1
|
Ren X, Liu Y, Wang F, Li C, Zhou X, Jin L. 1,3,4-Oxadiazole Sulfonamide Derivatives Containing Pyrazole Structures: Design, Synthesis, Biological Activity Studies, and Mechanism Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3330-3340. [PMID: 39876822 DOI: 10.1021/acs.jafc.4c05674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Sulfonamide derivatives have been widely used for pesticide research in recent years. Herein, 1,3,4-oxadiazole sulfonamide derivatives containing a pyrazole structure were synthesized, and their structure-activity relationship was studied. Bioactivity tests showed the remarkable efficacy of most synthesized compounds. Especially for Xanthomonas oryzae pv oryzae, A23 exhibited 100% inhibition at 100 mg/L, surpassing bismerthiazol (99.3%), and 90% inhibition at 50 mg/L, outperforming thiodiazole copper (84.5%), with an EC50 of 5.0 mg/L, markedly more active than bismerthiazol (23.9 mg/L) and thiodiazole copper (63.5 mg/L). Initial investigations into antimicrobial mechanisms involved a series of biochemical analyses, including bacterial growth rate analysis, scanning electron microscopy, bacterial biofilm formation experiments, and molecular docking analyses. Notably, A23 considerably inhibited the formation of Xoo biofilms, disrupting the integrity of bacterial cell membranes. Co-analysis of transcriptomics and proteomics revealed the capability of A23 to regulate pathways such as tryptophan metabolism and phenylpropanoid biosynthesis, enhancing the innate immunity of rice and activating its disease resistance. Thus, A23 emerges as a potential immunoinducible pesticide lead compound for the discovery of highly active immune-inducing agents.
Collapse
Affiliation(s)
- Xiaoli Ren
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Youhua Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Fali Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Changkun Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xia Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Linhong Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Li B, Wang Z, Jiang H, Luo JH, Guo T, Tian F, Rossi V, He Y. ZmCCT10-relayed photoperiod sensitivity regulates natural variation in the arithmetical formation of male germinal cells in maize. THE NEW PHYTOLOGIST 2023; 237:585-600. [PMID: 36266961 DOI: 10.1111/nph.18559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Extensive mutational screening studies have documented genes regulating anther and pollen development. Knowledge concerning how formation of male germinal cell is arithmetically controlled in natural populations, under different environmental conditions, is lacking. We counted pollen number within a single anther and a maize-teosinte BC2 S3 recombinant inbred line population to identify ZmCCT10 as a major determinant of pollen number variation. ZmCCT10 was originally identified as a photoperiod-sensitive negative regulator of flowering. ZmCCT10 inactivation, after transposon insertion within its promoter, is proposed to have accelerated maize spread toward higher latitudes, thus allowing temperate maize to flower under long-day conditions. We showed that the active ZmCCT10 allele decreased pollen formation. As different active and inactive ZmCCT10 alleles have been found in natural maize populations, this represents the first report of a gene controlling pollen number in a crop natural population. These findings suggest that higher pollen number, which provides a competitive advantage in open-pollinated populations, may have been one of the major driving forces for the selection of an inactive ZmCCT10 allele during tropical maize domestication. We provide evidence that ZmCCT10 has opposite effects on cell proliferation of archesporial and tapetum cells and it modulates expression of key regulators during early anther development.
Collapse
Affiliation(s)
- Bo Li
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Zi Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Huan Jiang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Jin-Hong Luo
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Ting Guo
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Feng Tian
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, 24126, Italy
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
3
|
Zhu K, Zhang W, Sarwa R, Xu S, Li K, Yang Y, Li Y, Wang Z, Cao J, Li Y, Tan X. Proteomic analysis of a clavata-like phenotype mutant in Brassica napus. Genet Mol Biol 2020; 43:e20190305. [PMID: 32154828 PMCID: PMC7198001 DOI: 10.1590/1678-4685-gmb-2019-0305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022] Open
Abstract
Rapeseed is one of important oil crops in China. Better understanding of the
regulation network of main agronomic traits of rapeseed could improve the
yielding of rapeseed. In this study, we obtained an influrescence mutant that
showed a fusion phenotype, similar with the Arabidopsis
clavata-like phenotype, so we named the mutant as
Bnclavata-like (Bnclv-like). Phenotype
analysis illustrated that abnormal development of the inflorescence meristem
(IM) led to the fused-inflorescence phenotype. At the stage of protein
abundance, major regulators in metabolic processes, ROS metabolism, and
cytoskeleton formation were seen to be altered in this mutant. These results not
only revealed the relationship between biological processes and inflorescence
meristem development, but also suggest bioengineering strategies for the
improved breeding and production of Brassica napus.
Collapse
Affiliation(s)
- Keming Zhu
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China.,Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, China
| | - Weiwei Zhang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Rehman Sarwa
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Shuo Xu
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Kaixia Li
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yanhua Yang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yulong Li
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Zheng Wang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Jun Cao
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yaoming Li
- Jiangsu University, Institute of Agricultural Engineering, Zhenjiang, China
| | - Xiaoli Tan
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
4
|
Wang S, Chen Z, Tian L, Ding Y, Zhang J, Zhou J, Liu P, Chen Y, Wu L. Comparative proteomics combined with analyses of transgenic plants reveal ZmREM1.3 mediates maize resistance to southern corn rust. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2153-2168. [PMID: 30972847 PMCID: PMC6790363 DOI: 10.1111/pbi.13129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 05/25/2023]
Abstract
Southern corn rust (SCR), which is a destructive disease caused by Puccinia polysora Underw. (P. polysora), commonly occurs in warm-temperate and tropical regions. To identify candidate proteins related to SCR resistance and characterize the molecular mechanisms underlying the maize-P. polysora interaction, a comparative proteomic analysis of susceptible and resistant maize lines was performed. Statistical analyses revealed 1489 differentially abundant proteins in the resistant line, as well as 1035 differentially abundant proteins in the susceptible line. After the P. polysora infection, the abundance of one remorin protein (ZmREM1.3) increased in the resistant genotype, but decreased in the susceptible genotype. Plant-specific remorins are important for responses to microbial infections as well as plant signalling processes. In this study, transgenic maize plants overexpressing ZmREM1.3 exhibited enhanced resistance to the biotrophic P. polysora. In contrast, homozygous ZmREM1.3 UniformMu mutant plants were significantly more susceptible to P. polysora than wild-type plants. Additionally, the ZmREM1.3-overexpressing plants accumulated more salicylic acid (SA) and jasmonic acid (JA). Moreover, the expression levels of defence-related genes were higher in ZmREM1.3-overexpressing maize plants than in non-transgenic control plants in response to the P. polysora infection. Overall, our results provide evidence that ZmREM1.3 positively regulates maize defences against P. polysora likely via SA/JA-mediated defence signalling pathways. This study represents the first large-scale proteomic analysis of the molecular mechanisms underlying the maize-P. polysora interaction. This is also the first report confirming the remorin protein family affects plant resistance to SCR.
Collapse
Affiliation(s)
- Shunxi Wang
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Zan Chen
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Lei Tian
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Yezhang Ding
- Section of Cell and Developmental BiologyUniversity of California at San DiegoLa JollaCAUSA
| | - Jun Zhang
- Cereal Crop Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Jinlong Zhou
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Ping Liu
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Yanhui Chen
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Liuji Wu
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| |
Collapse
|
5
|
Long photoperiod affects the maize transition from vegetative to reproductive stages: a proteomic comparison between photoperiod-sensitive inbred line and its recurrent parent. Amino Acids 2017; 50:149-161. [PMID: 29030729 DOI: 10.1007/s00726-017-2501-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/30/2017] [Indexed: 01/20/2023]
Abstract
Maize (Zea mays L.) is a typical short-day plant that is produced as an important food product and industrial material. The photoperiod is one of the most important evolutionary mechanisms enabling the adaptation of plant developmental phases to changes in climate conditions. There are differences in the photoperiod sensitivity of maize inbred lines from tropical to temperate regions. In this study, to identify the maize proteins responsive to a long photoperiod (LP), the photoperiod-insensitive inbred line HZ4 and its near-isogenic line H496, which is sensitive to LP conditions, were analyzed under long-day conditions using isobaric tags for relative and absolute quantitation. We identified 5259 proteins in maize leaves exposed to the LP condition between the vegetative and reproductive stages. These proteins included 579 and 576 differentially accumulated proteins in H496 and HZ4 leaves, respectively. The differentially accumulated proteins (e.g., membrane, defense, and energy- and ribosome-related proteins) exhibited the opposite trends in HZ4 and H496 plants during the transition from the vegetative stage to the reproductive stage. These results suggest that the photoperiod-associated fragment in H496 plants considerably influences various proteins to respond to the photoperiod sensitivity. Overall, our data provide new insights into the effects of long-day treatments on the maize proteome, and may be useful for the development of new germplasm.
Collapse
|