1
|
Ruan X, Luo J, Zhang P, Howell K. The salivary microbiome shows a high prevalence of core bacterial members yet variability across human populations. NPJ Biofilms Microbiomes 2022; 8:85. [PMID: 36266278 PMCID: PMC9584946 DOI: 10.1038/s41522-022-00343-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Human saliva contains diverse bacterial communities, reflecting health status, dietary patterns and contributing to variability in the sensory perception of food. Many descriptions of the diversity of the salivary microbiome have focused on the changes induced by certain diseased states, but the commonalities and differences within healthy saliva have not been fully described. Here, we define and explore the core membership of the human salivary microbial community by collecting and re-analysing raw 16S rRNA amplicon sequencing data from 47 studies with 2206 saliva samples. We found 68 core bacterial taxa that were consistently detected. Differences induced by various host intrinsic and behaviour factors, including gender, age, geographic location, tobacco usage and alcohol consumption were evident. The core of the salivary microbiome was verified by collecting and analysing saliva in an independent study. These results suggest that the methods used can effectively define a core microbial community in human saliva. The core salivary microbiome demonstrated both stability and variability among populations. Geographic location was identified as the host factor that is most associated with the structure of salivary microbiota. The independent analysis confirmed the prevalence of the 68 core OTUs we defined from the global data and provides information about how bacterial taxa in saliva varies across human populations.
Collapse
Affiliation(s)
- Xinwei Ruan
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| | - Jiaqiang Luo
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
2
|
Fernandez M, Pereira PP, Agostini E, González PS. How the bacterial community of a tannery effluent responds to bioaugmentation with the consortium SFC 500-1. Impact of environmental variables. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 247:46-56. [PMID: 31229785 DOI: 10.1016/j.jenvman.2019.06.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/17/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Bioaugmentation with the consortium SFC 500-1 is a promising alternative to remediate wastewaters, such as tannery effluents. With the aim of assessing the changes produced in response to bioaugmentation, bacterial 16S rDNA genes were sequenced with Illumina MiSeq Platform. Additionally, bacterial and fungal groups were analyzed through standard culture dependent methods. The impact of diverse physico-chemical and microbiological parameters on the prokaryotic diversity was also evaluated throughout. Bacteroidetes, Firmicutes and Proteobacteria, represented together up to 91% of the total number of sequences obtained from the tannery effluent. Diversity decreased immediately after inoculation, due to an increase in the representation of the taxa to which the added consortium belongs. However, bioaugmentation produced no greater variations since only a 10% of unique operational taxonomic units were found in the inoculated treatment. An increase in the abundance of Myroides and a reduction in the representation of Proteiniclasticum and Halomonas were major observed variations. On the other hand, pH and dissolved oxygen constituted main environmental factors affecting the structure of the prokaryotic communities. In all treatments yeasts increased over time, to the detriment of filamentous fungi. Together, data from this report may contribute to the development of improved bioremediation strategies of industrial wastewaters.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina; CONICET, UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| | - Paola P Pereira
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina; CONICET, UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina; CONICET, UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina; CONICET, UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
3
|
Miranda ARL, Antunes JEL, de Araujo FF, Melo VMM, Bezerra WM, Van den Brink PJ, Araujo ASFD. Less abundant bacterial groups are more affected than the most abundant groups in composted tannery sludge-treated soil. Sci Rep 2018; 8:11755. [PMID: 30082922 PMCID: PMC6079073 DOI: 10.1038/s41598-018-30292-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
The application of composted tannery sludge (CTS) has promoted shifts in soil chemical properties and, therefore, can affect the soil bacterial community. This study assessed the effect of the CTS on the soil bacterial community over time. The CTS was applied at five rates (0, 2.5, 5, 10 and 20 t/ha), and the bacterial community was evaluated for 180 days. The principal curve response (PRC) analysis showed that the most abundant phyla were not influenced by the CTS rates over time, while the analysis of the bacterial community showed that some of the less abundant phyla were influenced by the CTS rates. Similarly, the PRC analysis for the bacterial classes showed the significant effect of the CTS rates. The redundancy analyses for the bacterial phyla and classes showed the relationship between the significant chemical properties and the bacterial community of the soil after the CTS amendment over time. Therefore, there was a shift in the bacterial community over time with the application of the composted tannery sludge. Our study has shown that the less abundant bacterial groups were more influenced by the CTS than the most abundant bacterial groups and that these bacterial groups were driven by soil chemical properties, primarily chromium (Cr) and the soil pH.
Collapse
Affiliation(s)
- Ana Roberta Lima Miranda
- Federal University of Piauí, Department of Agricultural Engineering and Soil Science, Teresina, 64049-550, Brazil
| | - Jadson Emanuel Lopes Antunes
- Federal University of Piauí, Department of Agricultural Engineering and Soil Science, Teresina, 64049-550, Brazil
| | | | | | | | - Paul J Van den Brink
- Wageningen University, Aquatic Ecology and Water Quality Management Group, Wageningen, P.O. Box 47, 6700 AA, The Netherlands
- Wageningen Environmental Research (Alterra), Wageningen, P.O. Box 47, 6700 AA, The Netherlands
| | | |
Collapse
|
4
|
Tigini V, Bevione F, Prigione V, Poli A, Ranieri L, Spennati F, Munz G, Varese GC. Tannery mixed liquors from an ecotoxicological and mycological point of view: Risks vs potential biodegradation application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:835-843. [PMID: 29426208 DOI: 10.1016/j.scitotenv.2018.01.240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
Fungi are known to be present in the activated sludge of wastewater treatment plants (WWTP). Their study should be at the base of an overall vision of the plant effectiveness and of effluents sanitary impact. Moreover, it could be fundamental for the implementation of successful bioaugmentation strategies aimed at the removal of recalcitrant or toxic compounds. This is one of the first studies on the cultivable autochthonous mycoflora present in the mixed liquors of two WWTP treating either vegetable or chromium tannery effluents. All samples showed a risk associated with potential pathogens or toxigenic species and high ecotoxicity (Lepidium sativum and Raphidocelis subcapitata were the most sensitive organisms). Diverse fungal populations developed, depending on the origin of the samples (63% of the 102 identified taxa were sample-specific). The use of a fungistatic was determinant for the isolation and, thus, for the identification of sample-specific species with a lower growth rate. The incubation temperature also affected the mycoflora composition, even though at lower extent. A selective medium, consisting of agarised wastewater, allowed isolating fungi with a biodegradation potential. Pseudallescheria boydii/Scedosporium apiospermum species complex was ubiquitously dominant, indicating a possible role in the degradation of pollutants in both WWTP. Other species, i.e. Trichoderma spp., Trematosphaeria grisea, Geotrichum candidum, Lichtheimia corymbifera, Acremonium furcatum, Penicillium simplicissimum, Penicillium dangeardii, Fusarium solani, Scopulariopsis brevicaulis potentially could be involved in the degradation of specific pollutants of vegetable or chromium tannery wastewaters. However, several of these fungi are potential pathogens and their application, for an in situ treatment, must be carefully evaluated.
Collapse
Affiliation(s)
- Valeria Tigini
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli 25, 10125 Turin, Italy.
| | - Federico Bevione
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli 25, 10125 Turin, Italy
| | - Valeria Prigione
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli 25, 10125 Turin, Italy
| | - Anna Poli
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli 25, 10125 Turin, Italy
| | - Lucrezia Ranieri
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli 25, 10125 Turin, Italy
| | - Francesco Spennati
- Department of Environmental and Civil Engineering, University or Florence, via Santa Marta 3, 50139 Firenze, Italy
| | - Giulio Munz
- Department of Environmental and Civil Engineering, University or Florence, via Santa Marta 3, 50139 Firenze, Italy
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli 25, 10125 Turin, Italy
| |
Collapse
|