1
|
Wu S, Bu X, Chen D, Wu X, Wu H, Caiyin Q, Qiao J. Molecules-mediated bidirectional interactions between microbes and human cells. NPJ Biofilms Microbiomes 2025; 11:38. [PMID: 40038292 PMCID: PMC11880406 DOI: 10.1038/s41522-025-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Complex molecules-mediated interactions, which are based on the bidirectional information exchange between microbes and human cells, enable the defense against diseases and health maintenance. Recently, diverse single-direction interactions based on active metabolites, immunity factors, and quorum sensing signals have largely been summarized separately. In this review, according to a simplified timeline, we proposed the framework of Molecules-mediated Bidirectional Interactions (MBI) between microbe and humans to decipher and understand their intricate interactions systematically. About the microbe-derived interactions, we summarized various molecules, such as short-chain fatty acids, bile acids, tryptophan catabolites, and quorum sensing molecules, and their corresponding human receptors. Concerning the human-derived interactions, we reviewed the effect of human molecules, including hormones, cytokines, and other circulatory metabolites on microbial characteristics and phenotypes. Finally, we discussed the challenges and trends for developing and deciphering molecule-mediated bidirectional interactions and their potential applications in the guard of human health.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueying Bu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Danlei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueyan Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hao Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
2
|
Murashkin NN, Epishev RV, Ivanov RA, Materikin AI, Opryatin LA, Savelova AA, Nezhvedilova RY, Ambarchian ET, Fedorov DV, Rusakova LL. Innovations in Therapeutic Improvement of the Cutaneous Microbiome in Children with Atopic Dermatitis. CURRENT PEDIATRICS 2022. [DOI: 10.15690/vsp.v21i5.2449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biofilm is the dominant form of skin microbiota organization that provides adhesion and preservation of microorganisms in the skin micro-environment. It is necessary to ensure epidermal barrier function and local immunomodulation. Staphylococcus aureus becomes the major colonizer of skin lesions in case of atopic dermatitis exacerbation, and it also can form the biofilms. S. aureus growth and biofilm formation due to other microbial commensals on the skin of patients with atopic dermatitis leads to chronic output of pro-inflammatory cytokines and later to abnormalities in healthy skin microbiome. The role of microbial biofilm in human’s health makes the skin microbiota an attractive target for therapeutic intervention in various skin diseases.
Collapse
Affiliation(s)
- N. N. Murashkin
- National Medical Research Center of Children’s Health; Sechenov First Moscow State Medical University; Central State Medical Academy of Department of Presidential Affairs
| | - R. V. Epishev
- National Medical Research Center of Children’s Health
| | - R. A. Ivanov
- National Medical Research Center of Children’s Health
| | | | | | | | | | - E. T. Ambarchian
- Pediatrics and Child Health Research Institute in Petrovsky National Research Centre of Surgery
| | - D. V. Fedorov
- National Medical Research Center of Children’s Health
| | | |
Collapse
|
3
|
Rapid Advancement in Enteral Nutrition Does Not Affect Systemic Inflammation and Insulin Homeostasis Following Pediatric Cardiopulmonary Bypass Surgery. Pediatr Crit Care Med 2020; 21:e441-e448. [PMID: 32195897 DOI: 10.1097/pcc.0000000000002314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To determine impact of enteral nutrition delivery on the relationship among inflammation, insulin resistance, and outcomes following pediatric cardiopulmonary bypass surgery. DESIGN Pilot, randomized study analyzed according to intention-to-treat analysis. SETTING Pediatric cardiac ICU. PATIENTS Infants (≤ 6 mo) undergoing cardiopulmonary bypass. INTERVENTIONS Patients randomly assigned to receive rapid escalation to enteral nutrition reaching goal feeds by 27 hours or standard feeding practice reaching goal feeds by 63 hours. Feeds were initiated on the first postoperative day. MEASUREMENTS AND MAIN RESULTS Fifty patients were randomized equally to study arms. Patients were a median (interquartile range) of 16 days old (7-110 d old), undergoing biventricular surgery (88%) with a median cardiopulmonary bypass time of 125 minutes (105-159 min). Serial blood samples were drawn before and after cardiopulmonary bypass, cardiac ICU admission, and every 12 hours (up to 96 hr) for glucose, insulin, and cytokines (interleukin-1α, interleukin-6, interleukin-8, interleukin-10, and tumor necrosis factor-α) levels. Glucose-insulin ratio was calculated to quantify insulin resistance. Patient characteristics, time to enteral nutrition initiation, enteral nutrition interruptions, and insulin administration were similar across intervention arms. FF reached goal feeds at similar intervals as standard feeding (39 hr [30-60 hr] vs 60 hr [21-78 hr]; p = 0.75). No difference in cytokine, insulin, or glucose-insulin ratio was noted between groups. Higher inflammation was associated with increased glucose-insulin ratio and higher risk of adverse events. In multivariable models of interleukin-8, FF was associated with increased glucose-insulin ratio (estimate of effect [95% CI], 0.152 [0.033-0.272]; p = 0.013). Although higher interleukin-8 was associated with an elevated risk of adverse event, this relationship was possibly mitigated by FF (odds ratio [95% CI], 0.086 [0.002-1.638]; p = 0.13). CONCLUSIONS A FF strategy was not associated with changes to early enteral nutrition delivery. Inflammation, insulin resistance, and morbidity were similar, but FF may modify the relationship between inflammation and adverse event. Multicenter nutrition studies are possible and necessary in this vulnerable population.
Collapse
|
4
|
Di Domenico EG, Cavallo I, Capitanio B, Ascenzioni F, Pimpinelli F, Morrone A, Ensoli F. Staphylococcus aureus and the Cutaneous Microbiota Biofilms in the Pathogenesis of Atopic Dermatitis. Microorganisms 2019; 7:E301. [PMID: 31470558 PMCID: PMC6780378 DOI: 10.3390/microorganisms7090301] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Biofilm is the dominant mode of growth of the skin microbiota, which promotes adhesion and persistence in the cutaneous microenvironment, thus contributing to the epidermal barrier function and local immune modulation. In turn, the local immune microenvironment plays a part in shaping the skin microbiota composition. Atopic dermatitis (AD) is an immune disorder characterized by a marked dysbiosis, with a sharp decline of microbial diversity. During AD flares biofilm-growing Staphylococcus aureus emerges as the major colonizer in the skin lesions, in strict association with disease severity. The chronic production of inflammatory cytokines in the skin of AD individuals concurs at supporting S. aureus biofilm overgrowth at the expense of other microbial commensals, subverting the composition of the healthy skin microbiome. The close relationship between the host and microbial biofilm resident in the skin has profound implications on human health, making skin microbiota an attractive target for the therapeutic management of different skin disorders.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy.
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| | - Bruno Capitanio
- Division of Dermatology, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology C. Darwin, University of Rome Sapienza, 00161 Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| | - Aldo Morrone
- Scientific Director San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
5
|
Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: a pivotal interplay in the pathogenesis of Atopic Dermatitis. Sci Rep 2018; 8:9573. [PMID: 29955077 PMCID: PMC6023932 DOI: 10.1038/s41598-018-27421-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/29/2018] [Indexed: 12/30/2022] Open
Abstract
Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials.
Collapse
|