1
|
Ren L, Jiang C, Zhang Y, Li M, Zhang Y, Shi X, Wang Q, Zhang S, Song X. Construction of a Near-Infrared Photoswitched Nanomachine Powered by an Endogenous Trigger for Activatable Imaging of Intracellular MicroRNA and Amplified Photodynamic Therapy for Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38044636 DOI: 10.1021/acsami.3c14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
DNA nanomachines could initiate the cascade reaction in an autonomous mode under the drive of triggers, which achieve the signal amplification for the bioimaging of intracellular biomarkers. Compared with the "always-on" nanomachine that possibly produces false-positive signals, a controllable nanomachine with the on-site activation could be better for accurate tumor imaging and precise tumor therapy. Till now, the endogenous and exogenous triggers have been developed to design the controllable nanosensors. However, their combinations to develop feasible DNA nanomachines have been rarely studied. Herein, we constructed a near-infrared (NIR)-light-controlled DNA nanomachine that was first activated by the NIR light and then induced a target-triggered amplification process under the drive of an endogenous stimulus. Owing to adenosine-5'-triphosphate (ATP) having much higher concentration in cancer cells than that in healthy cells and the extracellular fluid, the obtained DNA nanomachine was selectively activated in cancer cells with inhibited interference signals from the surrounding healthy tissues. With obvious advantages including the exogenous NIR light initiation, the selective activation by the target microRNA, and the sensitive acceleration by the ATP-induced strand recycling reaction, the constructed nanomachine could be used to image the intracellular microRNA with increased sensitivity. Besides, after modifying the DNA sequence with the photosensitizer molecules, the obtained nanomachine could perform the selective photodynamic therapy on the tumor sections with the outstandingly decreased side effects. Thus, we hope the designed nanomachine could provide some important hints to design feasible nanomachines for accurate tumor diagnosis and precise tumor therapy.
Collapse
Affiliation(s)
- Linlin Ren
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Chengfang Jiang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Yuqi Zhang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Mengmeng Li
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Xinli Shi
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Qi Wang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, P. R. China
| | - Xinyue Song
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
2
|
Lim S, Park J, Chong S, Kim S, Choi Y, Nam SH, Lee Y. Effective cell penetration of negatively‐charged proline‐rich
SAP(E)
peptides with cysteine mutation. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sewon Lim
- Department of Chemistry Seoul National University Seoul Republic of Korea
| | - Jinhyuk Park
- Department of Chemistry Seoul National University Seoul Republic of Korea
| | - Seung‐Eun Chong
- Department of Chemistry Seoul National University Seoul Republic of Korea
| | - Sungwhan Kim
- Department of Chemistry Seoul National University Seoul Republic of Korea
| | - Yoonhwa Choi
- Department of Chemistry and Education Seoul National University Seoul Republic of Korea
| | - So Hee Nam
- College of Pharmacy, Dongduk Women's University Seoul Republic of Korea
| | - Yan Lee
- Department of Chemistry Seoul National University Seoul Republic of Korea
| |
Collapse
|
3
|
Ning Q, Chen Q, Huang Y, Wang Y, Wang Y, Liu Z. Development of a Hg2+-Stabilized Double-Stranded DNA Probe for Low-Cost Visual Detection of Glutathione in Food Based on G-Quadruplex/hemin DNAzymes. JOURNAL OF ANALYTICAL CHEMISTRY 2022; 77:1517-1525. [DOI: 10.1134/s1061934822120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 05/14/2025]
|
4
|
Chen Y, Gong X, Gao Y, Shang Y, Shang J, Yu S, Li R, He S, Liu X, Wang F. Bioorthogonal regulation of DNA circuits for smart intracellular microRNA imaging. Chem Sci 2021; 12:15710-15718. [PMID: 35003602 PMCID: PMC8654030 DOI: 10.1039/d1sc05214d] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Catalytic DNA circuits represent a versatile toolbox for tracking intracellular biomarkers yet are constrained with low anti-interference capacity originating from their severe off-site activation. Herein, by introducing an unprecedented endogenous DNA repairing enzyme-powered pre-selection strategy, we develop a sequential and specific on-site activated catalytic DNA circuit for achieving the cancer cell-selective imaging of microRNA with high anti-interference capacity. Initially, the circuitry reactant is firmly caged by an elongated stabilizing duplex segment with a recognition/cleavage site of a cell-specific DNA repairing enzyme, which can prevent undesired signal leakage prior to its exposure to target cells. Then, the intrinsic DNA repairing enzyme of target cells can liberate the DNA probe for efficient intracellular microRNA imaging via the multiply guaranteed molecular recognition/activation procedures. This bioorthogonal regulated DNA circuit presents a modular and programmable amplification strategy for highly reliable assays of intracellular biomarkers, and provides a pivotal molecular toolbox for living systems. An on-site bioorthogonal regulated DNA circuit was developed by introducing an endogenous DNA repairing enzyme-mediated sequential activation strategy to achieve cancer cell-selective microRNA imaging with high anti-interference ability.![]()
Collapse
Affiliation(s)
- Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xue Gong
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yuhui Gao
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yu Shang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Shanshan Yu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Ruomeng Li
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China.,Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China.,Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| |
Collapse
|
5
|
Upadhyay A, Kumar Jha R, Batabyal M, Dutta T, Koner AL, Kumar S. Janus -faced oxidant and antioxidant profiles of organo diselenides. Dalton Trans 2021; 50:14576-14594. [PMID: 34590653 DOI: 10.1039/d1dt01565f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To date, organoseleniums are pre-eminent for peroxide decomposition and radical quenching antioxidant activities. On the contrary, here, a series of Janus-faced aminophenolic diselenides have been prepared from substituted 2-iodoaniline and selenium powder using copper-catalyzed methodology. Subsequently, condensation with substituted salicylaldehyde afforded the Schiff base, which on reduction, yielded the desired substituted aminophenolic diselenides in 72%-88% yields. The generation of reactive oxygen species (ROS) from oxygen gas by the synthesized aminophenolic diselenides was studied by analyzing the oxidation of dichlorofluorescein diacetate (DCFDA) dye and para-nitro-thiophenol by fluorescence and UV-Visible spectroscopic methods. Furthermore, density functional theory calculations and crystal structure analysis revealed the role of functional amine and hydroxyl sites present in the Janus-faced organoselenium catalyst for the activation of molecular oxygen, where NH and phenolic groups bring the oxygen molecule close to the catalyst by N-H⋯O and O-H⋯O intermolecular interactions. Additionally, these functionalities stabilize the selenium-centered radical in the formed transition states. Antioxidant activities of the synthesized diselenides have been explored as the catalyst for the decomposition of hydrogen peroxide using benzenethiol sacrificial co-reductant by a well-established thiol assay. Radical quenching antioxidant activity was studied by the quenching of DPPH radicals at 516 nm by UV-Visible spectroscopy. The structure activity correlation suggests that the electron-rich phenol and electron-rich and sterically hindered selenium center enhance the oxidizing property of the aminophenolic diselenides. Janus-faced diselenides were also evaluated for their cytotoxic effect on HeLa cancer cells via MTT assay, which suggests that the compounds are effective at 15-18 μM concentration against cancer cells. Moreover, the combination with therapeutic anticancer drugs Erlotinib and Doxorubicin showed promising cytotoxicity at the nanomolar concentration (8-28 nM), which is sufficient to suppress the growth of the cancer cells.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Tanoy Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
6
|
Zhang G, Xiang M, Kong RM, Qu F. Fluorescent and colorimetric determination of glutathione based on the inner filter effect between silica nanoparticle-gold nanocluster nanocomposites and oxidized 3,3',5,5'-tetramethylbenzidine. Analyst 2021; 145:6254-6261. [PMID: 32985630 DOI: 10.1039/d0an01392g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Determination of glutathione (GSH) is closely related to the clinical diagnosis of many diseases. Thus, a fluorescent and colorimetric dual-readout strategy for the sensitive determination of glutathione was proposed. The mesoporous silica nanoparticle-gold nanocluster (MSN-AuNC) nanocomposites with significantly enhanced emission and effectively improved photostability characteristics were used as fluorescent probes. Based on the inner filter effect (IFE), the fluorescence of MSN-AuNCs at 570 nm can be effectively quenched by oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB) with absorption in the wavelength ranges of 330-470 nm and 500-750 nm. However, the addition of GSH could cause the reduction of blue oxTMB to colorless TMB, resulting in the inhibition of IFE and the recovery of the fluorescence of MSN-AuNCs. Therefore, using oxTMB as both quencher and color indicator, a dual-readout oxTMB/MSN-AuNC sensing system for the sensitive determination of GSH was constructed. As signal amplification is caused by the fluorescence enhancement of MSN-AuNCs, the detection limits as low as 0.12 μM and 0.34 μM can be obtained for fluorescent and colorimetric assay, respectively. This method may not only offer a new idea for the sensitive and effective determination of GSH, but also broaden the applications of AuNCs in fluorescent and colorimetric dual-readout bioanalysis.
Collapse
Affiliation(s)
- Guoyan Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China.
| | | | | | | |
Collapse
|
7
|
Zuo S, Sun B, Yang Y, Zhou S, Zhang Y, Guo M, Sun M, Luo C, He Z, Sun J. Probing the Superiority of Diselenium Bond on Docetaxel Dimeric Prodrug Nanoassemblies: Small Roles Taking Big Responsibilities. SMALL 2020; 16:e2005039. [PMID: 33078579 DOI: 10.1002/smll.202005039] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 02/05/2023]
Abstract
The current state of chemotherapy is far from satisfaction, restricted by the inefficient drug delivery and the off-target toxicity. Prodrug nanoassemblies are emerging as efficient platforms for chemotherapy. Herein, three docetaxel dimeric prodrugs are designed using diselenide bond, disulfide bond, or dicarbide bond as linkages. Interestingly, diselenide bond-bridged dimeric prodrug can self-assemble into stable nanoparticles with impressive high drug loading (≈70%, w/w). Compared with disulfide bond and dicarbide bond, diselenide bond greatly facilitates the self-assembly of dimeric prodrug, and then improves the colloidal stability, blood circulation time, and antitumor efficacy of prodrug nanoassemblies. Furthermore, the redox-sensitive diselenide bond can specifically respond to the overexpressed reactive oxygen species and glutathione in tumor cells, leading to tumor-specific drug release. Therefore, diselenide bond bridged prodrug nanoassemblies exhibit discriminating cytotoxicity between tumor cells and normal cells, significantly alleviating the systemic toxicity of docetaxel. The present work gains in-depth insight into the impact of diselenide bond on the dimeric prodrug nanoassemblies, and provides promising strategies for the rational design of the high efficiency-low toxicity chemotherapeutical nanomedicines.
Collapse
Affiliation(s)
- Shiyi Zuo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yinxian Yang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Shuang Zhou
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Mengran Guo
- Department of Clinical Pharmacy, West China Hospital of Sichuan University, Chengdu, 610041, P. R. China
| | - Mengchi Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|
8
|
|
9
|
|
10
|
Amouzegar Z, Afkhami A, Madrakian T. ZnS quantum dots surface-loaded with zinc(II) ions as a viable fluorescent probe for glutathione. Mikrochim Acta 2019; 186:205. [DOI: 10.1007/s00604-019-3310-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
|
11
|
Singh N, Sallem F, Mirjolet C, Nury T, Sahoo SK, Millot N, Kumar R. Polydopamine Modified Superparamagnetic Iron Oxide Nanoparticles as Multifunctional Nanocarrier for Targeted Prostate Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E138. [PMID: 30678236 PMCID: PMC6409598 DOI: 10.3390/nano9020138] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 01/19/2023]
Abstract
Polydopamine (pDA)-modified iron oxide core-shell nanoparticles (IONPs) are developed and designed as nanovectors of drugs. Reactive quinone of pDA enhances the binding efficiency of various biomolecules for targeted delivery. Glutathione disulfide (GSSG), an abundant thiol species in the cytoplasm, was immobilized on the pDA-IONP surface. It serves as a cellular trigger to release the drug from the nanoparticles providing an efficient platform for the drug delivery system. Additionally, GSSG on the surface was further modified to form S-nitrosoglutathione that can act as nitric oxide (NO) donors. These NPs were fully characterized using a transmission electronic microscopy (TEM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), zeta potential, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and UV-vis spectroscopies. Doxorubicin (DOX) and docetaxel (DTX) are two anticancer drugs, which were loaded onto nanoparticles with respective loading efficiencies of 243 and 223 µmol/g of IONPs, calculated using TGA measurements. DOX release study, using UV-vis spectroscopy, showed a pH responsive behavior, making the elaborated nanocarrier a potential drug delivery system. (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium (MTS) and apoptosis assays were performed on PC3 cell lines to evaluate the efficiency of the developed nanocarriers. These nanoparticles thus can prove their worth in cancer treatment on account of their easy access to the site and release of drug in response to changes to internal parameters such as pH, chemicals, etc.
Collapse
Affiliation(s)
- Nimisha Singh
- Department of Applied Chemistry, Sardar Vallabhbhai National Institute of Technology, 395007 Surat, India.
| | - Fadoua Sallem
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS/Université Bourgogne Franche-Comté, 21 000 Dijon, France.
| | - Celine Mirjolet
- Radiotherapy Department, Centre Georges-François Leclerc, 21 000 Dijon, France.
| | - Thomas Nury
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté/Inserm, 21 000 Dijon, France.
| | - Suban Kumar Sahoo
- Department of Applied Chemistry, Sardar Vallabhbhai National Institute of Technology, 395007 Surat, India.
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS/Université Bourgogne Franche-Comté, 21 000 Dijon, France.
| | - Rajender Kumar
- Department of Applied Chemistry, Sardar Vallabhbhai National Institute of Technology, 395007 Surat, India.
| |
Collapse
|
12
|
Zhang Z, Zhong C, Yuan T, Zhou X, Zhao M, Qian H, Cheng W, Chen T. A hybridization chain reaction amplification strategy for fluorescence imaging of human telomerase activity in living cells. Methods Appl Fluoresc 2018; 6:045003. [PMID: 29924741 DOI: 10.1088/2050-6120/aacded] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A hybridized chain reaction (HCR)-based biosensing method has been developed for the imaging detection of intracellular telomerase activity. The telomerase-targeting responder-transmitter DNA complex (HPT) consisting of telomerase primer sequence (HP) and a HCR initiator (trigger) is transfected into cell plasma. In the presence of telomerase, HPT can be recognized and extended, producing plenty of triggers which initiate HCR amplification reaction. Finally, a long nicked dsDNA with a lot of outstretched single chains was formed by hybridizing with Q of the reporter complex, generating an enhanced fluorescence signal. The developed biosensing approach can be used for the detection of telomerase activity in cell lysate with the detection limit of 578 cells/100 μl. In addition, this strategy has been successfully applied not only for the sensitive and specific imaging of telomerase activity in living cells but also for comparing of telomerase activity among different cell lines. Therefore, the method might become a potential alternative tool for telomerase-related cancer diagnosis and therapy in medical research and early clinical diagnosis.
Collapse
Affiliation(s)
- Zhiqian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhou H, Liu J, Xu JJ, Zhang SS, Chen HY. Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application. Chem Soc Rev 2018; 47:1996-2019. [PMID: 29446429 DOI: 10.1039/c7cs00573c] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modern optical detection technology plays a critical role in current clinical detection due to its high sensitivity and accuracy. However, higher requirements such as extremely high detection sensitivity have been put forward due to the clinical needs for the early finding and diagnosing of malignant tumors which are significant for tumor therapy. The technology of isothermal amplification with nucleic acids opens up avenues for meeting this requirement. Recent reports have shown that a nucleic acid amplification-assisted modern optical sensing interface has achieved satisfactory sensitivity and accuracy, high speed and specificity. Compared with isothermal amplification technology designed to work completely in a solution system, solid biosensing interfaces demonstrated better performances in stability and sensitivity due to their ease of separation from the reaction mixture and the better signal transduction on these optical nano-biosensing interfaces. Also the flexibility and designability during the construction of these nano-biosensing interfaces provided a promising research topic for the ultrasensitive detection of cancer diseases. In this review, we describe the construction of the burgeoning number of optical nano-biosensing interfaces assisted by a nucleic acid amplification strategy, and provide insightful views on: (1) approaches to the smart fabrication of an optical nano-biosensing interface, (2) biosensing mechanisms via the nucleic acid amplification method, (3) the newest strategies and future perspectives.
Collapse
Affiliation(s)
- Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Jing Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shu-Sheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
14
|
Dong ZZ, Lu L, Ko CN, Yang C, Li S, Lee MY, Leung CH, Ma DL. A MnO 2 nanosheet-assisted GSH detection platform using an iridium(iii) complex as a switch-on luminescent probe. NANOSCALE 2017; 9:4677-4682. [PMID: 28139807 DOI: 10.1039/c6nr08357a] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A rapid and sensitive detection platform for GSH has been constructed by combining a MnO2 nanosheet with a luminescent iridium(iii) complex [Ir(Cl-phq)2(Cl-phen)]+. The MnO2 nanosheet was prepared by using a facile one-step approach and was characterized by TEM. The luminescence intensity of the detection platform responded linearly with the GSH concentration from 1 to 200 μM (R2 = 0.9951), and the detection limit for GSH was 0.13 μM. More importantly, practical application of the detection platform for visualizing the intracellular GSH distribution in living zebrafish has also been demonstrated.
Collapse
Affiliation(s)
- Zhen-Zhen Dong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Lihua Lu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China. and College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Shengnan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
15
|
Zhang Z, Jiao Y, Zhu M, Zhang S. Nuclear-Shell Biopolymers Initiated by Telomere Elongation for Individual Cancer Cell Imaging and Drug Delivery. Anal Chem 2017; 89:4320-4327. [DOI: 10.1021/acs.analchem.7b00591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhen Zhang
- Shandong
Province Key Laboratory of Detection Technology for Tumor Makers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Yuting Jiao
- Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Mengting Zhu
- Shandong
Province Key Laboratory of Life-Organic Analysis, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. of China
| | - Shusheng Zhang
- Shandong
Province Key Laboratory of Detection Technology for Tumor Makers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| |
Collapse
|
16
|
Bi S, Yue S, Zhang S. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem Soc Rev 2017; 46:4281-4298. [DOI: 10.1039/c7cs00055c] [Citation(s) in RCA: 393] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review provides a comprehensive overview of the fundamental principles, analysis techniques, and application fields of hybridization chain reaction and its development status.
Collapse
Affiliation(s)
- Sai Bi
- Collaborative Innovation Center for Marine Biomass Fiber
- Materials and Textiles of Shandong Province
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textiles
| | - Shuzhen Yue
- Collaborative Innovation Center for Marine Biomass Fiber
- Materials and Textiles of Shandong Province
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textiles
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Makers
- College of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
- P. R. China
| |
Collapse
|