1
|
Fan Z, Liu Y, Lan Y, Wu Y, Li J, Xu X. CoCl 2-Induced hypoxia promotes hPDLSCs osteogenic differentiation through AKT/mTOR/4EBP-1/HIF-1α signaling and facilitates the repair of alveolar bone defects. Cell Biol Int 2024; 48:808-820. [PMID: 38433534 DOI: 10.1002/cbin.12148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Bone defects are characterized by a hypoxic environment, which affects bone tissue repair. However, the role of hypoxia in the repair of alveolar bone defects remains unclear. Human periodontal ligament stem cells (hPDLSCs) are high-quality seed cells for repairing alveolar bone defects, whose behavior changes under hypoxia. However, their mechanism of action is not known and needs to be elucidated. We hypothesized that hypoxia might be beneficial to alveolar bone defect repair and the osteogenic differentiation of hPDLSCs. To test this hypothesis, cobalt chloride (CoCl2) was used to create a hypoxic environment, both in vitro and in vivo. In vitro study, the best osteogenic effect was observed after 48 h of hypoxia in hPDLSCs, and the AKT/mammalian target of rapamycin/eukaryotic translation initiation factor 4e-binding protein 1 (AKT/mTOR/4EBP-1) signaling pathway was significantly upregulated. Inhibition of the AKT/mTOR/4EBP-1 signaling pathway decreased the osteogenic ability of hPDLSCs under hypoxia and hypoxia-inducible factor 1 alpha (HIF-1α) expression. The inhibition of HIF-1α also decreased the osteogenic capacity of hPDLSCs under hypoxia without significantly affecting the level of phosphorylation of AKT/mTOR/4EBP-1. In vitro study, Micro-CT and tissue staining results show better bone regeneration in hypoxic group than control group. These results suggested that hypoxia promoted alveolar bone defect repair and osteogenic differentiation of hPDLSCs, probably through AKT/mTOR/4EBP-1/HIF-1α signaling. These findings provided important insights into the regulatory mechanism of hypoxia in hPDLSCs and elucidated the effect of hypoxia on the healing of alveolar bone defects. This study highlighted the importance of physiological oxygen conditions for tissue engineering.
Collapse
Affiliation(s)
- Zhibo Fan
- Department of Orthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Yanru Liu
- Department of Orthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Yuxin Lan
- Department of Orthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Yujie Wu
- Department of Orthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Junyu Li
- Department of Orthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Xiaomei Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Qian G, Zhang Y, Liu Y, Li M, Xin B, Jiang W, Han W, Wang Y, Tang X, Li L, Zhu L, Sun T, Yan B, Zheng Y, Xu J, Ge B, Zhang Z, Yan D. Glutamylation of an HIV-1 protein inhibits the immune response by hijacking STING. Cell Rep 2023; 42:112442. [PMID: 37099423 DOI: 10.1016/j.celrep.2023.112442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 04/27/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) recognizes Y-form cDNA of human immunodeficiency virus type 1 (HIV-1) and initiates antiviral immune response through cGAS-stimulator of interferon genes (STING)-TBK1-IRF3-type I interferon (IFN-I) signalingcascade. Here, we report that the HIV-1 p6 protein suppresses HIV-1-stimulated expression of IFN-I and promotes immune evasion. Mechanistically, the glutamylated p6 at residue Glu6 inhibits the interaction between STING and tripartite motif protein 32 (TRIM32) or autocrine motility factor receptor (AMFR). This subsequently suppresses the K27- and K63-linked polyubiquitination of STING at K337, therefore inhibiting STING activation, whereas mutation of the Glu6 residue partially reverses the inhibitory effect. However, CoCl2, an agonist of cytosolic carboxypeptidases (CCPs), counteracts the glutamylation of p6 at the Glu6 residue and inhibits HIV-1 immune evasion. These findings reveal a mechanism through which an HIV-1 protein mediates immune evasion and provides a therapeutic drug candidate to treat HIV-1 infection.
Collapse
Affiliation(s)
- Gui Qian
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Yihua Zhang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Yinan Liu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Manman Li
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Bowen Xin
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Wenyi Jiang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Wendong Han
- Biosafety Level 3 Laboratory, Fudan University, Shanghai 200032, China
| | - Yu Wang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Xian Tang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Liuyan Li
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Lingyan Zhu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Tao Sun
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Bo Yan
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Yongtang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jianqing Xu
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Baoxue Ge
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518112, China
| | - Dapeng Yan
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Shao J, Liu S, Zhang M, Chen S, Gan S, Chen C, Chen W, Li L, Zhu Z. A dual role of HIF1α in regulating osteogenesis–angiogenesis coupling. Stem Cell Res Ther 2022; 13:59. [PMID: 35123567 PMCID: PMC8818171 DOI: 10.1186/s13287-022-02742-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/17/2022] [Indexed: 01/01/2023] Open
Abstract
Objectives The hypoxia-inducible factor 1-α (HIF1α), a key molecule in mediating bone-vessel crosstalk, has been considered a promising target for treating osteoporosis caused by gonadal hormones. However, senile osteoporosis, with accumulated senescent cells in aged bone, has a distinct pathogenesis. The study aimed at revealing the unknown role of HIF1α in aged bone, thus broadening its practical application in senile osteoporosis. Materials and methods Femurs and tibias were collected from untreated mice of various ages (2 months old, 10 months old, 18 months old) and treated mice (2 months old, 18 months old) underwent 4-w gavage of 2-methoxyestradiol (a kind of HIF1α inhibitor). Bone-vessel phenotypes were observed by microfil infusion, micro-CT and HE staining. Markers of senescence, osteogenesis, angiogenesis, oxidative stress and expression of HIF1α were detected by senescence β-galactosidase staining, qRT-PCR, western blot and immunostaining, respectively. Furthermore, bone mesenchymal stem cells from young mice (YBMSCs) and aged mice (ABMSCs) were transfected by knockout siRNA and overexpression plasmid of HIF1α. Senescence β-galactosidase staining, Cell Counting Kit-8, transwell assay, alkaline phosphatase staining, alizarin red-S staining and angiogenesis tests were utilized to assess the biological properties of two cell types. Then, Pifithrin-α and Nutlin-3a were adopted to intervene p53 of the two cells. Finally, H2O2 on YBMSCs and NAC on ABMSCs were exploited to change their status of oxidative stress to do a deeper detection. Results Senescent phenotypes, impaired osteogenesis–angiogenesis coupling and increased HIF1α were observed in aged bone and ABMSCs. However, 2-methoxyestradiol improved bone-vessel metabolism of aged mice while damaged that of young mice. Mechanically, HIF1α showed opposed effects in regulating the cell migration and osteogenesis–angiogenesis coupling of YBMSCs and ABMSCs, but no remarked effect on the proliferation of either cell type. Pifithrin-α upregulated the osteogenic and angiogenic markers of HIF1α-siRNA-transfected YBMSCs, and Nutlin-3a alleviated those of HIF1α-siRNA-transfected ABMSCs. The HIF1α-p53 relationship was negative in YBMSCs and NAC-treated ABMSCs, but positive in ABMSCs and H2O2-treated YBMSCs. Conclusion The dual role of HIF1α in osteogenesis–angiogenesis coupling may depend on the ROS-mediated HIF1α-p53 relationship. New awareness about HIF1α will be conducive to its future application in senile osteoporosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02742-1.
Collapse
|
4
|
Kim JH, Kim M, Hong S, Kim EY, Lee H, Jung HS, Sohn Y. Albiflorin Promotes Osteoblast Differentiation and Healing of Rat Femoral Fractures Through Enhancing BMP-2/Smad and Wnt/β-Catenin Signaling. Front Pharmacol 2021; 12:690113. [PMID: 34349649 PMCID: PMC8327266 DOI: 10.3389/fphar.2021.690113] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Fracture healing is related to osteogenic differentiation and mineralization. Recently, due to the unwanted side effects and clinical limitations of existing treatments, various natural product-based chemical studies have been actively conducted. Albiflorin is a major ingredient in Paeonia lactiflora, and this study investigated its ability to promote osteogenic differentiation and fracture healing. To demonstrate the effects of albiflorin on osteoblast differentiation and calcified nodules, alizarin red S staining and von Kossa staining were used in MC3T3-E1 cells. In addition, BMP-2/Smad and Wnt/β-catenin mechanisms known as osteoblast differentiation mechanisms were analyzed through RT-PCR and western blot. To investigate the effects of albiflorin on fracture healing, fractures were induced using a chainsaw in the femur of Sprague Dawley rats, and then albiflorin was intraperitoneally administered. After 1, 2, and 3 weeks, bone microstructure was analyzed using micro-CT. In addition, histological analysis was performed by staining the fractured tissue, and the expression of osteogenic markers in serum was measured. The results demonstrated that albiflorin promoted osteoblastogenesis and the expression of RUNX2 by activating BMP-2/Smad and Wnt/β-catenin signaling in MC3T3-E1 cells. In addition, albiflorin upregulated the expression of various osteogenic genes, such as alkaline phosphatase, OCN, bone sialoprotein, OPN, and OSN. In the femur fracture model, micro-CT analysis showed that albiflorin played a positive role in the formation of callus in the early stage of fracture recovery, and histological examination proved to induce the expression of osteogenic genes in femur tissue. In addition, the expression of bone-related genes in serum was also increased. This suggests that albiflorin promotes osteogenesis, bone calcification and bone formation, thereby promoting the healing of fractures in rats.
Collapse
Affiliation(s)
- Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - SooYeon Hong
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyangsook Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
5
|
Qiao J, Huang J, Zhou M, Cao G, Shen H. Inhibition of HIF-1α restrains fracture healing via regulation of autophagy in a rat model. Exp Ther Med 2018; 17:1884-1890. [PMID: 30783464 DOI: 10.3892/etm.2018.7115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/11/2018] [Indexed: 12/14/2022] Open
Abstract
It has been demonstrated that bone fracture is associated with the activation of autophagy, and upregulation of autophagy could promote fracture healing. Previous study by our group demonstrated that activating the HIF-1α pathway via administration of cobalt (II) chloride (CoCl2) could promote fracture healing in vivo. However, the role of hypoxia-inducible factor-1α (HIF-1α) in autophagy remains unknown. In the current study, rats were divided into two groups following tibial fracture and treated with echinomycin or dimethyl sulfoxide (DMSO). Rats were sacrificed at 7, 14, 28 and 42 days after fracture. The evaluation of fracture healing was performed by micro-computed tomography. In addition, the effects of echinomycin on microtubule-associated protein 1 light chain 3 (LC3 II), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), Unc-51-like autophagy activating kinase 1 (ULK1) and P62 were detected at the mRNA and protein levels by reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry. The results demonstrated that the expression of LC3 II was markedly decreased following systemic administration of echinomycin (0.05 mg/kg every other day for 42 days, intraperitoneally). Furthermore, the levels of Runx2, ALP and ULK1 were decreased, while those of P62 were increased, at the mRNA and protein levels in rats treated with echinomycin in vivo. In summary, the current study suggested that HIF-1α may serve an important role in fracture healing via the downregulation of autophagy.
Collapse
Affiliation(s)
- Junjie Qiao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Jiang Huang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Meng Zhou
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Guanglei Cao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Huiliang Shen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|