices for drug delivery could be further improved by increasing the permeability of the intestinal tract lining with an integrated ultrasound transducer to increase uptake. This paper describes a novel proof of concept capsule device capable of electronic application of focused ultrasound and delivery of therapeutic agents. Fluorescent markers, which were chosen as a model drug, were used to demonstrate in vivo delivery in the porcine small intestine with this capsule. We show that the fluorescent markers can penetrate the mucus layer of the small intestine at low acoustic powers when combining microbubbles with focused ultrasound during in vivo experiments using porcine models. This study illustrates how such a device could be potentially used for gastrointestinal drug delivery and the challenges to be overcome before focused ultrasound and microbubbles could be used with this device for the oral delivery of biologic therapeutics.
Collapse
|
4
|
Yang S, Lemke C, Cox BF, Newton IP, Nathke I, Cochran S. A Learning-Based Microultrasound System for the Detection of Inflammation of the Gastrointestinal Tract. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:38-47. [PMID: 32881684 DOI: 10.1109/tmi.2020.3021560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Inflammation of the gastrointestinal (GI) tract accompanies several diseases, including Crohn's disease. Currently, video capsule endoscopy and deep bowel enteroscopy are the main means for direct visualisation of the bowel surface. However, the use of optical imaging limits visualisation to the luminal surface only, which makes early-stage diagnosis difficult. In this study, we propose a learning enabled microultrasound ( μ US) system that aims to classify inflamed and non-inflamed bowel tissues. μ US images of the caecum, small bowel and colon were obtained from mice treated with agents to induce inflammation. Those images were then used to train three deep learning networks and to provide a ground truth of inflammation status. The classification accuracy was evaluated using 10-fold evaluation and additional B-scan images. Our deep learning approach allowed robust differentiation between healthy tissue and tissue with early signs of inflammation that is not detectable by current endoscopic methods or by human inspection of the μ US images. The methods may be a foundation for future early GI disease diagnosis and enhanced management with computer-aided imaging.
Collapse
|
5
|
Norton JC, Slawinski PR, Lay HS, Martin JW, Cox BF, Cummins G, Desmulliez MP, Clutton RE, Obstein KL, Cochran S, Valdastri P. Intelligent magnetic manipulation for gastrointestinal ultrasound. Sci Robot 2019; 4:eaav7725. [PMID: 31380501 PMCID: PMC6677276 DOI: 10.1126/scirobotics.aav7725] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diagnostic endoscopy in the gastrointestinal tract has remained largely unchanged for decades and is limited to the visualization of the tissue surface, the collection of biopsy samples for diagnoses, and minor interventions such as clipping or tissue removal. In this work, we present the autonomous servoing of a magnetic capsule robot for in-situ, subsurface diagnostics of microanatomy. We investigated and showed the feasibility of closed-loop magnetic control using digitized microultrasound (μUS) feedback; this is crucial for obtaining robust imaging in an unknown and unconstrained environment. We demonstrated the functionality of an autonomous servoing algorithm that uses μUS feedback, both on benchtop trials as well as in-vivo in a porcine model. We have validated this magnetic-μUS servoing in instances of autonomous linear probe motion and were able to locate markers in an agar phantom with 1.0 ± 0.9 mm position accuracy using a fusion of robot localization and μUS image information. This work demonstrates the feasibility of closed-loop robotic μUS imaging in the bowel without the need for either a rigid physical link between the transducer and extracorporeal tools or complex manual manipulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Keith L. Obstein
- STORM Lab USA, Vanderbilt University, Nashville, USA
- Vanderbilt University Medical Center, Nashville, USA
| | - Sandy Cochran
- University of Glasgow, School of Mechanical Engineering, Glasgow, UK
| | | |
Collapse
|
6
|
Steiger C, Abramson A, Nadeau P, Chandrakasan AP, Langer R, Traverso G. Ingestible electronics for diagnostics and therapy. NATURE REVIEWS MATERIALS 2018; 4:83-98. [DOI: 10.1038/s41578-018-0070-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Lay HS, Cox BF, Seetohul V, Demore CEM, Cochran S. Design and Simulation of a Ring-Shaped Linear Array for Microultrasound Capsule Endoscopy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:589-599. [PMID: 29610089 DOI: 10.1109/tuffc.2018.2794220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Video capsule endoscopy (VCE) has significantly advanced visualization of the gastrointestinal tract since its introduction in the last 20 years. Work is now under way to combine VCE with microultrasound imaging. However, small maximum capsule dimensions, coupled with the electronics required to integrate ultrasound imaging capabilities, pose significant design challenges. This paper describes a simulation process for testing transducer geometries and imaging methodologies to achieve satisfactory imaging performance within the physical limitations of the capsule size and outlines many of the tradeoffs needed in the design of this new class of ultrasound capsule endoscopy (USCE) device. A hybrid MATLAB model is described, incorporating Krimholtz-Leedom-Matthaei circuit elements and digitizing and beamforming elements to render a gray-scale B-mode. This model is combined with a model of acoustic propagation to generate images of point scatterers. The models are used to demonstrate the performance of a USCE transducer configuration comprising a single, unfocused transmit ring of radius 5 mm separated into eight segments for electrical impedance control and a 512-element receive linear array, also formed into a ring. The MATLAB model includes an ultrasonic pulser circuit connected to a piezocrystal composite transmit transducer with a center frequency of 25 MHz. B-scan images are simulated for wire target phantoms, multilayered phantoms, and a gut wall model. To demonstrate the USCE system's ability to image tissue, a digital phantom was created from single-element ultrasonic transducer scans of porcine small bowel ex vivo obtained at a frequency of 45 MHz.
Collapse
|
8
|
Carroll TD, Langlands AJ, Osborne JM, Newton IP, Appleton PL, Näthke I. Interkinetic nuclear migration and basal tethering facilitates post-mitotic daughter separation in intestinal organoids. J Cell Sci 2017; 130:3862-3877. [PMID: 28982714 PMCID: PMC5702049 DOI: 10.1242/jcs.211656] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 01/08/2023] Open
Abstract
Homeostasis of renewing tissues requires balanced proliferation, differentiation and movement. This is particularly important in the intestinal epithelium where lineage tracing suggests that stochastic differentiation choices are intricately coupled to the position of a cell relative to a niche. To determine how position is achieved, we followed proliferating cells in intestinal organoids and discovered that the behaviour of mitotic sisters predicted long-term positioning. We found that, normally, 70% of sisters remain neighbours, while 30% lose contact and separate after cytokinesis. These post-mitotic placements predict longer term differences in positions assumed by sisters: adjacent sisters reach similar positions over time; in a pair of separating sisters, one remains close to its birthplace while the other is displaced upward. Computationally modelling crypt dynamics confirmed that post-mitotic separation leads to sisters reaching different compartments. We show that interkinetic nuclear migration, cell size and asymmetric tethering by a process extending from the basal side of cells contribute to separations. These processes are altered in adenomatous polyposis coli (Apc) mutant epithelia where separation is lost. We conclude that post-mitotic placement contributes to stochastic niche exit and, when defective, supports the clonal expansion of Apc mutant cells.
Collapse
Affiliation(s)
- Thomas D. Carroll
- Cell & Developmental Biology, University of Dundee, Dundee DD1 5EH, UK
| | | | - James M. Osborne
- School of Mathematics and Statistics, University of Melbourne, Melbourne 3010, Australia
| | - Ian P. Newton
- Cell & Developmental Biology, University of Dundee, Dundee DD1 5EH, UK
| | - Paul L. Appleton
- Dundee Imaging Facility, University of Dundee, Dundee DD1 5EH, UK
| | - Inke Näthke
- Cell & Developmental Biology, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
9
|
Stewart FR, Qiu Y, Lay HS, Newton IP, Cox BF, Al-Rawhani MA, Beeley J, Liu Y, Huang Z, Cumming DRS, Näthke I, Cochran S. Acoustic Sensing and Ultrasonic Drug Delivery in Multimodal Theranostic Capsule Endoscopy. SENSORS 2017; 17:s17071553. [PMID: 28671642 PMCID: PMC5539857 DOI: 10.3390/s17071553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022]
Abstract
Video capsule endoscopy (VCE) is now a clinically accepted diagnostic modality in which miniaturized technology, an on-board power supply and wireless telemetry stand as technological foundations for other capsule endoscopy (CE) devices. However, VCE does not provide therapeutic functionality, and research towards therapeutic CE (TCE) has been limited. In this paper, a route towards viable TCE is proposed, based on multiple CE devices including important acoustic sensing and drug delivery components. In this approach, an initial multimodal diagnostic device with high-frequency quantitative microultrasound that complements video imaging allows surface and subsurface visualization and computer-assisted diagnosis. Using focused ultrasound (US) to mark sites of pathology with exogenous fluorescent agents permits follow-up with another device to provide therapy. This is based on an US-mediated targeted drug delivery system with fluorescence imaging guidance. An additional device may then be utilized for treatment verification and monitoring, exploiting the minimally invasive nature of CE. While such a theranostic patient pathway for gastrointestinal treatment is presently incomplete, the description in this paper of previous research and work under way to realize further components for the proposed pathway suggests it is feasible and provides a framework around which to structure further work.
Collapse
Affiliation(s)
- Fraser R Stewart
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | - Yongqiang Qiu
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Holly S Lay
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Ian P Newton
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | - Benjamin F Cox
- School of Medicine, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| | | | - James Beeley
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Yangminghao Liu
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK.
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK.
| | - David R S Cumming
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Inke Näthke
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | - Sandy Cochran
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
10
|
Cox BF, Stewart F, Lay H, Cummins G, Newton IP, Desmulliez MPY, Steele RJC, Näthke I, Cochran S. Ultrasound capsule endoscopy: sounding out the future. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:201. [PMID: 28567381 DOI: 10.21037/atm.2017.04.21] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Video capsule endoscopy (VCE) has been of immense benefit in the diagnosis and management of gastrointestinal (GI) disorders since its introduction in 2001. However, it suffers from a number of well recognized deficiencies. Amongst these is the limited capability of white light imaging, which is restricted to analysis of the mucosal surface. Current capsule endoscopes are dependent on visual manifestation of disease and limited in regards to transmural imaging and detection of deeper pathology. Ultrasound capsule endoscopy (USCE) has the potential to overcome surface only imaging and provide transmural scans of the GI tract. The integration of high frequency microultrasound (µUS) into capsule endoscopy would allow high resolution transmural images and provide a means of both qualitative and quantitative assessment of the bowel wall. Quantitative ultrasound (QUS) can provide data in an objective and measurable manner, potentially reducing lengthy interpretation times by incorporation into an automated diagnostic process. The research described here is focused on the development of USCE and other complementary diagnostic and therapeutic modalities. Presently investigations have entered a preclinical phase with laboratory investigations running concurrently.
Collapse
Affiliation(s)
- Benjamin F Cox
- School of Medicine, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Fraser Stewart
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Holly Lay
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Gerard Cummins
- School of Engineering & Physical Sciences, Heriot-Watt University, Scotland EH14 4AS, UK
| | - Ian P Newton
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Marc P Y Desmulliez
- School of Engineering & Physical Sciences, Heriot-Watt University, Scotland EH14 4AS, UK
| | - Robert J C Steele
- School of Medicine, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Inke Näthke
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Sandy Cochran
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| |
Collapse
|