1
|
Yedla P, Bhamidipati P, Syed R, Amanchy R. Working title: Molecular involvement of p53-MDM2 interactome in gastrointestinal cancers. Cell Biochem Funct 2024; 42:e4075. [PMID: 38924101 DOI: 10.1002/cbf.4075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
The interaction between murine double minute 2 (MDM2) and p53, marked by transcriptional induction and feedback inhibition, orchestrates a functional loop dictating cellular fate. The functional loop comprising p53-MDM2 axis is made up of an interactome consisting of approximately 81 proteins, which are spatio-temporally regulated and involved in DNA repair mechanisms. Biochemical and genetic alterations of the interactome result in dysregulation of the p53-mdm2 axis that leads to gastrointestinal (GI) cancers. A large subset of interactome is well known and it consists of proteins that either stabilize p53 or MDM2 and proteins that target the p53-MDM2 complex for ubiquitin-mediated destruction. Upstream signaling events brought about by growth factors and chemical messengers invoke a wide variety of posttranslational modifications in p53-MDM2 axis. Biochemical changes in the transactivation domain of p53 impact the energy landscape, induce conformational switching, alter interaction potential and could change solubility of p53 to redefine its co-localization, translocation and activity. A diverse set of chemical compounds mimic physiological effectors and simulate biochemical modifications of the p53-MDM2 interactome. p53-MDM2 interactome plays a crucial role in DNA damage and repair process. Genetic aberrations in the interactome, have resulted in cancers of GI tract (pancreas, liver, colorectal, gastric, biliary, and esophageal). We present in this article a review of the overall changes in the p53-MDM2 interactors and the effectors that form an epicenter for the development of next-generation molecules for understanding and targeting GI cancers.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Hyderabad, Telangana, India
| | - Pranav Bhamidipati
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Life Sciences, Imperial College London, London, UK
| | - Riyaz Syed
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| | - Ramars Amanchy
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| |
Collapse
|
2
|
Brás JP, Jesus TT, Prazeres H, Lima J, Soares P, Vinagre J. TERTmonitor-qPCR Detection of TERTp Mutations in Glioma. Genes (Basel) 2023; 14:1693. [PMID: 37761833 PMCID: PMC10530400 DOI: 10.3390/genes14091693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Telomerase promoter (TERTp) mutations are frequently observed in various types of tumours and commonly characterised by two specific hotspots located at positions -124 and -146 upstream of the start codon. They enhance TERTp activity, resulting in increased TERT expression. In central nervous system (CNS) tumours, they are integrated as biomarkers, aiding in the diagnosis and with a role in prognosis, where, in some settings, they are associated with aggressive behaviour. In this study, we evaluated the performance of TERTmonitor for TERTp genotyping in a series of 185 gliomas in comparison to the traditional method, Sanger sequencing. Against the gold-standard Sanger method, TERTmonitor performed with a 97.8% accuracy. Inaccuracy was mainly due to the over-detection of variants in negative cases (by Sanger) and the presence of variants that can modify the chemistry of the probe detection. The distribution of the mutations was comparable to other series, with the -124 being the most represented (38.92% for Sanger and TERTmonitor) and more prevalent in the higher-grade tumours, gliosarcoma (50.00%) and glioblastoma (52.6%). The non-matched cases are debatable, as we may be dealing with the reduced sensitivity of Sanger in detecting rare alleles, which strengthens the use of the TERTmonitor. With this study, we present a reliable and rapid potential tool for TERTp genotyping in gliomas.
Collapse
Affiliation(s)
- João Paulo Brás
- U-Monitor Lda, 4200-135 Porto, Portugal; (J.P.B.); (H.P.); (P.S.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
| | - Tito Teles Jesus
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
| | - Hugo Prazeres
- U-Monitor Lda, 4200-135 Porto, Portugal; (J.P.B.); (H.P.); (P.S.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
| | - Jorge Lima
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
- Instituto de Patologia e Imunologia Molecular, Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
| | - Paula Soares
- U-Monitor Lda, 4200-135 Porto, Portugal; (J.P.B.); (H.P.); (P.S.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
- Instituto de Patologia e Imunologia Molecular, Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Medicina, Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - João Vinagre
- U-Monitor Lda, 4200-135 Porto, Portugal; (J.P.B.); (H.P.); (P.S.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
- Instituto de Patologia e Imunologia Molecular, Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Medicina, Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| |
Collapse
|
3
|
Gregório C, Thakur S, Camara Rivero R, Márcia Dos Santos Machado S, Cuenin C, Carreira C, White V, Cree IA, Vukojevic K, Glavina Durdov M, Bersch Osvaldt A, Ashton-Prolla P, Herceg Z, Talukdar FR. Telomere length assessment and molecular characterization of TERT gene promoter in periampullary carcinomas. Gene 2023; 873:147460. [PMID: 37150235 DOI: 10.1016/j.gene.2023.147460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Genetic and epigenetic alterations of the telomere maintenance machinery like telomere length and telomerase reverse transcriptase (encoded by TERT gene) are reported in several human malignancies. However, there is limited knowledge on the status of the telomere machinery in periampullary carcinomas (PAC) which are rare and heterogeneous groups of cancers arising from different anatomic sites around the ampulla of Vater. In the current study, we investigated the relative telomere length (RTL) and the most frequent genetic and epigenetic alterations in the TERT promoter in PAC and compared it with tumor-adjacent nonpathological duodenum (NDu). We found shorter RTLs (1.27 vs 1.33, P = 0.01) and lower TERT protein expression (p = 0.04) in PAC tissues as compared to the NDu. Although we did not find any mutation at two reactivating hotspot mutation sites of the TERT promoter, we detected polymorphism in 45% (9/20) of the cases at rs2853669 (T > C). Also, we found a hypermethylated region in the TERT promoter of PACs consisting of four CpGs (cg10896616 with Δβ 7%; cg02545192 with Δβ 9%; cg03323598 with Δβ 19%; and cg07285213 with Δβ 15%). In conclusion, we identified shorter telomeres with DNA hypermethylation in the TERT promoter region and lower TERT protein expression in PAC tissues. These results could be used further to investigate molecular pathology and develop theranostics for PAC.
Collapse
Affiliation(s)
- Cleandra Gregório
- Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Laboratório de Medicina Genômica, Centro de Pesquisa Experimental - Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Shefali Thakur
- International Agency for Research on Cancer, Lyon, France; Faculty of Science, Charles University, Prague, Czech Republic
| | - Raquel Camara Rivero
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Serviço de Patologia- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Simone Márcia Dos Santos Machado
- Grupo de Vias Biliares e Pâncreas - Cirurgia do Aparelho Digestivo, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cyrille Cuenin
- International Agency for Research on Cancer, Lyon, France
| | | | - Valerie White
- International Agency for Research on Cancer, Lyon, France
| | - Ian A Cree
- International Agency for Research on Cancer, Lyon, France
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| | | | - Alessandro Bersch Osvaldt
- Serviço de Patologia- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-graduação em Medicina: Ciências Cirúrgicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patricia Ashton-Prolla
- Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Laboratório de Medicina Genômica, Centro de Pesquisa Experimental - Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Serviço de Patologia- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Zdenko Herceg
- International Agency for Research on Cancer, Lyon, France
| | | |
Collapse
|
4
|
Kang SY, Kim DG, Kim H, Cho YA, Ha SY, Kwon GY, Jang KT, Kim KM. Direct comparison of the next-generation sequencing and iTERT PCR methods for the diagnosis of TERT hotspot mutations in advanced solid cancers. BMC Med Genomics 2022; 15:25. [PMID: 35135543 PMCID: PMC8827275 DOI: 10.1186/s12920-022-01175-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/02/2022] [Indexed: 01/12/2023] Open
Abstract
Background Mutations in the telomerase reverse transcriptase (TERT) promoter region have been proposed as novel mechanisms for the transcriptional activation of telomerase. Two recurrent mutations in the TERT promoter, C228T and C250T, are prognostic biomarkers. Herein, we directly compared the commercially available iTERT PCR kit with NGS-based deep sequencing to validate the NGS results and determine the analytical sensitivity of the PCR kit.
Methods Of the 2032 advanced solid tumors diagnosed using the TruSight Oncology 500 NGS test, mutations in the TERT promoter region were detected in 103 cases, with 79 cases of C228T, 22 cases of C250T, and 2 cases of C228A hotspot mutations. TERT promoter mutations were detected from 31 urinary bladder, 19 pancreato-biliary, 22 hepatic, 12 malignant melanoma, and 12 other tumor samples. Results In all 103 TERT-mutated cases detected using NGS, the same DNA samples were also tested with the iTERT PCR/Sanger sequencing. PCR successfully verified the presence of the same mutations in all cases with 100% agreement. The average read depth of the TERT promoter region was 320.4, which was significantly lower than that of the other genes (mean, 743.5). Interestingly, NGS read depth was significantly higher at C250 compared to C228 (p < 0.001). Conclusions The NGS test results were validated by a PCR test and iTERT PCR/Sanger sequencing is sensitive for the identification of the TERT promoter mutations.
Collapse
Affiliation(s)
- So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Deok Geun Kim
- Department of Clinical Genomic Center, Samsung Medical Center, Seoul, Korea.,Department of Digital Health, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Hyunjin Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea.,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - Yoon Ah Cho
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Ghee Young Kwon
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea.
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea. .,Department of Clinical Genomic Center, Samsung Medical Center, Seoul, Korea. .,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Posch A, Hofer-Zeni S, Klieser E, Primavesi F, Naderlinger E, Brandstetter A, Filipits M, Urbas R, Swiercynski S, Jäger T, Winkelmann P, Kiesslich T, Lu L, Neureiter D, Stättner S, Holzmann K. Hot Spot TERT Promoter Mutations Are Rare in Sporadic Pancreatic Neuroendocrine Neoplasms and Associated with Telomere Length and Epigenetic Expression Patterns. Cancers (Basel) 2020; 12:cancers12061625. [PMID: 32575418 PMCID: PMC7352723 DOI: 10.3390/cancers12061625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer cells activate a telomere maintenance mechanism like telomerase in order to proliferate indefinitely. Telomerase can be reactivated by gain-of-function Telomerase Reverse Transcriptase (TERT) promoter mutations (TPMs) that occur in several cancer subtypes with high incidence and association with diagnosis, prognosis and epigenetics. However, such information about TPMs in sporadic pancreatic neuroendocrine neoplasms (pNENs) including tumor (pNET) and carcinoma (pNEC) is less well defined. We have studied two hot spot TPMs and telomere length (TL) in pNEN and compared the results with clinicopathological information and proliferation-associated miRNA/HDAC expression profiles. DNA was isolated from formalin-fixed paraffin-embedded (FFPE) tissue of 58 sporadic pNEN patients. T allele frequency of C250T and C228T TPM was analyzed by pyrosequencing, relative TL as telomeric content by qPCR. In total, five pNEN cases (9%) including four pNETs and one pNEC were identified with TPMs, four cases with exclusive C250T as predominant TPM and one case with both C250T and C228T. T allele frequencies of DNA isolated from adjacent high tumor cell content FFPE tissue varied considerably, which may indicate TPM tumor heterogeneity. Overall and disease-free survival was not associated with TPM versus wild-type pNEN cases. Binary category analyses indicated a marginally significant relationship between TPM status and longer telomeres (p = 0.086), and changes in expression of miR449a (p = 0.157), HDAC4 (p = 0.146) and HDAC9 (p = 0.149). Future studies with larger patient cohorts are needed to assess the true clinical value of these rare mutations in pNEN.
Collapse
Affiliation(s)
- Alexandra Posch
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (A.P.); (S.H.-Z.); (E.N.); (A.B.); (M.F.)
| | - Sarah Hofer-Zeni
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (A.P.); (S.H.-Z.); (E.N.); (A.B.); (M.F.)
| | - Eckhard Klieser
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria; (E.K.); (P.W.); (D.N.)
| | - Florian Primavesi
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (F.P.); (S.S.)
| | - Elisabeth Naderlinger
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (A.P.); (S.H.-Z.); (E.N.); (A.B.); (M.F.)
| | - Anita Brandstetter
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (A.P.); (S.H.-Z.); (E.N.); (A.B.); (M.F.)
| | - Martin Filipits
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (A.P.); (S.H.-Z.); (E.N.); (A.B.); (M.F.)
| | - Romana Urbas
- Regional Medical Directorate of the Province of Salzburg, Office of the Salzburg Provincial Government, Sebastian-Stief-Gasse 2, 5020 Salzburg, Austria;
| | - Stefan Swiercynski
- Department of Surgery, Paracelsus Medical University, Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria; (S.S.); (T.J.)
| | - Tarkan Jäger
- Department of Surgery, Paracelsus Medical University, Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria; (S.S.); (T.J.)
| | - Paul Winkelmann
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria; (E.K.); (P.W.); (D.N.)
| | - Tobias Kiesslich
- Department of Internal Medicine I & Institute of Physiology and Pathophysiology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria;
| | - Lingeng Lu
- Yale Department of Chronic Disease Epidemiology, School of Public Health, School of Medicine, Yale Cancer Center, Yale University, New Haven, CT 06520-8034, USA;
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria; (E.K.); (P.W.); (D.N.)
| | - Stefan Stättner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (F.P.); (S.S.)
- Department of Surgery, Salzkammergutkliniken, 4840 Vöcklabruck, Austria
| | - Klaus Holzmann
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (A.P.); (S.H.-Z.); (E.N.); (A.B.); (M.F.)
- Correspondence: ; Tel.: +43-1-40160-57530; Fax: +43-1-40160-957500
| |
Collapse
|
6
|
Fotouhi O, Ghaderi M, Wang N, Zedenius J, Kjellman M, Xu D, Juhlin CC, Larsson C. Telomerase activation in small intestinal neuroendocrine tumours is associated with aberrant TERT promoter methylation, but not hot-spot mutations. Epigenetics 2019; 14:1224-1233. [PMID: 31322481 DOI: 10.1080/15592294.2019.1634987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Telomere maintenance is a critical requirement for enabling replicative immortality and tumour development. Here, telomerase expression and activity, telomere length (TL) and potential regulatory factors that can underlie telomerase machinery alterations in small intestinal neuroendocrine tumours (SI-NETs) were analyzed. Telomerase activity assessed by TRAP assay was increased in SI-NETs compared to normal ileum (P < 0.001). The telomerase reverse transcriptase gene (TERT) was over-expressed in SI-NETs vs. normal ileal samples (P = 0.01). Furthermore, relative TL assessed by qPCR was found shorter in tumours compared with normal ileum (P = 0.02) and in distant metastasis samples compared to primary tumours and local metastases (P= 0.02). TERT promoter hotspot mutations were not present and TERT copy number gain was only observed in 3/70 tumour samples. TERT or chromosome 18 copy number alterations were not associated with telomerase expression and activity or TL. However, hypermethylation of TERT promoter in Region B - in the proximity of the transcription start site - was inversely correlated with TERT expression and telomerase activity and positively correlated with TL. Global LINE1 methylation was positively correlated with TERT promoter Region B methylation and was inversely correlated with telomerase activity, TERT expression and the upstream Region A methylation. The results show that telomerase activation, TERT expression and shorter telomeres are commonly found in SI-NETs. Aberrant DNA methylation of TERT promoter and of LINE1 can be implicated in abnormal regulation of TERT in SI-NETs.
Collapse
Affiliation(s)
- Omid Fotouhi
- Department of Oncology-Pathology, Karolinska Institutet , Stockholm , Sweden
| | - Mehran Ghaderi
- Department of Oncology-Pathology, Karolinska Institutet , Stockholm , Sweden
| | - Na Wang
- Department of Oncology-Pathology, Karolinska Institutet , Stockholm , Sweden.,Cancer Center Karolinska,CCK
| | - Jan Zedenius
- Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden.,Department of Breast, Endocrine Tumours and Sarcoma, Karolinska University Hospital , Stockholm , Sweden
| | - Magnus Kjellman
- Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden.,Department of Breast, Endocrine Tumours and Sarcoma, Karolinska University Hospital , Stockholm , Sweden
| | - Dawei Xu
- Department of Medicine, Division of Hematology (D.X.), Karolinska University Hospital , Stockholm , Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet , Stockholm , Sweden.,Cancer Center Karolinska,CCK
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet , Stockholm , Sweden.,Cancer Center Karolinska,CCK
| |
Collapse
|
7
|
Stögbauer L, Stummer W, Senner V, Brokinkel B. Telomerase activity, TERT expression, hTERT promoter alterations, and alternative lengthening of the telomeres (ALT) in meningiomas – a systematic review. Neurosurg Rev 2019; 43:903-910. [DOI: 10.1007/s10143-019-01087-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
|
8
|
Mungamuri SK. Targeting the epigenome as a therapeutic strategy for pancreatic tumors. THERANOSTIC APPROACH FOR PANCREATIC CANCER 2019:211-244. [DOI: 10.1016/b978-0-12-819457-7.00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
9
|
Gaspar TB, Sá A, Lopes JM, Sobrinho-Simões M, Soares P, Vinagre J. Telomere Maintenance Mechanisms in Cancer. Genes (Basel) 2018; 9:E241. [PMID: 29751586 PMCID: PMC5977181 DOI: 10.3390/genes9050241] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Tumour cells can adopt telomere maintenance mechanisms (TMMs) to avoid telomere shortening, an inevitable process due to successive cell divisions. In most tumour cells, telomere length (TL) is maintained by reactivation of telomerase, while a small part acquires immortality through the telomerase-independent alternative lengthening of telomeres (ALT) mechanism. In the last years, a great amount of data was generated, and different TMMs were reported and explained in detail, benefiting from genome-scale studies of major importance. In this review, we address seven different TMMs in tumour cells: mutations of the TERT promoter (TERTp), amplification of the genes TERT and TERC, polymorphic variants of the TERT gene and of its promoter, rearrangements of the TERT gene, epigenetic changes, ALT, and non-defined TMM (NDTMM). We gathered information from over fifty thousand patients reported in 288 papers in the last years. This wide data collection enabled us to portray, by organ/system and histotypes, the prevalence of TERTp mutations, TERT and TERC amplifications, and ALT in human tumours. Based on this information, we discuss the putative future clinical impact of the aforementioned mechanisms on the malignant transformation process in different setups, and provide insights for screening, prognosis, and patient management stratification.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - Ana Sá
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - José Manuel Lopes
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Department of Pathology and Oncology, Centro Hospitalar São João, 4200-139 Porto, Portugal.
| | - Manuel Sobrinho-Simões
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Department of Pathology and Oncology, Centro Hospitalar São João, 4200-139 Porto, Portugal.
| | - Paula Soares
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - João Vinagre
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
| |
Collapse
|
10
|
Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Biomedicines 2017; 5:biomedicines5040065. [PMID: 29156578 PMCID: PMC5744089 DOI: 10.3390/biomedicines5040065] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death and is the most lethal of common malignancies with a five-year survival rate of <10%. PDAC arises from different types of non-invasive precursor lesions: intraductal papillary mucinous neoplasms, mucinous cystic neoplasms and pancreatic intraepithelial neoplasia. The genetic landscape of PDAC is characterized by the presence of four frequently-mutated genes: KRAS, CDKN2A, TP53 and SMAD4. The development of mouse models of PDAC has greatly contributed to the understanding of the molecular and cellular mechanisms through which driver genes contribute to pancreatic cancer development. Particularly, oncogenic KRAS-driven genetically-engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer have clarified the mechanisms through which various mutated genes act in neoplasia induction and progression and have led to identifying the possible cellular origin of these neoplasias. Patient-derived xenografts are increasingly used for preclinical studies and for the development of personalized medicine strategies. The studies of the purification and characterization of pancreatic cancer stem cells have suggested that a minority cell population is responsible for initiation and maintenance of pancreatic adenocarcinomas. The study of these cells could contribute to the identification and clinical development of more efficacious drug treatments.
Collapse
|
11
|
Di Domenico A, Wiedmer T, Marinoni I, Perren A. Genetic and epigenetic drivers of neuroendocrine tumours (NET). Endocr Relat Cancer 2017; 24:R315-R334. [PMID: 28710117 DOI: 10.1530/erc-17-0012] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022]
Abstract
Neuroendocrine tumours (NET) of the gastrointestinal tract and the lung are a rare and heterogeneous group of tumours. The molecular characterization and the clinical classification of these tumours have been evolving slowly and show differences according to organs of origin. Novel technologies such as next-generation sequencing revealed new molecular aspects of NET over the last years. Notably, whole-exome/genome sequencing (WES/WGS) approaches underlined the very low mutation rate of well-differentiated NET of all organs compared to other malignancies, while the engagement of epigenetic changes in driving NET evolution is emerging. Indeed, mutations in genes encoding for proteins directly involved in chromatin remodelling, such as DAXX and ATRX are a frequent event in NET. Epigenetic changes are reversible and targetable; therefore, an attractive target for treatment. The discovery of the mechanisms underlying the epigenetic changes and the implication on gene and miRNA expression in the different subgroups of NET may represent a crucial change in the diagnosis of this disease, reveal new therapy targets and identify predictive markers. Molecular profiles derived from omics data including DNA mutation, methylation, gene and miRNA expression have already shown promising results in distinguishing clinically and molecularly different subtypes of NET. In this review, we recapitulate the major genetic and epigenetic characteristics of pancreatic, lung and small intestinal NET and the affected pathways. We also discuss potential epigenetic mechanisms leading to NET development.
Collapse
Affiliation(s)
- Annunziata Di Domenico
- Institute of PathologyUniversity of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of Bern, Bern, Switzerland
| | - Tabea Wiedmer
- Institute of PathologyUniversity of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of Bern, Bern, Switzerland
| | | | - Aurel Perren
- Institute of PathologyUniversity of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Lopes JM. Neuroendocrine neoplasms: a brief overview emphasizing gastroenteropancreatic tumors. AUTOPSY AND CASE REPORTS 2017; 7:1-4. [PMID: 28536679 PMCID: PMC5436913 DOI: 10.4322/acr.2017.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- José Manuel Lopes
- Department of Pathology - Faculty of Medicine - University of Porto, Porto - Portugal.,Department of Pathology - Centro Hospitalar São João, Porto - Portugal.,Institute of Pathology and Immunology - University of Porto, Porto - Portugal.,Institute of Health Investigation and Innovation - University of Porto, Porto - Portugal
| |
Collapse
|
13
|
Amorim JP, Santos G, Vinagre J, Soares P. The Role of ATRX in the Alternative Lengthening of Telomeres (ALT) Phenotype. Genes (Basel) 2016; 7:E66. [PMID: 27657132 PMCID: PMC5042396 DOI: 10.3390/genes7090066] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022] Open
Abstract
Telomeres are responsible for protecting chromosome ends in order to prevent the loss of coding DNA. Their maintenance is required for achieving immortality by neoplastic cells and can occur by upregulation of the telomerase enzyme or through a homologous recombination-associated process, the alternative lengthening of telomeres (ALT). The precise mechanisms that govern the activation of ALT or telomerase in tumor cells are not fully understood, although cellular origin may favor one of the other mechanisms that have been found thus far in mutual exclusivity. Specific mutational events influence ALT activation and maintenance: a unifying frequent feature of tumors that acquire this phenotype are the recurrent mutations of the Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) or Death-Domain Associated Protein (DAXX) genes. This review summarizes the established criteria about this phenotype: its prevalence, theoretical molecular mechanisms and relation with ATRX, DAXX and other proteins (directly or indirectly interacting and resulting in the ALT phenotype).
Collapse
Affiliation(s)
- João P Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto 4200-135, Portugal.
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto 4050-313, Portugal.
| | - Gustavo Santos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto 4200-135, Portugal.
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto 4050-313, Portugal.
| | - João Vinagre
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto 4200-135, Portugal.
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto 4050-313, Portugal.
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto 4200-135, Portugal.
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto 4050-313, Portugal.
- Departamento de Patologia e Oncologia, Faculdade de Medicina da Universidade do Porto, Porto 4200-139, Portugal.
| |
Collapse
|