1
|
Bhale AS, Meilhac O, d'Hellencourt CL, Vijayalakshmi MA, Venkataraman K. Cholesterol transport and beyond: Illuminating the versatile functions of HDL apolipoproteins through structural insights and functional implications. Biofactors 2024; 50:922-956. [PMID: 38661230 DOI: 10.1002/biof.2057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
High-density lipoproteins (HDLs) play a vital role in lipid metabolism and cardiovascular health, as they are intricately involved in cholesterol transport and inflammation modulation. The proteome of HDL particles is indeed complex and distinct from other components in the bloodstream. Proteomics studies have identified nearly 285 different proteins associated with HDL; however, this review focuses more on the 15 or so traditionally named "apo" lipoproteins. Important lipid metabolizing enzymes closely working with the apolipoproteins are also discussed. Apolipoproteins stand out for their integral role in HDL stability, structure, function, and metabolism. The unique structure and functions of each apolipoprotein influence important processes such as inflammation regulation and lipid metabolism. These interactions also shape the stability and performance of HDL particles. HDLs apolipoproteins have multifaceted roles beyond cardiovascular diseases (CVDs) and are involved in various physiological processes and disease states. Therefore, a detailed exploration of these apolipoproteins can offer valuable insights into potential diagnostic markers and therapeutic targets. This comprehensive review article aims to provide an in-depth understanding of HDL apolipoproteins, highlighting their distinct structures, functions, and contributions to various physiological processes. Exploiting this knowledge holds great potential for improving HDL function, enhancing cholesterol efflux, and modulating inflammatory processes, ultimately benefiting individuals by limiting the risks associated with CVDs and other inflammation-based pathologies. Understanding the nature of all 15 apolipoproteins expands our knowledge of HDL metabolism, sheds light on their pathological implications, and paves the way for advancements in the diagnosis, prevention, and treatment of lipid and inflammatory-related disorders.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | - Christian Lefebvre d'Hellencourt
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | | | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Guan S, Qu X, Wang J, Zhang D, Lu J. 3-Monochloropropane-1,2-diol esters induce HepG2 cells necroptosis via CTSB/TFAM/ROS pathway. Food Chem Toxicol 2024; 186:114525. [PMID: 38408632 DOI: 10.1016/j.fct.2024.114525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
3-monochloropropane-1,2-diol esters (3-MCPDE) are toxic substances that form in food thermal processing and have a diverse range of toxicities. In this study, we found that 3-MCPDE triggered necroptosis by RIPK1/RIPK3/MLKL pathway in HepG2 cells. Previous studies have shown that ROS is an important activator of RIPK1 and RIPK3. The data showed that 3-MCPDE induced excessive ROS production through mitochondrial damage. After treatment with ROS inhibitor N-acetylcysteine (NAC), 3-MCPDE-induced necroptosis was relieved. Further, we explored how 3-MCPDE destroys mitochondria. The data suggested that 3-MCPDE induced mitochondrial dysfunction through the CTSB/TFAM pathway. Overall, the results indicated that 3-MCPDE induced necroptosis through CTSB/TFAM/ROS pathway in HepG2 cells. Our study provided a new mechanism for 3-MCPDE hepatotoxicity.
Collapse
Affiliation(s)
- Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Xiao Qu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Duoduo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
3
|
Del Giudice R, Lindvall M, Nilsson O, Monti DM, Lagerstedt JO. The Apparent Organ-Specificity of Amyloidogenic ApoA-I Variants Is Linked to Tissue-Specific Extracellular Matrix Components. Int J Mol Sci 2022; 24:318. [PMID: 36613763 PMCID: PMC9820410 DOI: 10.3390/ijms24010318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I) amyloidosis is a rare protein misfolding disease where fibrils of the N-terminal domain of the protein accumulate in several organs, leading to their failure. Although ApoA-I amyloidosis is systemic, the different amyloidogenic variants show a preferential tissue accumulation that appears to correlate with the location of the mutation in the protein sequence and with the local extracellular microenvironment. However, the factors leading to cell/tissues damage, as well as the mechanisms behind the observed organ specificity are mostly unknown. Therefore, we investigated the impact of ApoA-I variants on cell physiology and the mechanisms driving the observed tissue specificity. We focused on four ApoA-I amyloidogenic variants and analyzed their cytotoxicity as well as their ability to alter redox homeostasis in cell lines from different tissues (liver, kidney, heart, skin). Moreover, variant-specific interactions with extracellular matrix (ECM) components were measured by synchrotron radiation circular dichroism and enzyme-linked immunosorbent assay. Data indicated that ApoA-I variants exerted a cytotoxic effect in a time and cell-type-specific manner that seems to be due to protein accumulation in lysosomes. Interestingly, the ApoA-I variants exhibited specific preferential binding to the ECM components, reflecting their tissue accumulation pattern in vivo. While the binding did not to appear to affect protein conformations in solution, extended incubation of the amyloidogenic variants in the presence of different ECM components resulted in different aggregation propensity and aggregation patterns.
Collapse
Affiliation(s)
- Rita Del Giudice
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Mikaela Lindvall
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Oktawia Nilsson
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | - Jens O. Lagerstedt
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 20506 Malmö, Sweden
| |
Collapse
|
4
|
Miyahara H, Dai J, Li Y, Cui X, Takeuchi H, Hachiya N, Kametani F, Yazaki M, Mori M, Higuchi K. Macrophages in the reticuloendothelial system inhibit early induction stages of mouse apolipoprotein A-II amyloidosis. Amyloid 2022:1-14. [PMID: 36495239 DOI: 10.1080/13506129.2022.2153667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amyloidosis refers to a group of degenerative diseases that are characterized by the deposition of misfolded protein fibrils in various organs. Deposited amyloid may be removed by a phagocyte-dependent innate immune system; however, the precise mechanisms during disease progression remain unclear. We herein investigated the properties of macrophages that contribute to amyloid degradation and disease progression using inducible apolipoprotein A-II amyloidosis model mice. Intravenously injected AApoAII amyloid was efficiently engulfed by reticuloendothelial macrophages in the liver and spleen and disappeared by 24 h. While cultured murine macrophages degraded AApoAII via the endosomal-lysosomal pathway, AApoAII fibrils reduced cell viability and phagocytic capacity. Furthermore, the depletion of reticuloendothelial macrophages before the induction of AApoAII markedly increased hepatic and splenic AApoAII deposition. These results highlight the physiological role of reticuloendothelial macrophages in the early stages of pathogenesis and suggest the maintenance of phagocytic integrity as a therapeutic strategy to inhibit disease progression.
Collapse
Affiliation(s)
- Hiroki Miyahara
- Department of Neuro-Health Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Jian Dai
- Department of Neuro-Health Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Ying Li
- Department of Aging Biology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Xiaoran Cui
- Department of Aging Biology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Hibiki Takeuchi
- Department of Aging Biology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | | | - Fuyuki Kametani
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masahide Yazaki
- Department of Neuro-Health Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Masayuki Mori
- Department of Neuro-Health Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan.,Department of Aging Biology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Keiichi Higuchi
- Department of Neuro-Health Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan.,Department of Aging Biology, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Community Health Care Research Center, Nagano University of Health and Medicine, Nagano, Japan
| |
Collapse
|
5
|
Uchimura K, Nishitsuji K, Chiu L, Ohgita T, Saito H, Allain F, Gannedi V, Wong C, Hung S. Design and Synthesis of 6-O-Phosphorylated Heparan Sulfate Oligosaccharides to Inhibit Amyloid β Aggregation. Chembiochem 2022; 23:e202200191. [PMID: 35585797 PMCID: PMC9401075 DOI: 10.1002/cbic.202200191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Indexed: 11/07/2022]
Abstract
Dysregulation of amyloidogenic proteins and their abnormal processing and deposition in tissues cause systemic and localized amyloidosis. Formation of amyloid β (Aβ) fibrils that deposit as amyloid plaques in Alzheimer's disease (AD) brains is an earliest pathological hallmark. The polysulfated heparan sulfate (HS)/heparin (HP) is one of the non-protein components of Aβ deposits that not only modulates Aβ aggregation, but also acts as a receptor for Aβ fibrils to mediate their cytotoxicity. Interfering with the interaction between HS/HP and Aβ could be a therapeutic strategy to arrest amyloidosis. Here we have synthesized the 6-O-phosphorylated HS/HP oligosaccharides and reported their competitive effects on the inhibition of HP-mediated Aβ fibril formation in vitro using a thioflavin T fluorescence assay and a tapping mode atomic force microscopy.
Collapse
Affiliation(s)
- Kenji Uchimura
- Univ. Lille, CNRSUMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Kazuchika Nishitsuji
- Department of BiochemistryWakayama Medical University811–1 KimiideraWakayama641-8509Japan
| | - Li‐Ting Chiu
- Genomics Research CenterAcademia Sinica, 128, Section 2 Academia RoadTaipei11529Taiwan
| | - Takashi Ohgita
- Department of Biophysical ChemistryKyoto Pharmaceutical University, 5Misasagi-Nakauchi-choYamashina-kuKyoto607-8414Japan
| | - Hiroyuki Saito
- Department of Biophysical ChemistryKyoto Pharmaceutical University, 5Misasagi-Nakauchi-choYamashina-kuKyoto607-8414Japan
| | - Fabrice Allain
- Univ. Lille, CNRSUMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | | | - Chi‐Huey Wong
- Genomics Research CenterAcademia Sinica, 128, Section 2 Academia RoadTaipei11529Taiwan
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines Road BCC 338La JollaCA 92037USA
| | - Shang‐Cheng Hung
- Genomics Research CenterAcademia Sinica, 128, Section 2 Academia RoadTaipei11529Taiwan
- Department of Applied ScienceNational Taitung University369, Section 2 University RoadTaitung95092Taiwan
| |
Collapse
|
6
|
Del Giudice R, Imbimbo P, Pietrocola F, Martins I, De Palma FDE, Bravo-San Pedro JM, Kroemer G, Maiuri MC, Monti DM. Autophagy Alteration in ApoA-I Related Systemic Amyloidosis. Int J Mol Sci 2022; 23:ijms23073498. [PMID: 35408859 PMCID: PMC8998969 DOI: 10.3390/ijms23073498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Amyloidoses are characterized by the accumulation and aggregation of misfolded proteins into fibrils in different organs, leading to cell death and consequent organ dysfunction. The specific substitution of Leu 75 for Pro in Apolipoprotein A-I protein sequence (ApoA-I; L75P-ApoA-I) results in late onset amyloidosis, where deposition of extracellular protein aggregates damages the normal functions of the liver. In this work, we describe that the autophagic process is inhibited in the presence of the L75P-ApoA-I amyloidogenic variant in stably transfected human hepatocyte carcinoma cells. The L75P-ApoA-I amyloidogenic variant alters the redox status of the cells, resulting into excessive mitochondrial stress and consequent cell death. Moreover, L75P-ApoA-I induces an impairment of the autophagic flux. Pharmacological induction of autophagy or transfection-enforced overexpression of the pro-autophagic transcription factor EB (TFEB) restores proficient proteostasis and reduces oxidative stress in these experimental settings, suggesting that pharmacological stimulation of autophagy could be a promising target to alleviate ApoA-I amyloidosis.
Collapse
Affiliation(s)
- Rita Del Giudice
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (R.D.G.); (P.I.)
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (R.D.G.); (P.I.)
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, 14157 Huddinge, Sweden;
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (I.M.); (F.D.E.D.P.); (G.K.); (M.C.M.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Fatima Domenica Elisa De Palma
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (I.M.); (F.D.E.D.P.); (G.K.); (M.C.M.)
- CEINGE-Biotecnologie Avanzate s.c.a.r.l., 80145 Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (I.M.); (F.D.E.D.P.); (G.K.); (M.C.M.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Institut Universitaire de France, 75005 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Ap-hp, 75015 Paris, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France; (I.M.); (F.D.E.D.P.); (G.K.); (M.C.M.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Pharmacy Department, University of Napoli Federico II, 80131 Napoli, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy; (R.D.G.); (P.I.)
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
- Correspondence:
| |
Collapse
|
7
|
Abstract
Amyloidosis is a very rare condition, which, due to its rarity, is often missed or diagnosed in an advanced stage of the disease, causing significant morbidity and mortality. In this review we describe the existing types of amyloidosis focusing on the gastro-intestinal tract. Amyloidosis occurs when abnormal protein fibrils (amyloid) deposit in the muscularis mucosae. This can cause an array of symptoms ranging from (in order of occurrence): gastro-intestinal bleeding, heartburn, unintentional weight loss, early satiety, constipation, diarrhea, nausea, vomiting and fecal incontinence (1). Treatment is focused on the underlying condition (if any) causing the production and deposition of the abnormal fibrils, in combination of symptomatic treatment.
Collapse
|
8
|
Sterol and lipid analyses identifies hypolipidemia and apolipoprotein disorders in autism associated with adaptive functioning deficits. Transl Psychiatry 2021; 11:471. [PMID: 34504056 PMCID: PMC8429516 DOI: 10.1038/s41398-021-01580-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022] Open
Abstract
An improved understanding of sterol and lipid abnormalities in individuals with autism spectrum disorder (ASD) could lead to personalized treatment approaches. Toward this end, in blood, we identified reduced synthesis of cholesterol in families with ≥2 children with ASD participating with the Autism Genetic Resource Exchange (AGRE), as well as reduced amounts of high-density lipoprotein cholesterol (HDL), apolipoprotein A1 (ApoA1) and apolipoprotein B (ApoB), with 19.9% of the subjects presenting with apolipoprotein patterns similar to hypolipidemic clinical syndromes and 30% with either or both ApoA1 and ApoB less than the fifth centile. Subjects with levels less than the fifth centile of HDL or ApoA1 or ApoA1 + ApoB had lower adaptive functioning than other individuals with ASD, and hypocholesterolemic subjects had apolipoprotein deficits significantly divergent from either typically developing individuals participating in National Institutes of Health or the National Health and Nutrition Examination Survey III.
Collapse
|
9
|
Pitts MG, Nardo D, Isom CM, Venditto VJ. Autoantibody Responses to Apolipoprotein A-I Are Not Diet- or Sex-Linked in C57BL/6 Mice. Immunohorizons 2020; 4:455-463. [PMID: 32759326 PMCID: PMC7646948 DOI: 10.4049/immunohorizons.2000027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/14/2020] [Indexed: 01/16/2023] Open
Abstract
Atherosclerosis is responsible for a large percentage of all-cause mortality worldwide, but it is only now beginning to be understood as a complex disease process involving metabolic insult, chronic inflammation, and multiple immune mechanisms. Abs targeting apolipoprotein A-I (ApoA-I) have been found in patients with cardiovascular disease, autoimmune conditions, as well as those with no documented history of either. However, relatively little is known about how these Abs are generated and their relationship to diet and sex. In the current study, we modeled this aspect of autoimmunity using anti–ApoA-I immunization of male and female C57BL/6 mice. Unexpectedly, we found that autoantibodies directed against a single, previously unknown, epitope within the ApoA-I protein developed irrespective of immunization status or dyslipidemia in mice. When total IgG subclasses were analyzed over the course of time, we observed that rather than driving an increase in inflammatory IgG subclasses, consumption of Western diet suppressed age-dependent increases in IgG2b and IgG2c in male mice only. The lack of change observed in female mice suggested that diet and sex might play a combined role in Th1/Th2 balance and, ultimately, in immunity to pathogen challenge. This report demonstrates the need for inclusion of both sexes in studies pertaining to diet and aging and suggests that further study of immunogenic epitopes present in ApoA-I is warranted.
Collapse
Affiliation(s)
- Michelle G Pitts
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536; and.,Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536
| | - David Nardo
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536; and
| | - Cierra M Isom
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536; and
| | - Vincent J Venditto
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536; and
| |
Collapse
|
10
|
Heparan sulfate S-domains and extracellular sulfatases (Sulfs): their possible roles in protein aggregation diseases. Glycoconj J 2018; 35:387-396. [PMID: 30003471 DOI: 10.1007/s10719-018-9833-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
Abstract
Highly sulfated domains of heparan sulfate (HS), also known as HS S-domains, consist of repeated trisulfated disaccharide units [iduronic acid (2S)-glucosamine (NS, 6S)-]. The expression of HS S-domains at the cell surface is determined by two mechanisms: tightly regulated biosynthetic machinery and enzymatic remodeling by extracellular endoglucosamine 6-sulfatases, Sulf-1 and Sulf-2. Intracellular or extracellular deposits of misfolded and aggregated proteins are characteristic of protein aggregation diseases. Although proteins can aggregate alone, deposits of protein aggregates in vivo contain a number of proteinaceous and non-protein components. HS S-domains are one non-protein component of these aggregated deposits. HS S-domains are considered to be critical for signal transduction of several growth factors and several disease conditions, such as tumor progression, but their roles in protein aggregation diseases are not yet fully understood. This review summarizes the current understanding of the possible roles of HS S-domains and Sulfs in the formation and cytotoxicity of protein aggregates.
Collapse
|
11
|
Ding X, Liu Y, Yang M, Li L, Miyahara H, Dai J, Xu Z, Matsumoto K, Mori M, Higuchi K, Sawashita J. Amyloidosis-inducing activity of blood cells in mouse AApoAII amyloidosis. Exp Anim 2017; 67:105-115. [PMID: 29081441 PMCID: PMC5955742 DOI: 10.1538/expanim.17-0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mouse senile amyloidosis is a disorder in which apolipoprotein A-II (APOA2) deposits as
amyloid fibrils (AApoAII) in many organs. We previously reported that AApoAII amyloidosis
can be transmitted by feces, milk, saliva and muscle originating from mice with amyloid
deposition. In this study, the ability of blood components to transmit amyloidosis was
evaluated in our model system. Blood samples were collected from
SAMR1.SAMP1-Apoa2c amyloid-laden or amyloidosis-negative
mice. The samples were fractionated into plasma, white blood cell (WBC) and red blood cell
(RBC) fractions. Portions of each were further separated into soluble and insoluble
fractions. These fractions were then injected into recipient mice to determine
amyloidosis-induction activities (AIA). The WBC and RBC fractions from amyloid-laden mice
but not from amyloidosis-negative mice induced AApoAII amyloid deposition in the
recipients. The AIA of WBC fraction could be attributed to AApoAII amyloid fibrils because
amyloid fibril-like materials and APOA2 antiserum-reactive proteins were observed in the
insoluble fraction of the blood cells. Unexpectedly, the plasma of AApoAII
amyloidosis-negative as well as amyloid-laden mice showed AIA, suggesting the presence of
substances in mouse plasma other than AApoAII fibrils that could induce amyloid
deposition. These results indicated that AApoAII amyloidosis could be transmitted across
tissues and between individuals through blood cells.
Collapse
Affiliation(s)
- Xin Ding
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Yingye Liu
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Mu Yang
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Lin Li
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Hiroki Miyahara
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Jian Dai
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Zhe Xu
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Kiyoshi Matsumoto
- Division of Animal Research, Research Center for Supports to Advanced Science, Shinshu University, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Masayuki Mori
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan.,Department of Advanced Medicine for Health Promotion, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Keiichi Higuchi
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Jinko Sawashita
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| |
Collapse
|
12
|
Miyahara H, Sawashita J, Ishikawa E, Yang M, Ding X, Liu Y, Hachiya N, Kametani F, Yazaki M, Mori M, Higuchi K. Comprehensive proteomic profiles of mouse AApoAII amyloid fibrils provide insights into the involvement of lipoproteins in the pathology of amyloidosis. J Proteomics 2017; 172:111-121. [PMID: 28988881 DOI: 10.1016/j.jprot.2017.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/17/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Amyloidosis is a disorder characterized by extracellular fibrillar deposits of misfolded proteins. The amyloid deposits commonly contain several non-fibrillar proteins as amyloid-associated proteins, but their roles in amyloidosis pathology are still unknown. In mouse senile amyloidosis, apolipoprotein A-II (ApoA-II) forms extracellular amyloid fibril (AApoAII) deposits with other proteins (AApoAII-associated proteins) in many organs. We previously reported that R1.P1-Apoa2c mice provide a reproducible model of AApoAII amyloidosis. In order to investigate the sequential alterations of AApoAII-associated protein, we performed a proteomic analysis of amyloid fibrils extracted from mouse liver tissues that contained different levels of AApoAII deposition. We identified 6 AApoAII-associated proteins that constituted 20 of the top-ranked proteins in mice with severe AApoAII deposition. Although the amount of AApoAII-associated proteins increased with the progression of amyloidosis, the relative abundance of AApoAII-associated proteins changed little throughout the progression of amyloidosis. On the other hand, plasma levels of these proteins showed dramatic changes during the progression of amyloidosis. In addition, we confirmed that AApoAII-associated proteins were significantly associated with lipid metabolism based on functional enrichment analysis, and lipids were co-deposited with AApoAII fibrils from early stages of development of amyloidosis. Thus, these results demonstrate that lipoproteins are involved in AApoAII amyloidosis pathology. SIGNIFICANCE This study presented proteomic profiles of AApoAII amyloidosis during disease progression and it revealed co-deposition of lipids with AApoAII deposits based on functional analyses. The relative abundance of AApoAII-associated proteins in the amyloid fibril fractions did not change over the course of development of AApoAII amyloidosis pathology. However, their concentrations in plasma changed dramatically with progression of the disease. Interestingly, several AApoAII-associated proteins have been found as constituents of lipid-rich lesions of other degenerative diseases, such as atherosclerosis and age-related macular degeneration. The common protein components among these diseases with lipid-rich deposits could be accounted for by a lipoprotein retention model.
Collapse
Affiliation(s)
- Hiroki Miyahara
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 390-8621 Matsumoto, Japan
| | - Jinko Sawashita
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 390-8621 Matsumoto, Japan; Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 390-8621 Matsumoto, Japan
| | - Eri Ishikawa
- Division of Instrumental Research, Research Center for Supports to Advanced Science, Shinshu University, 390-8621 Matsumoto, Japan
| | - Mu Yang
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 390-8621 Matsumoto, Japan
| | - Xin Ding
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 390-8621 Matsumoto, Japan
| | - Yingye Liu
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 390-8621 Matsumoto, Japan
| | - Naomi Hachiya
- Tokyo Metropolitan Industrial Technology Research Institute, Aomi, Koto-ku, 135-0064 Tokyo, Japan
| | - Fuyuki Kametani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, 156-8506 Tokyo, Japan
| | - Masahide Yazaki
- Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 390-8621 Matsumoto, Japan
| | - Masayuki Mori
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 390-8621 Matsumoto, Japan; Department of Advanced Medicine for Health Promotion, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 390-8621 Matsumoto, Japan
| | - Keiichi Higuchi
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 390-8621 Matsumoto, Japan; Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 390-8621 Matsumoto, Japan.
| |
Collapse
|
13
|
Kimura H, Mikawa S, Mizuguchi C, Horie Y, Morita I, Oyama H, Ohgita T, Nishitsuji K, Takeuchi A, Lund-Katz S, Akaji K, Kobayashi N, Saito H. Immunochemical Approach for Monitoring of Structural Transition of ApoA-I upon HDL Formation Using Novel Monoclonal Antibodies. Sci Rep 2017; 7:2988. [PMID: 28592796 PMCID: PMC5462821 DOI: 10.1038/s41598-017-03208-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 11/24/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) undergoes a large conformational reorganization during remodeling of high-density lipoprotein (HDL) particles. To detect structural transition of apoA-I upon HDL formation, we developed novel monoclonal antibodies (mAbs). Splenocytes from BALB/c mice immunized with a recombinant human apoA-I, with or without conjugation with keyhole limpet hemocyanin, were fused with P3/NS1/1-Ag4-1 myeloma cells. After the HAT-selection and cloning, we established nine hybridoma clones secreting anti-apoA-I mAbs in which four mAbs recognize epitopes on the N-terminal half of apoA-I while the other five mAbs recognize the central region. ELISA and bio-layer interferometry measurements demonstrated that mAbs whose epitopes are within residues 1–43 or 44–65 obviously discriminate discoidal and spherical reconstituted HDL particles despite their great reactivities to lipid-free apoA-I and plasma HDL, suggesting the possibility of these mAbs to detect structural transition of apoA-I on HDL. Importantly, a helix-disrupting mutation of W50R into residues 44–65 restored the immunoreactivity of mAbs whose epitope being within residues 44–65 against reconstituted HDL particles, indicating that these mAbs specifically recognize the epitope region in a random coil state. These results encourage us to develop mAbs targeting epitopes in the N-terminal residues of apoA-I as useful probes for monitoring formation and remodeling of HDL particles.
Collapse
Affiliation(s)
- Hitoshi Kimura
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Shiho Mikawa
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Yuki Horie
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Izumi Morita
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Oyama
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Atsuko Takeuchi
- Analytical Laboratory, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Sissel Lund-Katz
- Lipid Research Group, Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, 19104-4318, USA
| | - Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Norihiro Kobayashi
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
14
|
Nishitsuji K, Uchimura K. Sulfated glycosaminoglycans in protein aggregation diseases. Glycoconj J 2017; 34:453-466. [DOI: 10.1007/s10719-017-9769-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
|