1
|
Singh B, Agrawal AK, Kashyap Y, Singhai P, Shukla M. Development of a novel single absorption grating based versatile multi-contrast imaging facility at the X-ray Imaging beamline, Indus-2. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:053705. [PMID: 40358496 DOI: 10.1063/5.0250945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/19/2025] [Indexed: 05/15/2025]
Abstract
A multi-contrast x-ray imaging facility with a single x-ray absorption grating is developed at the X-ray Imaging beamline (BL-04), Indus-2 synchrotron radiation source, India, and implemented in both monochromatic and white beam operation modes of the beamline for versatile utilization of this technique in structural characterization of a wide range of samples from soft biological to metallic, dense, and thick materials. The developed facility is characterized by resolution, visibility, and signal-to-noise ratio and tested for static and dynamic morphological analysis under different experimental conditions. The qualitative and quantitative analysis of extracted multi-contrast x-ray images of different samples demonstrates the relative merits of various experimental conditions. This unique multi-contrast facility with a single x-ray absorption grating that operates in dual modes of the X-ray Imaging beamline enables the study of both static and transient phenomena across a wide range of applications at the beamline.
Collapse
Affiliation(s)
- Balwant Singh
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Ashish K Agrawal
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Yogesh Kashyap
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Payal Singhai
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Mayank Shukla
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
2
|
Rosich D, Chevalier M, Alieva T. Speckle-Based Transmission and Dark-Field Imaging for Material Analysis with a Laboratory X-Ray Source. SENSORS (BASEL, SWITZERLAND) 2025; 25:2581. [PMID: 40285269 PMCID: PMC12030854 DOI: 10.3390/s25082581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Multimodal imaging is valuable because it can provide additional information beyond that obtained from a conventional bright-field (BF) image and can be implemented with a widely available device. In this paper, we investigate the implementation of speckle-based transmission (T) and dark-field (DF) imaging in a laboratory X-ray setup to confirm its usefulness for material analysis. Three methods for recovering T and DF images were applied to a sample composed of six materials: plastic, nylon, cardboard, cork, expanded polystyrene and foam with different absorption and scattering properties. Contrast-to-noise ratio (CNR) and linear attenuation, absorption and diffusion coefficients obtained from BF, T and DF images are studied for two object-to-detector distances (ODDs). Two analysis windows are evaluated to determine the impact of noise on the image contrast of T and DF images and the ability to retrieve material characteristics. The unified modulated pattern analysis method proves to be the most reliable among the three studied speckle-based methods. The results showed that the CNR of T and DF images increases with larger analysis windows, while linear absorption and diffusion coefficients remain constant. The CNR of T images decreases with increasing ODD due to noise, whereas the CNR of DF images exhibits more complex behaviour, due to the material-dependent reduction in DF signal with increasing ODD. The experimental results on the ODD dependence of T and DF signals are consistent with recently reported numerical simulation results of these signals. The absorption coefficients derived from T images are largely independent of the ODD and the speckle-based method used, making them a universal parameter for material discrimination. In contrast, the linear diffusion coefficients vary with the ODD, limiting their applicability to specific experimental configurations despite their notable advantages in distinguishing materials. These findings highlight that T and DF images obtained from a laboratory X-ray setup offer complementary insights, enhancing their value for material analysis.
Collapse
Affiliation(s)
- Diego Rosich
- Physics Institute of Cantabria (IFCA-CSIC-UC), Av. de los Castros s/n, 39005 Santander, Spain
| | - Margarita Chevalier
- Department of Radiology, Physiotherapy and Rehabilitation, Faculty of Medicine, Complutense University of Madrid, Pl. de Ramón y Cajal s/n, 28040 Madrid, Spain;
| | - Tatiana Alieva
- Department of Optics, Faculty of Physics, Complutense University of Madrid, Pl. de las Ciencias 1, 28040 Madrid, Spain;
| |
Collapse
|
3
|
Alloo SJ, Paganin DM, Croughan MK, Ahlers JN, Pavlov KM, Morgan KS. Separating edges from microstructure in X-ray dark-field imaging: evolving and devolving perspectives via the X-ray Fokker-Planck equation. OPTICS EXPRESS 2025; 33:3577-3600. [PMID: 39876477 DOI: 10.1364/oe.545960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025]
Abstract
A key contribution to X-ray dark-field (XDF) contrast is the diffusion of X-rays by sample structures smaller than the imaging system's spatial resolution; this is related to position-dependent small-angle X-ray scattering. However, some experimental XDF techniques have reported that XDF contrast is also generated by resolvable sample edges. Speckle-based X-ray imaging (SBXI) extracts the XDF by analyzing sample-imposed changes to a reference speckle pattern's visibility. We present an algorithm for SBXI (a variant of our previously developed multimodal intrinsic speckle-tracking (MIST) algorithm) capable of separating these two physically different XDF contrast mechanisms. The algorithm uses what we call the devolving Fokker-Planck equation for paraxial X-ray imaging as its forward model and then solves the associated multimodal inverse problem to retrieve the attenuation, phase, and XDF properties of the sample. Previous MIST variants were based on the evolving Fokker-Planck equation, which considers how a reference-speckle image is modified by the introduction of a sample. The devolving perspective instead considers how the image collected in the presence of the sample and the speckle membrane optically flows in reverse to generate the reference-speckle image when the sample is removed from the system. We compare single- and multiple-exposure multimodal retrieval algorithms from the two Fokker-Planck perspectives. We demonstrate that the devolving perspective can distinguish between two physically different XDF contrast mechanisms, namely, unresolved microstructure- and sharp-edge-induced XDF. This was verified by applying the different retrieval algorithms to two experimental data sets - one phantom sample and one organic sample. We anticipate that this work will be useful in (1) yielding a pair of complementary XDF images that separate sharp-edge diffuse scatter from diffuse scatter due to spatially random unresolved microstructure, (2) XDF computed tomography, where the strong edge XDF signal can lead to strong contaminating streaking artefacts, and (3) sample preparation, as samples will not need to be embedded since the strong XDF edge signal seen between the sample and air can be separated out.
Collapse
|
4
|
Sun J, Ding H, Chi Z, Wang Z, Shen Z, Du Y, Li R, Huang W, Tang C. A hybrid simulation method towards the gamma ray phase contrast imaging for metallic material. Sci Rep 2024; 14:21159. [PMID: 39256492 PMCID: PMC11387728 DOI: 10.1038/s41598-024-72090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
A high efficiency simulation method for propagation-based phase-contrast imaging, called directional macro-wavefront (DMWF), is developed with the aim of simulating high-energy phase-contrast imaging. This method takes both Monte Carlo and wave optical propagation into consideration. Traditional wave-optics-based simulation methods for phase-contrast imaging encounter unacceptable computational complexity when high-energy radiation is used. In contrast, this method effectively addresses this issue by using macro-wavefront integration. Several simulation examples using typical parameters of inverse Compton scattering sources are presented to illustrate the excellent energy adaptability and efficiency of the DMWF method. This method provides a more efficient approach for phase-contrast imaging simulations, which will drive the advancement of high-energy phase-contrast imaging.
Collapse
Affiliation(s)
- Jiayi Sun
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Hao Ding
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Zhijun Chi
- Key Laboratory of Beam Technology of Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, China
| | - Zhentian Wang
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Zhan Shen
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Yingchao Du
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Renkai Li
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Wenhui Huang
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Chuanxiang Tang
- Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Zandarco S, Günther B, Riedel M, Breitenhuber G, Kirst M, Achterhold K, Pfeiffer F, Herzen J. Speckle tracking phase-contrast computed tomography at an inverse Compton X-ray source. OPTICS EXPRESS 2024; 32:28472-28488. [PMID: 39538663 DOI: 10.1364/oe.528701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 11/16/2024]
Abstract
Speckle-based X-ray imaging (SBI) is a phase-contrast method developed at and for highly coherent X-ray sources, such as synchrotrons, to increase the contrast of weakly absorbing objects. Consequently, it complements the conventional attenuation-based X-ray imaging. Meanwhile, attempts to establish SBI at less coherent laboratory sources have been performed, ranging from liquid metal-jet X-ray sources to microfocus X-ray tubes. However, their lack of coherence results in interference fringes not being resolved. Therefore, algorithms were developed which neglect the interference effects. Here, we demonstrate phase-contrast computed tomography employing SBI in a laboratory-setting with an inverse Compton X-ray source. In this context, we investigate and compare also the performance of the at synchrotron conventionally used phase-retrieval algorithms for SBI, unified modulated pattern analysis (UMPA) with a phase-retrieval method developed for low coherence systems (LCS). We successfully retrieve a full computed tomography in a phantom as well as in biological specimens, such as larvae of the greater wax moth (Galleria mellonella), a model system for studies of pathogens and infections. In this context, we additionally demonstrate quantitative phase-contrast computed tomography using SBI at a low coherent set-up.
Collapse
|
6
|
Alloo SJ, Morgan KS, Paganin DM, Pavlov KM. Multimodal intrinsic speckle-tracking (MIST) to extract images of rapidly-varying diffuse X-ray dark-field. Sci Rep 2023; 13:5424. [PMID: 37012270 PMCID: PMC10070351 DOI: 10.1038/s41598-023-31574-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Speckle-based phase-contrast X-ray imaging (SB-PCXI) can reconstruct high-resolution images of weakly-attenuating materials that would otherwise be indistinguishable in conventional attenuation-based X-ray imaging. The experimental setup of SB-PCXI requires only a sufficiently coherent X-ray source and spatially random mask, positioned between the source and detector. The technique can extract sample information at length scales smaller than the imaging system's spatial resolution; this enables multimodal signal reconstruction. "Multimodal Intrinsic Speckle-Tracking" (MIST) is a rapid and deterministic formalism derived from the paraxial-optics form of the Fokker-Planck equation. MIST simultaneously extracts attenuation, refraction, and small-angle scattering (diffusive dark-field) signals from a sample and is more computationally efficient compared to alternative speckle-tracking approaches. Hitherto, variants of MIST have assumed the diffusive dark-field signal to be spatially slowly varying. Although successful, these approaches have been unable to well-describe unresolved sample microstructure whose statistical form is not spatially slowly varying. Here, we extend the MIST formalism such that this restriction is removed, in terms of a sample's rotationally-isotropic diffusive dark-field signal. We reconstruct multimodal signals of two samples, each with distinct X-ray attenuation and scattering properties. The reconstructed diffusive dark-field signals have superior image quality-as measured by the naturalness image quality evaluator, signal-to-noise ratio, and azimuthally averaged power-spectrum-compared to our previous approaches which assume the diffusive dark-field to be a slowly varying function of transverse position. Our generalisation may assist increased adoption of SB-PCXI in applications such as engineering and biomedical disciplines, forestry, and palaeontology, and is anticipated to aid the development of speckle-based diffusive dark-field tensor tomography.
Collapse
Affiliation(s)
- Samantha J Alloo
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Kaye S Morgan
- School of Physics and Astronomy, Monash University, Clayton, VIC, Australia
| | - David M Paganin
- School of Physics and Astronomy, Monash University, Clayton, VIC, Australia
| | - Konstantin M Pavlov
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
- School of Physics and Astronomy, Monash University, Clayton, VIC, Australia
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
7
|
Akstaller B, Schreiner S, Dietrich L, Rauch C, Schuster M, Ludwig V, Hofmann-Randall C, Michel T, Anton G, Funk S. X-ray Dark-Field Imaging for Improved Contrast in Historical Handwritten Literature. J Imaging 2022; 8:jimaging8090226. [PMID: 36135392 PMCID: PMC9501021 DOI: 10.3390/jimaging8090226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
If ancient documents are too fragile to be opened, X-ray imaging can be used to recover the content non-destructively. As an extension to conventional attenuation imaging, dark-field imaging provides access to microscopic structural object information, which can be especially advantageous for materials with weak attenuation contrast, such as certain metal-free inks in paper. With cotton paper and different self-made inks based on authentic recipes, we produced test samples for attenuation and dark-field imaging at a metal-jet X-ray source. The resulting images show letters written in metal-free ink that were recovered via grating-based dark-field imaging. Without the need for synchrotron-like beam quality, these results set the ground for a mobile dark-field imaging setup that could be brought to a library for document scanning, avoiding long transport routes for valuable historic documents.
Collapse
Affiliation(s)
- Bernhard Akstaller
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
- Correspondence:
| | - Stephan Schreiner
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
| | - Lisa Dietrich
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
| | - Constantin Rauch
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
| | - Max Schuster
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
| | - Veronika Ludwig
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
| | - Christina Hofmann-Randall
- Universitätsbibliothek Handschriften und Graphische Sammlung, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 4, 91054 Erlangen, Germany
| | - Thilo Michel
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
| | - Gisela Anton
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
| | - Stefan Funk
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Gustschin A, Riedel M, Taphorn K, Petrich C, Gottwald W, Noichl W, Busse M, Francis SE, Beckmann F, Hammel JU, Moosmann J, Thibault P, Herzen J. High-resolution and sensitivity bi-directional x-ray phase contrast imaging using 2D Talbot array illuminators. OPTICA 2021; 8:1588-1595. [PMID: 37829605 PMCID: PMC10567101 DOI: 10.1364/optica.441004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 10/14/2023]
Abstract
Two-dimensional (2D) Talbot array illuminators (TAIs) were designed, fabricated, and evaluated for high-resolution high-contrast x-ray phase imaging of soft tissue at 10-20 keV. The TAIs create intensity modulations with a high compression ratio on the micrometer scale at short propagation distances. Their performance was compared with various other wavefront markers in terms of period, visibility, flux efficiency, and flexibility to be adapted for limited beam coherence and detector resolution. Differential x-ray phase contrast and dark-field imaging were demonstrated with a one-dimensional, linear phase stepping approach yielding 2D phase sensitivity using unified modulated pattern analysis (UMPA) for phase retrieval. The method was employed for x-ray phase computed tomography reaching a resolution of 3 µm on an unstained murine artery. It opens new possibilities for three-dimensional, non-destructive, and quantitative imaging of soft matter such as virtual histology. The phase modulators can also be used for various other x-ray applications such as dynamic phase imaging, super-resolution structured illumination microscopy, or wavefront sensing.
Collapse
Affiliation(s)
- Alex Gustschin
- Department of Physics and Munich School of Bioengineering, Technical University of Munich, 85748, Garching, Germany
| | - Mirko Riedel
- Department of Physics and Munich School of Bioengineering, Technical University of Munich, 85748, Garching, Germany
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Kirsten Taphorn
- Department of Physics and Munich School of Bioengineering, Technical University of Munich, 85748, Garching, Germany
| | - Christian Petrich
- Department of Physics and Munich School of Bioengineering, Technical University of Munich, 85748, Garching, Germany
| | - Wolfgang Gottwald
- Department of Physics and Munich School of Bioengineering, Technical University of Munich, 85748, Garching, Germany
| | - Wolfgang Noichl
- Department of Physics and Munich School of Bioengineering, Technical University of Munich, 85748, Garching, Germany
| | - Madleen Busse
- Department of Physics and Munich School of Bioengineering, Technical University of Munich, 85748, Garching, Germany
| | - Sheila E. Francis
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield S10 2RX, UK
| | - Felix Beckmann
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Julian Moosmann
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Pierre Thibault
- Department of Physics, University of Trieste, Trieste 34217, Italy
| | - Julia Herzen
- Department of Physics and Munich School of Bioengineering, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
9
|
Olivo A. Edge-illumination x-ray phase-contrast imaging. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:363002. [PMID: 34167096 PMCID: PMC8276004 DOI: 10.1088/1361-648x/ac0e6e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 05/08/2023]
Abstract
Although early demonstration dates back to the mid-sixties, x-ray phase-contrast imaging (XPCI) became hugely popular in the mid-90s, thanks to the advent of 3rd generation synchrotron facilities. Its ability to reveal object features that had so far been considered invisible to x-rays immediately suggested great potential for applications across the life and the physical sciences, and an increasing number of groups worldwide started experimenting with it. At that time, it looked like a synchrotron facility was strictly necessary to perform XPCI with some degree of efficiency-the only alternative being micro-focal sources, the limited flux of which imposed excessively long exposure times. However, new approaches emerged in the mid-00s that overcame this limitation, and allowed XPCI implementations with conventional, non-micro-focal x-ray sources. One of these approaches showing particular promise for 'real-world' applications is edge-illumination XPCI: this article describes the key steps in its evolution in the context of contemporary developments in XPCI research, and presents its current state-of-the-art, especially in terms of transition towards practical applications.
Collapse
Affiliation(s)
- Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, UCL, London, United Kingdom
| |
Collapse
|
10
|
Abstract
Ever since the discovery of X-rays, tremendous efforts have been made to develop new imaging techniques for unlocking the hidden secrets of our world and enriching our understanding of it. X-ray differential phase contrast imaging, which measures the gradient of a sample's phase shift, can reveal more detail in a weakly absorbing sample than conventional absorption contrast. However, normally only the gradient's component in two mutually orthogonal directions is measurable. In this article, omnidirectional differential phase images, which record the gradient of phase shifts in all directions of the imaging plane, are efficiently generated by scanning an easily obtainable, randomly structured modulator along a spiral path. The retrieved amplitude and main orientation images for differential phase yield more information than the existing imaging methods. Importantly, the omnidirectional dark-field images can be simultaneously extracted to study strongly ordered scattering structures. The proposed method can open up new possibilities for studying a wide range of complicated samples composed of both heavy, strongly scattering atoms and light, weakly scattering atoms.
Collapse
|
11
|
Zdora MC, Zanette I, Walker T, Phillips NW, Smith R, Deyhle H, Ahmed S, Thibault P. X-ray phase imaging with the unified modulated pattern analysis of near-field speckles at a laboratory source. APPLIED OPTICS 2020; 59:2270-2275. [PMID: 32225757 DOI: 10.1364/ao.384531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
X-ray phase-contrast techniques are powerful methods for discerning features with similar densities, which are normally indistinguishable with conventional absorption contrast. While these techniques are well-established tools at large-scale synchrotron facilities, efforts have increasingly focused on implementations at laboratory sources for widespread use. X-ray speckle-based imaging is one of the phase-contrast techniques with high potential for translation to conventional x-ray systems. It yields phase-contrast, transmission, and dark-field images with high sensitivity using a relatively simple and cost-effective setup tolerant to divergent and polychromatic beams. Recently, we have introduced the unified modulated pattern analysis (UMPA) [Phys. Rev. Lett.118, 203903 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.203903], which further simplifies the translation of x-ray speckle-based imaging to low-brilliance sources. Here, we present the proof-of-principle implementation of UMPA speckle-based imaging at a microfocus liquid-metal-jet x-ray laboratory source.
Collapse
|
12
|
Berujon S, Cojocaru R, Piault P, Celestre R, Roth T, Barrett R, Ziegler E. X-ray optics and beam characterization using random modulation: theory. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:284-292. [PMID: 32153267 DOI: 10.1107/s1600577520000491] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
X-ray near-field speckle-based phase-sensing approaches provide efficient means of characterizing optical elements. Presented here is a theoretical review of several of these speckle methods within the framework of optical characterization, and a generalization of the concept is provided. As is also demonstrated experimentally in a parallel paper [Berujon, Cojocaru, Piault, Celestre, Roth, Barrett & Ziegler (2020), J. Synchrotron Rad. 27, (this issue)], the methods theoretically developed here can be applied to different beams and optics and within a variety of situations where at-wavelength metrology is desired. By understanding the differences between the various processing methods, it is possible to find and implement the most suitable approach for each metrology scenario.
Collapse
Affiliation(s)
- Sebastien Berujon
- European Synchrotron Radiation Facility, CS 40220, F-38043 Grenoble Cedex 9, France
| | - Ruxandra Cojocaru
- European Synchrotron Radiation Facility, CS 40220, F-38043 Grenoble Cedex 9, France
| | - Pierre Piault
- European Synchrotron Radiation Facility, CS 40220, F-38043 Grenoble Cedex 9, France
| | - Rafael Celestre
- European Synchrotron Radiation Facility, CS 40220, F-38043 Grenoble Cedex 9, France
| | - Thomas Roth
- European Synchrotron Radiation Facility, CS 40220, F-38043 Grenoble Cedex 9, France
| | - Raymond Barrett
- European Synchrotron Radiation Facility, CS 40220, F-38043 Grenoble Cedex 9, France
| | - Eric Ziegler
- European Synchrotron Radiation Facility, CS 40220, F-38043 Grenoble Cedex 9, France
| |
Collapse
|
13
|
Willer K, Fingerle AA, Gromann LB, De Marco F, Herzen J, Achterhold K, Gleich B, Muenzel D, Scherer K, Renz M, Renger B, Kopp F, Kriner F, Fischer F, Braun C, Auweter S, Hellbach K, Reiser MF, Schroeter T, Mohr J, Yaroshenko A, Maack HI, Pralow T, van der Heijden H, Proksa R, Koehler T, Wieberneit N, Rindt K, Rummeny EJ, Pfeiffer F, Noël PB. X-ray dark-field imaging of the human lung-A feasibility study on a deceased body. PLoS One 2018; 13:e0204565. [PMID: 30261038 PMCID: PMC6160109 DOI: 10.1371/journal.pone.0204565] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 09/11/2018] [Indexed: 12/24/2022] Open
Abstract
Disorders of the lungs such as chronic obstructive pulmonary disease (COPD) are a major cause of chronic morbidity and mortality and the third leading cause of death in the world. The absence of sensitive diagnostic tests for early disease stages of COPD results in under-diagnosis of this treatable disease in an estimated 60–85% of the patients. In recent years a grating-based approach to X-ray dark-field contrast imaging has shown to be very sensitive for the detection and quantification of pulmonary emphysema in small animal models. However, translation of this technique to imaging systems suitable for humans remains challenging and has not yet been reported. In this manuscript, we present the first X-ray dark-field images of in-situ human lungs in a deceased body, demonstrating the feasibility of X-ray dark-field chest radiography on a human scale. Results were correlated with findings of computed tomography imaging and autopsy. The performance of the experimental radiography setup allows acquisition of multi-contrast chest X-ray images within clinical boundary conditions, including radiation dose. Upcoming clinical studies will have to demonstrate that this technology has the potential to improve early diagnosis of COPD and pulmonary diseases in general.
Collapse
Affiliation(s)
- Konstantin Willer
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Alexander A. Fingerle
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lukas B. Gromann
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Fabio De Marco
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Julia Herzen
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Klaus Achterhold
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Bernhard Gleich
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Daniela Muenzel
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kai Scherer
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Martin Renz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernhard Renger
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Felix Kopp
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Fabian Kriner
- Institute of Forensic Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Florian Fischer
- Institute of Forensic Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Braun
- Institute of Forensic Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sigrid Auweter
- Institute of Clinical Radiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Katharina Hellbach
- Institute of Clinical Radiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maximilian F. Reiser
- Institute of Clinical Radiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tobias Schroeter
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Eggenstein-Leopoldshafen, Germany
| | - Juergen Mohr
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | - Roland Proksa
- Philips GmbH Innovative Technologies, Research Laboratories, Hamburg, Germany
| | - Thomas Koehler
- Philips GmbH Innovative Technologies, Research Laboratories, Hamburg, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | | | | | - Ernst J. Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franz Pfeiffer
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
- * E-mail:
| | - Peter B. Noël
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
Wang H, Cai B, Pankhurst MJ, Zhou T, Kashyap Y, Atwood R, Le Gall N, Lee P, Drakopoulos M, Sawhney K. X-ray phase-contrast imaging with engineered porous materials over 50 keV. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1182-1188. [PMID: 29979180 PMCID: PMC6038599 DOI: 10.1107/s1600577518005623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
X-ray phase-contrast imaging can substantially enhance image contrast for weakly absorbing samples. The fabrication of dedicated optics remains a major barrier, especially in high-energy regions (i.e. over 50 keV). Here, the authors perform X-ray phase-contrast imaging by using engineered porous materials as random absorption masks, which provides an alternative solution to extend X-ray phase-contrast imaging into previously challenging higher energy regions. The authors have measured various samples to demonstrate the feasibility of the proposed engineering materials. This technique could potentially be useful for studying samples across a wide range of applications and disciplines.
Collapse
Affiliation(s)
- Hongchang Wang
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Biao Cai
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK
| | - Matthew James Pankhurst
- School of Materials, University of Manchester, Manchester M13 9PL, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11 0FA, UK
- School of Earth and Environment, University of Leeds, Leeds LS29 9ET, UK
- Instituto Technológico y de Energías Renovables (ITER), 38900 Granadilla de Abona, Tenerife, Canary Islands, Spain
- Instituto Volcanológico de Canaries (INVOLCAN), 38400 Puerto de la Cruz, Tenerife, Canary Islands, Spain
| | - Tunhe Zhou
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Yogesh Kashyap
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Robert Atwood
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Nolwenn Le Gall
- School of Materials, University of Manchester, Manchester M13 9PL, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11 0FA, UK
| | - Peter Lee
- School of Materials, University of Manchester, Manchester M13 9PL, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxfordshire OX11 0FA, UK
| | - Michael Drakopoulos
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Kawal Sawhney
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
15
|
Applications of Laboratory-Based Phase-Contrast Imaging Using Speckle Tracking Technique towards High Energy X-Rays. J Imaging 2018. [DOI: 10.3390/jimaging4050069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Zhou T, Wang H, Connolley T, Scott S, Baker N, Sawhney K. Development of an X-ray imaging system to prevent scintillator degradation for white synchrotron radiation. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:801-807. [PMID: 29714191 PMCID: PMC5929358 DOI: 10.1107/s1600577518003193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/23/2018] [Indexed: 05/28/2023]
Abstract
The high flux of the white X-ray beams from third-generation synchrotron light sources can significantly benefit the development of high-speed X-ray imaging, but can also bring technical challenges to existing X-ray imaging systems. One prevalent problem is that the image quality deteriorates because of dust particles accumulating on the scintillator screen during exposure to intense X-ray radiation. Here, this problem has been solved by embedding the scintillator in a flowing inert-gas environment. It is also shown that the detector maintains the quality of the captured images even after days of X-ray exposure. This modification is cost-efficient and easy to implement. Representative examples of applications using the X-ray imaging system are also provided, including fast tomography and multimodal phase-contrast imaging for biomedical and geological samples.
Collapse
Affiliation(s)
- Tunhe Zhou
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Hongchang Wang
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Thomas Connolley
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Steward Scott
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Nick Baker
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Kawal Sawhney
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
17
|
|
18
|
Astolfo A, Endrizzi M, Vittoria FA, Diemoz PC, Price B, Haig I, Olivo A. Large field of view, fast and low dose multimodal phase-contrast imaging at high x-ray energy. Sci Rep 2017; 7:2187. [PMID: 28526835 PMCID: PMC5438381 DOI: 10.1038/s41598-017-02412-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
X-ray phase contrast imaging (XPCI) is an innovative imaging technique which extends the contrast capabilities of 'conventional' absorption based x-ray systems. However, so far all XPCI implementations have suffered from one or more of the following limitations: low x-ray energies, small field of view (FOV) and long acquisition times. Those limitations relegated XPCI to a 'research-only' technique with an uncertain future in terms of large scale, high impact applications. We recently succeeded in designing, realizing and testing an XPCI system, which achieves significant steps toward simultaneously overcoming these limitations. Our system combines, for the first time, large FOV, high energy and fast scanning. Importantly, it is capable of providing high image quality at low x-ray doses, compatible with or even below those currently used in medical imaging. This extends the use of XPCI to areas which were unpractical or even inaccessible to previous XPCI solutions. We expect this will enable a long overdue translation into application fields such as security screening, industrial inspections and large FOV medical radiography - all with the inherent advantages of the XPCI multimodality.
Collapse
Affiliation(s)
- Alberto Astolfo
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, London, United Kingdom.
| | - Marco Endrizzi
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, London, United Kingdom
| | - Fabio A Vittoria
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, London, United Kingdom
| | - Paul C Diemoz
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, London, United Kingdom
| | - Benjamin Price
- X-Tek Systems-Nikon, Tring Business Centre, Icknield Way, Tring, Hertfordshire, UK
| | - Ian Haig
- X-Tek Systems-Nikon, Tring Business Centre, Icknield Way, Tring, Hertfordshire, UK
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, London, United Kingdom.
| |
Collapse
|