1
|
Yang Z, Zhong T, Mo Q, He J, Chong J, Hu X, Zhao S, Qin J. Monoamine oxidase B activatable red fluorescence probe for bioimaging in cells and zebrafish. Bioorg Chem 2024; 145:107156. [PMID: 38387393 DOI: 10.1016/j.bioorg.2024.107156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
A real-time and specific for the detection of Monoamine Oxidase B (MAO-B) to investigate the MAO-B-relevant disease development and treatment process is urgently desirable. Here, we utilized MAO-B to catalyze the conversion of propylamino groups to aldehyde groups, which was then quickly followed by a β-elimination process to produce fluorescent probes (FNJP) that may be used to detect MAO-B in vitro and in vivo. The FNJP probe possesses unique properties, including favorable reactivity (Km = 10.8 μM), high cell permeability, and NIR characteristics (λem = 610 nm). Moreover, the FNJP probe showed high selectivity for MAO-B and was able to detect endogenous MAO-B levels from a mixed population of NIH-3 T3 and HepG2 cells. MAO-B expression was found to be increased in cells under lipopolysaccharide-stimulated cellular oxidative stress in neuronal-like SH-SY5Y cells. In addition, the visualization of FNJP for MAO-B activity in zebrafish can be an effective tool for exploring the biofunctions of MAO-B. Considering these excellent properties, the FNJP probe may be a powerful tool for detecting MAO-B levels in living organisms and can be used for accurate clinical diagnoses of related diseases.
Collapse
Affiliation(s)
- Zhengmin Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China; Qiannan Medical College for Nationalities, Duyun 558003, PR China
| | - Tiantian Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Qingyuan Mo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Jiman He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Jia Chong
- Qiannan Medical College for Nationalities, Duyun 558003, PR China
| | - Xianyun Hu
- Qiannan Medical College for Nationalities, Duyun 558003, PR China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Jiangke Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
2
|
Duangkamol C, Wangngae S, Wet-osot S, Khaikate O, Chansaenpak K, Lai RY, Kamkaew A. Quinoline-Malononitrile-Based Aggregation-Induced Emission Probe for Monoamine Oxidase Detection in Living Cells. Molecules 2023; 28:molecules28062655. [PMID: 36985627 PMCID: PMC10054884 DOI: 10.3390/molecules28062655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
A quinoline-malononitrile (QM)-based aggregation-induced emission probe was developed to detect MAOs in cells through an enzymatic reaction followed by β-elimination. After being incubated at 37 °C, QM-NH2 responded to the MAO enzymes with great specificity and within just 5 min. This 5 min responsive mechanism was fast, with the limit of detection (LOD) at 5.49 and 4.76 µg mL−1 for MAO-A and MAO-B, respectively. Moreover, QM-NH2 displayed high enzyme specificity even in the presence of high concentrations of biological interferences, such as oxidizing and reducing agents, biothiols, amino acids, and glucose. Furthermore, QM-NH2 demonstrated biocompatibility as the cells retained more than 70% viability when exposed to QM-NH2 at concentrations of up to 20 µM. As a result, QM-NH2 was used to detect MAO-A and MAO-B in SH-SY5Y and HepG2 cells, respectively. After 1h incubation with QM-NH2, the cells exhibited enhanced fluorescence by about 20-fold. Moreover, the signal from cells was reduced when MAO inhibitors were applied prior to incubating with QM-NH2. Therefore, our research recommends using a QM probe as a generic method for producing recognition moieties for fluorogenic enzyme probes.
Collapse
Affiliation(s)
- Chuthamat Duangkamol
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Division of Basic and Medical Sciences, Faculty of Allied Health Sciences, Pathumthani University, Pathum Thani 12000, Thailand
| | - Sirilak Wangngae
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirawit Wet-osot
- Medical Life Science Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Onnicha Khaikate
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Rung-Yi Lai
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Correspondence: (R.-Y.L.); (A.K.)
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Correspondence: (R.-Y.L.); (A.K.)
| |
Collapse
|
3
|
Wenzel TJ, Nyarko JNK, Heistad RM, Pennington PR, Phenix CP, Mousseau DD. An (Immuno) Fluorescence Protocol for Monitoring Monoamine Oxidase A/B Protein Distribution Within the Cell. Methods Mol Biol 2023; 2558:143-161. [PMID: 36169861 DOI: 10.1007/978-1-0716-2643-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The influence of a protein is not determined exclusively by its level of expression, but also by its localization within the cell. The literature often refers to the enzyme monoamine oxidase (MAO) as a mitochondrial enzyme, yet there is evidence that mitochondria-independent pools of MAO exist. These pools of MAO could exert distinct influences across physiological as well as pathological phenotypes. Fluorescence microscopy is a powerful tool for spatially resolving target proteins in cell and tissue preparations. This can rely on an antibody-based probe that targets the endogenous protein, e.g., immunofluorescence. In the event that antibodies might not be readily available or if one is interested in characterizing a variant of the wild-type protein, then a recombinant protein with a fluorescent fusion "tag" is preferred. We now describe a protocol for the detection of endogenous MAO using indirect immunofluorescence and a version of the protocol with minor modification for detecting (green) fluorescent protein-tagged MAOs. One observation we can highlight using these easily adaptable approaches is that MAO A and MAO B do not follow similar patterns of distribution throughout the cell, suggesting potential expression of MAO A and MAO B on distinct pools of mitochondria. Furthermore, distinct subcellular compartmentalization is suggested by the fact that a pool of MAO A, but not MAO B, is associated with certain lysosomal compartments. However, directed and quantitative studies will be required before any definitive statement can be made on these intriguing possibilities.
Collapse
Affiliation(s)
- Tyler J Wenzel
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Ryan M Heistad
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul R Pennington
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chris P Phenix
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Darrell D Mousseau
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
4
|
Zhao J, Ma T, Chang B, Fang J. Recent Progress on NIR Fluorescent Probes for Enzymes. Molecules 2022; 27:5922. [PMID: 36144654 PMCID: PMC9503431 DOI: 10.3390/molecules27185922] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The majority of diseases' biomarkers are enzymes, and the regulation of enzymes is fundamental but crucial. Biological system disorders and diseases can result from abnormal enzymatic activity. Given the biological significance of enzymes, researchers have devised a plethora of tools to map the activity of particular enzymes in order to gain insight regarding their function and distribution. Near-infrared (NIR) fluorescence imaging studies on enzymes may help to better understand their roles in living systems due to their natural imaging advantages. We review the NIR fluorescent probe design strategies that have been attempted by researchers to develop NIR fluorescent sensors of enzymes, and these works have provided deep and intuitive insights into the study of enzymes in biological systems. The recent enzyme-activated NIR fluorescent probes and their applications in imaging are summarized, and the prospects and challenges of developing enzyme-activated NIR fluorescent probes are discussed.
Collapse
Affiliation(s)
| | | | | | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Majumdar S, Roy AK. Recent Advances in Cartesian-Grid DFT in Atoms and Molecules. Front Chem 2022; 10:926916. [PMID: 35936092 PMCID: PMC9354079 DOI: 10.3389/fchem.2022.926916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
In the past several decades, density functional theory (DFT) has evolved as a leading player across a dazzling variety of fields, from organic chemistry to condensed matter physics. The simple conceptual framework and computational elegance are the underlying driver for this. This article reviews some of the recent developments that have taken place in our laboratory in the past 5 years. Efforts are made to validate a viable alternative for DFT calculations for small to medium systems through a Cartesian coordinate grid- (CCG-) based pseudopotential Kohn-Sham (KS) DFT framework using LCAO-MO ansatz. In order to legitimize its suitability and efficacy, at first, electric response properties, such as dipole moment ( μ ), static dipole polarizability ( α ), and first hyperpolarizability ( β ), are calculated. Next, we present a purely numerical approach in CCG for proficient computation of exact exchange density contribution in certain types of orbital-dependent density functionals. A Fourier convolution theorem combined with a range-separated Coulomb interaction kernel is invoked. This takes motivation from a semi-numerical algorithm, where the rate-deciding factor is the evaluation of electrostatic potential. Its success further leads to a systematic self-consistent approach from first principles, which is desirable in the development of optimally tuned range-separated hybrid and hyper functionals. Next, we discuss a simple, alternative time-independent DFT procedure, for computation of single-particle excitation energies, by means of "adiabatic connection theorem" and virial theorem. Optical gaps in organic chromophores, dyes, linear/non-linear PAHs, and charge transfer complexes are faithfully reproduced. In short, CCG-DFT is shown to be a successful route for various practical applications in electronic systems.
Collapse
Affiliation(s)
| | - Amlan K. Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| |
Collapse
|
6
|
Xu H, You X, Lu Y, Liang P, Luo Z, Wang Y, Zeng S, Zeng H. Analysis of Mn2+ and Zn2+ Ions in Macroalgae with Heteroelement-Doped Carbon-Based Fluorescent Probe. BIOSENSORS 2022; 12:bios12050359. [PMID: 35624660 PMCID: PMC9138788 DOI: 10.3390/bios12050359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
Kelp and laver are large economic macroalgae in China, which are rich in nutrients, especially Mn and Zn. Excessive intake of Mn and Zn can be harmful to the human body. Therefore, it is necessary to develop a convenient and efficient method to detect the contents of Mn and Zn in macroalgae. In this experiment, red carbon dots (R-CDs) doped with N and S elements were prepared by the thermal solvent method. The obtained R-CDs displayed excitation wavelength-independent fluorescent emission in the red spectral region. The R-CDs were used to construct a fluorescent probe for specific recognition of Mn2+ and Zn2+, achieving high-sensitivity detection of Mn2+ and Zn2+. The detection results showed a good linear relationship between fluorescence intensity and Mn2+ concentration, and the calculated detection limit was 0.23 nmol/L. For the detection of Zn2+, the detection limit was estimated as 19.1 nmol/L. At the same time, the content distribution of Mn and Zn elements in macroalgae produced in Fujian was investigated by the constructed fluorescence probe. It was found that kelp, laver, and their products are rich in Mn and Zn elements, and the content of Mn and Zn elements in laver is higher than that in kelp, which can be used as the optimal food supplement for Mn and Zn elements.
Collapse
Affiliation(s)
- Hui Xu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (S.Z.); (H.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Y.L.); (P.L.); (Y.W.)
- Correspondence:
| | - Xin You
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Y.L.); (P.L.); (Y.W.)
| | - Yue Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Y.L.); (P.L.); (Y.W.)
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Y.L.); (P.L.); (Y.W.)
| | - Zhihui Luo
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China;
| | - Yiwei Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Y.L.); (P.L.); (Y.W.)
| | - Shaoxiao Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (S.Z.); (H.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Y.L.); (P.L.); (Y.W.)
| | - Hongliang Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; (S.Z.); (H.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (Y.L.); (P.L.); (Y.W.)
| |
Collapse
|
7
|
Mpekoulis G, Tsopela V, Chalari A, Kalliampakou KI, Panos G, Frakolaki E, Milona RS, Sideris DC, Vassilacopoulou D, Vassilaki N. Dengue Virus Replication Is Associated with Catecholamine Biosynthesis and Metabolism in Hepatocytes. Viruses 2022; 14:v14030564. [PMID: 35336971 PMCID: PMC8948859 DOI: 10.3390/v14030564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
Previously, the association between the catecholamine biosynthetic enzyme L-Dopa decarboxylase (DDC) and Dengue virus (DV) replication was demonstrated in liver cells and was found to be mediated at least by the interaction between DDC and phosphoinositide 3-kinase (PI3K). Here, we show that biogenic amines production and uptake impede DV replication in hepatocytes and monocytes, while the virus reduces catecholamine biosynthesis, metabolism, and transport. To examine how catecholamine biosynthesis/metabolism influences DV, first, we verified the role of DDC by altering DDC expression. DDC silencing enhanced virus replication, but not translation, attenuated the negative effect of DDC substrates on the virus and reduced the infection related cell death. Then, the role of the downstream steps of the catecholamine biosynthesis/metabolism was analyzed by chemical inhibition of the respective enzymes, application of their substrates and/or their products; moreover, reserpine, the inhibitor of the vesicular monoamine transporter 2 (VMAT2), was used to examine the role of uptake/storage of catecholamines on DV. Apart from the role of each enzyme/transporter, these studies revealed that the dopamine uptake, and not the dopamine-signaling, is responsible for the negative effect on DV. Accordingly, all treatments expected to enhance the accumulation of catecholamines in the cell cytosol suppressed DV replication. This was verified by the use of chemical inducers of catecholamine biosynthesis. Last, the cellular redox alterations due to catecholamine oxidation were not related with the inhibition of DV replication. In turn, DV apart from its negative impact on DDC, inhibits tyrosine hydroxylase, dopamine beta-hydroxylase, monoamine oxidase, and VMAT2 expression.
Collapse
Affiliation(s)
- George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Vassilina Tsopela
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Anna Chalari
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Katerina I. Kalliampakou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Georgios Panos
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Efseveia Frakolaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Raphaela S. Milona
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Diamantis C. Sideris
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.C.S.); (D.V.)
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.C.S.); (D.V.)
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
- Correspondence: ; Tel.: +30-210-647-8875
| |
Collapse
|
8
|
Optical substrates for drug-metabolizing enzymes: Recent advances and future perspectives. Acta Pharm Sin B 2022; 12:1068-1099. [PMID: 35530147 PMCID: PMC9069481 DOI: 10.1016/j.apsb.2022.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Drug-metabolizing enzymes (DMEs), a diverse group of enzymes responsible for the metabolic elimination of drugs and other xenobiotics, have been recognized as the critical determinants to drug safety and efficacy. Deciphering and understanding the key roles of individual DMEs in drug metabolism and toxicity, as well as characterizing the interactions of central DMEs with xenobiotics require reliable, practical and highly specific tools for sensing the activities of these enzymes in biological systems. In the last few decades, the scientists have developed a variety of optical substrates for sensing human DMEs, parts of them have been successfully used for studying target enzyme(s) in tissue preparations and living systems. Herein, molecular design principals and recent advances in the development and applications of optical substrates for human DMEs have been reviewed systematically. Furthermore, the challenges and future perspectives in this field are also highlighted. The presented information offers a group of practical approaches and imaging tools for sensing DMEs activities in complex biological systems, which strongly facilitates high-throughput screening the modulators of target DMEs and studies on drug/herb‒drug interactions, as well as promotes the fundamental researches for exploring the relevance of DMEs to human diseases and drug treatment outcomes.
Collapse
|
9
|
Mpekoulis G, Tsopela V, Panos G, Siozos V, Kalliampakou KI, Frakolaki E, Sideris CD, Vassiliou AG, Sideris DC, Vassilacopoulou D, Vassilaki N. Association of Hepatitis C Virus Replication with the Catecholamine Biosynthetic Pathway. Viruses 2021; 13:v13112139. [PMID: 34834946 PMCID: PMC8624100 DOI: 10.3390/v13112139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
A bidirectional negative relationship between Hepatitis C virus (HCV) replication and gene expression of the catecholamine biosynthetic enzyme L-Dopa decarboxylase (DDC) was previously shown in the liver and attributed at least to an association of DDC with phosphatidylinositol 3-kinase (PI3K). Here, we report that the biosynthesis and uptake of catecholamines restrict HCV replication in hepatocytes, while HCV has developed ways to reduce catecholamine production. By employing gene silencing, chemical inhibition or induction of the catecholamine biosynthetic and metabolic enzymes and transporters, and by applying the substrates or the products of the respective enzymes, we unravel the role of the different steps of the pathway in viral infection. We also provide evidence that the effect of catecholamines on HCV is strongly related with oxidative stress that is generated by their autoxidation in the cytosol, while antioxidants or treatments that lower cytosolic catecholamine levels positively affect the virus. To counteract the effect of catecholamines, HCV, apart from the already reported effects on DDC, causes the down-regulation of tyrosine hydroxylase that encodes the rate-limiting enzyme of catecholamine biosynthesis and suppresses dopamine beta-hydroxylase mRNA and protein amounts, while increasing the catecholamine degradation enzyme monoamine oxidase. Moreover, the NS4B viral protein is implicated in the effect of HCV on the ratio of the ~50 kDa DDC monomer and a ~120 kDa DDC complex, while the NS5A protein has a negative effect on total DDC protein levels.
Collapse
Affiliation(s)
- George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Vassilina Tsopela
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Georgios Panos
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Vasileiοs Siozos
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Katerina I. Kalliampakou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Efseveia Frakolaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Constantinos D. Sideris
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Alice G. Vassiliou
- GP Livanos and M Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece;
| | - Diamantis C. Sideris
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.C.S.); (D.V.)
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.C.S.); (D.V.)
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
- Correspondence: ; Tel.: +30-210-647-8875
| |
Collapse
|
10
|
Roy R, Ghosal A, Roy AK. A Simple Effective Δ SCF Method for Computing Optical Gaps in Organic Chromophores. Chem Asian J 2021; 16:2729-2739. [PMID: 34331415 DOI: 10.1002/asia.202100692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Indexed: 11/09/2022]
Abstract
Photoluminescence effects in organic chromophores are of significant importance and requires precise description of low lying excited states. In this communication, we put forward an alternative time-independent DFT scheme for computing lowest single-particle excitation energy, especially for singlet excited state. This adopts a recently developed "virial"-theorem based model of singlet-triplet splitting which requires a DFT calculation on closed shell ground state and a restricted open-shell triplet excited state, followed by a simple 2 e - integral evaluation. This produces vertical excitation energies in small molecules, linear and non-linear polycyclic aromatic hydrocarbon and organic dyes in comparable accuracy to the TDDFT. We also explore the functional dependency of present method with three different functionals (B3LYP, wB97X and CAM-B3LYP) for polyenes and linear acenes. A systematic comparison with literature value illustrates the validity and usefulness of the present scheme in determining optical gap with fair computational cost.
Collapse
Affiliation(s)
- Raj Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Nadia, Mohanpur, 741246, WB, India
| | - Abhisek Ghosal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Nadia, Mohanpur, 741246, WB, India.,Present Address : Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, Maharastra, India
| | - Amlan K Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Nadia, Mohanpur, 741246, WB, India
| |
Collapse
|
11
|
Sidhu JS, Kaur N, Singh N. Trends in small organic fluorescent scaffolds for detection of oxidoreductase. Biosens Bioelectron 2021; 191:113441. [PMID: 34167075 DOI: 10.1016/j.bios.2021.113441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022]
Abstract
Oxidoreductases are diverse class of enzymes engaged in modulating the redox homeostasis and cellular signaling cascades. Abnormal expression of oxidoreductases including thioredoxin reductase, azoreductase, cytochrome oxidoreductase, tyrosinase and monoamine oxidase leads to the initiation of numerous disorders. Thus, enzymes are the promising biomarkers of the diseased cells and their accurate detection has utmost significance for clinical diagnosis. The detection method must be extremely selective, sensitive easy to use, long self-life, mass manufacturable and disposable. Fluorescence assay approach has been developed potential substitute to conventional techniques used in enzyme's quantification. The fluorescent probes possess excellent stability, high spatiotemporal ratio and reproducibility represent applications in real sample analysis. Therefore, the enzymatic transformations have been monitored by small activatable organic fluorescent probes. These probes are generally integrated with enzyme's substrate/inhibitors to improve their binding affinity toward the enzyme's catalytic site. As the recognition unit bio catalyzed, the signaling unit produces the readout signals and provides novel insights to understand the biochemical reactions for diagnosis and development of point of care devices. Several structural modifications are required in fluorogenic scaffolds to tune the selectivity for a particular enzyme. Hence, the fluorescent probes with their structural features and enzymatic reaction mechanism of oxidoreductase are the key points discussed in this review. The basic strategies to detect each enzyme are discussed. The selectivity, sensitivity and real-time applications are critically compared. The kinetic parameters and futuristic opportunities are present, which would be enormous benefits for chemists and biologists to understand the facts to design and develop unique fluorophore molecules for clinical applications.
Collapse
Affiliation(s)
- Jagpreet Singh Sidhu
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India; Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
12
|
Gao L, Wang W, Wang X, Yang F, Xie L, Shen J, Brimble MA, Xiao Q, Yao SQ. Fluorescent probes for bioimaging of potential biomarkers in Parkinson's disease. Chem Soc Rev 2021; 50:1219-1250. [PMID: 33284303 DOI: 10.1039/d0cs00115e] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Parkinson's disease (PD), as the second most common neurodegenerative disease, is caused by complex pathological processes and currently remains very difficult to treat. PD brings great distress to patients and imposes a heavy economic burden on society. The number of PD patients is growing as the aging population increases worldwide. Therefore, it is crucial to develop new tools for aiding the early diagnosis and treatment of PD. The significant pathological features involved in PD include the abnormal accumulation of α-synuclein, metal ion dyshomeostasis, oxidative stress, mitochondrial dysfunction and neurotransmitter deficiencies. In recent years, fluorescent probes have emerged as a powerful bioimaging tool with potential to help understand the pathological processes of PD via the detection and monitoring of pathological features. In this review, we comprehensively summarize the design and working mechanisms of fluorescent probes along with their applications in the detection of various PD biomarkers. We also discuss the current limitations of fluorescent probes and provide perspectives on how these limitations can be overcome to develop better fluorescent probes suitable for application in clinical trials in the future. We hope that this review provides valuable information and guidance for the development of new fluorescent probes that can be used clinically in the early diagnosis of PD and contributes to the development of efficient PD drugs in the future.
Collapse
Affiliation(s)
- Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ma S, Chen G, Xu J, Liu Y, Li G, Chen T, Li Y, James TD. Current strategies for the development of fluorescence-based molecular probes for visualizing the enzymes and proteins associated with Alzheimer’s disease. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213553] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Jian C, Yan J, Zhang H, Zhu J. Recent advances of small molecule fluorescent probes for distinguishing monoamine oxidase-A and monoamine oxidase-B in vitro and in vivo. Mol Cell Probes 2020; 55:101686. [PMID: 33279529 DOI: 10.1016/j.mcp.2020.101686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Monoamine oxidases (MAO-A and MAO-B) are the two flavin adenine dinucleotide (FAD) enzymes that play an important role in neurotransmitter homeostasis and in protection against biogenic amines. The two MAO enzymes are related to various diseases such as neurological disorders, cancer or other systemic diseases. It is crucial to distinguish these two subtypes in order to explore the pathogenesis and pathophysiology of different diseases. In this review, the relationship between MAOs and related diseases is briefly introduced. Additionally, we summarize the recent advances in small molecule fluorescent probes for specific detection of MAO-A and MAO-B.
Collapse
Affiliation(s)
- Chang'e Jian
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China
| | - Jiaxu Yan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China.
| | - Jianwei Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China; College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
15
|
Ohta Y, Kawaguchi M, Ieda N, Nakagawa H. Synthesis of artificial substrate based on inhibitor for detecting LSD1 activity. J Clin Biochem Nutr 2020; 67:153-158. [PMID: 33041512 PMCID: PMC7533851 DOI: 10.3164/jcbn.20-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Lysine methylation is one of the most important modification, which is regulated by histone lysine methyltransferases and histone lysine demethylases. Lysine-specific demethylase 1 (LSD1) specifically demethylates mono- and dimethyl-lysine on histone H3 (H3K4Me/Me2, H3K9Me/Me2) to control chromatin structure, resulting in transcriptional repression or activation of target genes. Furthermore, LSD1 is overexpressed in various cancers. Therefore, LSD1 inhibitors would be not only potential therapeutic agents for cancers but also chemical tools to research biological significance of LSD1 in physiological and pathological events. However, known assay methods to date have some inherent drawbacks. The development of simple method in detecting LSD1 activity has been indispensable to identify useful inhibitors. In this study, we designed and synthesized artificial substrates based on inhibitors of LSD1 to examine LSD1 activity by an absorption increment.
Collapse
Affiliation(s)
- Yuhei Ohta
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
16
|
Huang J, Hong D, Lang W, Liu J, Dong J, Yuan C, Luo J, Ge J, Zhu Q. Recent advances in reaction-based fluorescent probes for detecting monoamine oxidases in living systems. Analyst 2019; 144:3703-3709. [DOI: 10.1039/c9an00409b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This Minireview summarizes the recent advances in reaction based MAO type fluorescent probes and their imaging applications in living systems.
Collapse
Affiliation(s)
- Jintao Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Danqi Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Wenjie Lang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Jian Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Jia Dong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Chaonan Yuan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Jie Luo
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| |
Collapse
|
17
|
Qin H, Li L, Li K, Xiaoqi Y. Novel strategy of constructing fluorescent probe for MAO-B via cascade reaction and its application in imaging MAO-B in human astrocyte. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Feng X, Becke AD, Johnson ER. Communication: Becke’s virial exciton model gives accurate charge-transfer excitation energies. J Chem Phys 2018; 149:231101. [DOI: 10.1063/1.5078515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Xibo Feng
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Axel D. Becke
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
19
|
|
20
|
Wang R, Han X, You J, Yu F, Chen L. Ratiometric Near-Infrared Fluorescent Probe for Synergistic Detection of Monoamine Oxidase B and Its Contribution to Oxidative Stress in Cell and Mice Aging Models. Anal Chem 2018; 90:4054-4061. [DOI: 10.1021/acs.analchem.7b05297] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rui Wang
- Key Laboratory
of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates
and Analysis of Natural Medicine, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key Laboratory
of Coastal Environmental Processes and Ecological Remediation, Research
Center for Coastal Environmental Engineering Technology of Shandong
Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyue Han
- Key Laboratory
of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates
and Analysis of Natural Medicine, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key Laboratory
of Coastal Environmental Processes and Ecological Remediation, Research
Center for Coastal Environmental Engineering Technology of Shandong
Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jinmao You
- Key Laboratory
of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates
and Analysis of Natural Medicine, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key Laboratory
of Coastal Environmental Processes and Ecological Remediation, Research
Center for Coastal Environmental Engineering Technology of Shandong
Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Fabiao Yu
- Key Laboratory
of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates
and Analysis of Natural Medicine, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key Laboratory
of Coastal Environmental Processes and Ecological Remediation, Research
Center for Coastal Environmental Engineering Technology of Shandong
Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- Key Laboratory
of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates
and Analysis of Natural Medicine, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key Laboratory
of Coastal Environmental Processes and Ecological Remediation, Research
Center for Coastal Environmental Engineering Technology of Shandong
Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|