1
|
Rex DB, Patil AH, Modi PK, Kandiyil MK, Kasaragod S, Pinto SM, Tanneru N, Sijwali PS, Prasad TSK. Dissecting Plasmodium yoelii Pathobiology: Proteomic Approaches for Decoding Novel Translational and Post-Translational Modifications. ACS OMEGA 2022; 7:8246-8257. [PMID: 35309442 PMCID: PMC8928344 DOI: 10.1021/acsomega.1c03892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Malaria is a vector-borne disease. It is caused by Plasmodium parasites. Plasmodium yoelii is a rodent model parasite, primarily used for studying parasite development in liver cells and vectors. To better understand parasite biology, we carried out a high-throughput-based proteomic analysis of P. yoelii. From the same mass spectrometry (MS)/MS data set, we also captured several post-translational modified peptides by following a bioinformatics analysis without any prior enrichment. Further, we carried out a proteogenomic analysis, which resulted in improvements to some of the existing gene models along with the identification of several novel genes. Analysis of proteome and post-translational modifications (PTMs) together resulted in the identification of 3124 proteins. The identified PTMs were found to be enriched in mitochondrial metabolic pathways. Subsequent bioinformatics analysis provided an insight into proteins associated with metabolic regulatory mechanisms. Among these, the tricarboxylic acid (TCA) cycle and the isoprenoid synthesis pathway are found to be essential for parasite survival and drug resistance. The proteogenomic analysis discovered 43 novel protein-coding genes. The availability of an in-depth proteomic landscape of a malaria pathogen model will likely facilitate further molecular-level investigations on pre-erythrocytic stages of malaria.
Collapse
Affiliation(s)
- Devasahayam
Arokia Balaya Rex
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Arun H. Patil
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Prashant Kumar Modi
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Mrudula Kinarulla Kandiyil
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sandeep Kasaragod
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sneha M. Pinto
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Nandita Tanneru
- CSIR-Centre
for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Puran Singh Sijwali
- CSIR-Centre
for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | | |
Collapse
|
2
|
Quadt KA, Smyrnakou X, Frischknecht F, Böse G, Ganter M. Plasmodium falciparum parasites exit the infected erythrocyte after haemolysis with saponin and streptolysin O. Parasitol Res 2020; 119:4297-4302. [PMID: 33089360 DOI: 10.1007/s00436-020-06932-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/11/2020] [Indexed: 11/28/2022]
Abstract
Malaria is caused by unicellular parasites of the genus Plasmodium, which reside in erythrocytes during the clinically relevant stage of infection. To separate parasite from host cell material, haemolytic agents such as saponin are widely used. Previous electron microscopy studies on saponin-treated parasites reported both, parasites enclosed by the erythrocyte membrane and liberated from the host cell. These ambiguous reports prompted us to investigate haemolysis by live-cell time-lapse microscopy. Using either saponin or streptolysin O to lyse Plasmodium falciparum-infected erythrocytes, we found that ring-stage parasites efficiently exit the erythrocyte upon haemolysis. For late-stage parasites, we found that only approximately half were freed, supporting the previous electron microscopy studies. Immunofluorescence imaging indicated that freed parasites were surrounded by the parasitophorous vacuolar membrane. These results may be of interest for future work using haemolytic agents to enrich for parasite material.
Collapse
Affiliation(s)
- Katharina A Quadt
- Zendia GmbH, Rummler 5, 48324, Sendenhorst, Germany.,Parasitology, Centre for Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Xanthoula Smyrnakou
- Zendia GmbH, Rummler 5, 48324, Sendenhorst, Germany.,Parasitology, Centre for Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.,German Centre for Infection Research, Heidelberg Division, Heidelberg, Germany
| | - Guido Böse
- Zendia GmbH, Rummler 5, 48324, Sendenhorst, Germany.
| | - Markus Ganter
- Zendia GmbH, Rummler 5, 48324, Sendenhorst, Germany. .,Parasitology, Centre for Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Role of Plasmodium falciparum Protein GEXP07 in Maurer's Cleft Morphology, Knob Architecture, and P. falciparum EMP1 Trafficking. mBio 2020; 11:mBio.03320-19. [PMID: 32184257 PMCID: PMC7078486 DOI: 10.1128/mbio.03320-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The trafficking of the virulence antigen PfEMP1 and its presentation at the knob structures at the surface of parasite-infected RBCs are central to severe adhesion-related pathologies such as cerebral and placental malaria. This work adds to our understanding of how PfEMP1 is trafficked to the RBC membrane by defining the protein-protein interaction networks that function at the Maurer’s clefts controlling PfEMP1 loading and unloading. We characterize a protein needed for virulence protein trafficking and provide new insights into the mechanisms for host cell remodeling, parasite survival within the host, and virulence. The malaria parasite Plasmodium falciparum traffics the virulence protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of infected red blood cells (RBCs) via membranous organelles, known as the Maurer’s clefts. We developed a method for efficient enrichment of Maurer’s clefts and profiled the protein composition of this trafficking organelle. We identified 13 previously uncharacterized or poorly characterized Maurer’s cleft proteins. We generated transfectants expressing green fluorescent protein (GFP) fusions of 7 proteins and confirmed their Maurer’s cleft location. Using co-immunoprecipitation and mass spectrometry, we generated an interaction map of proteins at the Maurer’s clefts. We identified two key clusters that may function in the loading and unloading of PfEMP1 into and out of the Maurer’s clefts. We focus on a putative PfEMP1 loading complex that includes the protein GEXP07/CX3CL1-binding protein 2 (CBP2). Disruption of GEXP07 causes Maurer’s cleft fragmentation, aberrant knobs, ablation of PfEMP1 surface expression, and loss of the PfEMP1-mediated adhesion. ΔGEXP07 parasites have a growth advantage compared to wild-type parasites, and the infected RBCs are more deformable and more osmotically fragile.
Collapse
|
4
|
The parasitophorous vacuole of the blood-stage malaria parasite. Nat Rev Microbiol 2020; 18:379-391. [PMID: 31980807 DOI: 10.1038/s41579-019-0321-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/31/2022]
Abstract
The pathology of malaria is caused by infection of red blood cells with unicellular Plasmodium parasites. During blood-stage development, the parasite replicates within a membrane-bound parasitophorous vacuole. A central nexus for host-parasite interactions, this unique parasite shelter functions in nutrient acquisition, subcompartmentalization and the export of virulence factors, making its functional molecules attractive targets for the development of novel intervention strategies to combat the devastating impact of malaria. In this Review, we explore the origin, development, molecular composition and functions of the parasitophorous vacuole of Plasmodium blood stages. We also discuss the relevance of the malaria parasite's intravacuolar lifestyle for successful erythrocyte infection and provide perspectives for future research directions in parasitophorous vacuole biology.
Collapse
|
5
|
Caldelari R, Dogga S, Schmid MW, Franke-Fayard B, Janse CJ, Soldati-Favre D, Heussler V. Transcriptome analysis of Plasmodium berghei during exo-erythrocytic development. Malar J 2019; 18:330. [PMID: 31551073 PMCID: PMC6760107 DOI: 10.1186/s12936-019-2968-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The complex life cycle of malaria parasites requires well-orchestrated stage specific gene expression. In the vertebrate host the parasites grow and multiply by schizogony in two different environments: within erythrocytes and within hepatocytes. Whereas erythrocytic parasites are well-studied in this respect, relatively little is known about the exo-erythrocytic stages. METHODS In an attempt to fill this gap, genome wide RNA-seq analyses of various exo-erythrocytic stages of Plasmodium berghei including sporozoites, samples from a time-course of liver stage development and detached cells were performed. These latter contain infectious merozoites and represent the final step in exo-erythrocytic development. RESULTS The analysis represents the complete transcriptome of the entire life cycle of P. berghei parasites with temporal detailed analysis of the liver stage allowing comparison of gene expression across the progression of the life cycle. These RNA-seq data from different developmental stages were used to cluster genes with similar expression profiles, in order to infer their functions. A comparison with published data from other parasite stages confirmed stage-specific gene expression and revealed numerous genes that are expressed differentially in blood and exo-erythrocytic stages. One of the most exo-erythrocytic stage-specific genes was PBANKA_1003900, which has previously been annotated as a "gametocyte specific protein". The promoter of this gene drove high GFP expression in exo-erythrocytic stages, confirming its expression profile seen by RNA-seq. CONCLUSIONS The comparative analysis of the genome wide mRNA expression profiles of erythrocytic and different exo-erythrocytic stages could be used to improve the understanding of gene regulation in Plasmodium parasites and can be used to model exo-erythrocytic stage metabolic networks toward the identification of differences in metabolic processes during schizogony in erythrocytes and hepatocytes.
Collapse
Affiliation(s)
- Reto Caldelari
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| | - Sunil Dogga
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, Geneva, Switzerland
| | | | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, Geneva, Switzerland
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Siau A, Huang X, Loh HP, Zhang N, Meng W, Sze SK, Renia L, Preiser P. Immunomic Identification of Malaria Antigens Associated With Protection in Mice. Mol Cell Proteomics 2019; 18:837-853. [PMID: 30718293 DOI: 10.1074/mcp.ra118.000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/22/2019] [Indexed: 11/06/2022] Open
Abstract
Efforts to develop vaccines against malaria represent a major research target. The observations that 1) sterile protection can be obtained when the host is exposed to live parasites and 2) the immunity against blood stage parasite is principally mediated by protective antibodies suggest that a protective vaccine is feasible. However, only a small number of proteins have been investigated so far and most of the Plasmodium proteome has yet to be explored. To date, only few immunodominant antigens have emerged for testing in clinical trials but no formulation has led to substantial protection in humans. The nature of parasite molecules associated with protection remains elusive. Here, immunomic screening of mice immune sera with different protection efficiencies against the whole parasite proteome allowed us to identify a large repertoire of antigens validated by screening a library expressing antigens. The calculation of weighted scores reflecting the likelihood of protection of each antigen using five predictive criteria derived from immunomic and proteomic data sets, highlighted a priority list of protective antigens. Altogether, the approach sheds light on conserved antigens across Plasmodium that are amenable to targeting by the host immune system upon merozoite invasion and blood stage development. Most of these antigens have preliminary protection data but have not been widely considered as candidate for vaccine trials, opening new perspectives that overcome the limited choice of immunodominant, poorly protective vaccines currently being the focus of malaria vaccine researches.
Collapse
Affiliation(s)
- Anthony Siau
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;.
| | - Ximei Huang
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;; From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Han Ping Loh
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;; From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Neng Zhang
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Wei Meng
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Siu Kwan Sze
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Laurent Renia
- §Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore
| | - Peter Preiser
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;.
| |
Collapse
|
7
|
Matz JM, Matuschewski K. An in silico down-scaling approach uncovers novel constituents of the Plasmodium-containing vacuole. Sci Rep 2018; 8:14055. [PMID: 30232409 PMCID: PMC6145888 DOI: 10.1038/s41598-018-32471-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/05/2018] [Indexed: 01/09/2023] Open
Abstract
During blood stage development the malaria parasite resides in a membrane-bound compartment, termed the parasitophorous vacuole (PV). The reasons for this intravacuolar life style and the molecular functions of this parasite-specific compartment remain poorly defined, which is mainly due to our limited knowledge about the molecular make-up of this unique niche. We used an in silico down-scaling approach to select for Plasmodium-specific candidates that harbour signatures of PV residency. Live co-localisation of five endogenously tagged proteins confirmed expression in the PV of Plasmodium berghei blood and liver stages. ER retention was ruled out by addition of the respective carboxyterminal tetrapeptides to a secreted reporter protein. Although all five PV proteins are highly expressed, four proved to be dispensable for parasite development in the mammalian and mosquito host, as revealed by targeted gene deletion. In good agreement with their redundant roles, the knockout parasites displayed no detectable deficiencies in protein export, sequestration, or PV morphology. Together, our approach improved the catalogue of the Plasmodium PV proteome and provides experimental genetics evidence for functional redundancy of several PV proteins.
Collapse
Affiliation(s)
- Joachim Michael Matz
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115, Berlin, Germany. .,Parasitology Unit, Max Planck Institute for Infection Biology, 10117, Berlin, Germany.
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| |
Collapse
|