1
|
Delvaux de Fenffe CM, Govers J, Mattiroli F. Always on the Move: Overview on Chromatin Dynamics within Nuclear Processes. Biochemistry 2025. [PMID: 40312022 DOI: 10.1021/acs.biochem.5c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Our genome is organized into chromatin, a dynamic and modular structure made of nucleosomes. Chromatin organization controls access to the DNA sequence, playing a fundamental role in cell identity and function. How nucleosomes enable these processes is an active area of study. In this review, we provide an overview of chromatin dynamics, its properties, mechanisms, and functions. We highlight the diverse ways by which chromatin dynamics is controlled during transcription, DNA replication, and repair. Recent technological developments have promoted discoveries in this area, to which we provide an outlook on future research directions.
Collapse
Affiliation(s)
| | - Jolijn Govers
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
2
|
Patel R, Loverde SM. Unveiling the Conformational Dynamics of the Histone Tails Using Markov State Modeling. J Chem Theory Comput 2025. [PMID: 40289377 DOI: 10.1021/acs.jctc.5c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Biomolecules predominantly exert their function by altering conformational dynamics. The nucleosome core particle (NCP) is the fundamental unit of chromatin. DNA with ∼146 base pairs wraps around the histone octamer to form a nucleosome. The histone octamer is composed of two copies of each histone protein (H3, H4, H2A, and H2B) with a globular core and disordered N-terminal tails. Epigenetic modifications of the histone N-terminal tails play a critical role in regulating the chromatin structure and biological processes such as transcription and DNA repair. Here, we report all-atom molecular dynamics (MD) simulations of the nucleosome at microsecond time scales to construct Markov state models (MSMs) to elucidate distinct conformations of the histone tails. We employ time-lagged independent component analysis (tICA) to capture their essential slow dynamics, with k-means clustering used to discretize the conformational space. MSMs unveil distinct states and transition probabilities to characterize the dynamics and kinetics of the tails. Next, we focus on the H2B tail, which is one of the least studied tails. We show that acetylation increases secondary structure formation with increased transition rates. These findings will aid in understanding the functional implications of tail conformations for nucleosome stability and gene regulation.
Collapse
Affiliation(s)
- Rutika Patel
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, United States
| | - Sharon M Loverde
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
3
|
Hammonds EF, Singh A, Suresh KK, Yang S, Zahorodny SSM, Gupta R, Potoyan DA, Banerjee PR, Morrison EA. Histone H3 tail charge patterns govern nucleosome condensate formation and dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.647968. [PMID: 40291647 PMCID: PMC12027143 DOI: 10.1101/2025.04.09.647968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Emerging models of nuclear organization suggest that chromatin forms functionally distinct microenvironments through phase separation. As chromatin architecture is organized at the level of the nucleosome and regulated by histone post-translational modifications, we investigated how these known regulatory mechanisms influence nucleosome phase behavior. By systematically altering charge distribution within the H3 tail, we found that specific regions modulate the phase boundary and tune nucleosome condensate viscosity, as revealed by microscopy-based assays, microrheology, and simulations. Nuclear magnetic resonance relaxation experiments showed that H3 tails remain dynamically mobile within condensates, and their mobility correlates with condensate viscosity. These results demonstrate that the number, identity, and spatial arrangement of basic residues in the H3 tail critically regulate nucleosome phase separation. Our findings support a model in which nucleosomes, through their intrinsic properties and modifications, actively shape the local chromatin microenvironment-providing new insight into the histone language in chromatin condensates.
Collapse
|
4
|
Singh R, Tomar RS. An Uncharacterized Domain Within the N-Terminal Tail of Histone H3 Regulates the Transcription of FLO1 via Cyc8. Mol Microbiol 2025. [PMID: 40196922 DOI: 10.1111/mmi.15362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 04/09/2025]
Abstract
Yeast flocculation relies on cell surface flocculin proteins encoded by the sub-telomeric gene, FLO1. The expression of FLO1 is antagonistically regulated by the Tup1-Cyc8 repressor complex and the Swi-Snf co-activator complexes. The role of hyperacetylated N-terminal amino acid residues of histone H3 and H4 is well established in the transcription of FLO1 and other Tup1-Cyc8 regulated genes. However, sub-domains within the tails of histone H3 and H4 are yet to be identified and the mechanism by which they regulate the FLO1 transcription is completely unexplored. Upon screening of different H3 and H4 N-terminal stretch deletion mutants, we have identified a new region within the N-terminal tail of histone H3, H3Δ(17-24) regulating the transcription of FLO1 and FLO5. This N-terminal truncation mutant showed higher FLO1 and FLO5 expression by 68% and 41% respectively compared to wild-type H3. Further examination showed reduced Cyc8 and nucleosome occupancy in the upstream regulatory region of active flo1 in the H3Δ(17-24) mutant than in H3 wild-type cells. The findings also indicate that Hda1 assists in Cyc8 interaction at the active FLO1 template. Altogether we demonstrate that Tup1-independent interaction of Cyc8 with the active FLO1 gene acts as a transcription limiting factor and that the histone H3 N-terminal 17-24 stretch is essential for this interaction. In the absence of the 17-24 stretch, the Cyc8 restrictive effect is altered, resulting in over-expression of FLO1.
Collapse
Affiliation(s)
- Ranu Singh
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
5
|
Onyema AC, DiForte C, Patel R, Poget SF, Loverde SM. Structural and Thermodynamic Impact of Oncogenic Mutations on the Nucleosome Core Particle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638149. [PMID: 39990501 PMCID: PMC11844553 DOI: 10.1101/2025.02.14.638149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The nucleosome core particle (NCP) is essential for chromatin structure and function, serving as the fundamental unit of eukaryotic chromatin. Oncogenic mutations in core histones disrupt chromatin dynamics, altering DNA repair and transcription processes. Here, we investigate the molecular consequences of two mutations-H2BE76K and H4R92T-using 36 μs of all-atom molecular dynamics simulations and experimental biophysical assays. These mutations destabilize the H2B-H4 interface by disrupting critical salt bridges and hydrogen bonds, reducing binding free energy at this interface. Principal component analysis reveals altered helix conformations and increased interhelical distances in mutant systems. Thermal stability assays (TSA) and differential scanning calorimetry (DSC) confirm that these mutations lower the dimer dissociation temperature and reduce enthalpy compared to the wild type. Taken together, our results elucidate how these mutations compromise nucleosome stability and propose mechanisms through which they could modulate chromatin accessibility and gene dysregulation in cancer.
Collapse
Affiliation(s)
- Augustine C Onyema
- Department of Biochemistry, City University of New York (CUNY), New York, USA
- Department of Chemistry, College of Staten Island (CSI), City University of New York (CUNY), New York, USA
| | - Christopher DiForte
- Department of Biochemistry, City University of New York (CUNY), New York, USA
- Department of Chemistry, College of Staten Island (CSI), City University of New York (CUNY), New York, USA
| | - Rutika Patel
- Department of Biochemistry, City University of New York (CUNY), New York, USA
- Department of Chemistry, College of Staten Island (CSI), City University of New York (CUNY), New York, USA
| | - Sébastien F Poget
- Department of Biochemistry, City University of New York (CUNY), New York, USA
- Department of Chemistry, City University of New York (CUNY), New York, USA
- Department of Chemistry, College of Staten Island (CSI), City University of New York (CUNY), New York, USA
| | - Sharon M Loverde
- Department of Biochemistry, City University of New York (CUNY), New York, USA
- Department of Chemistry, City University of New York (CUNY), New York, USA
- Department of Physics, City University of New York (CUNY), New York, USA
- Department of Chemistry, College of Staten Island (CSI), City University of New York (CUNY), New York, USA
| |
Collapse
|
6
|
Ghosh Moulick A, Patel R, Onyema A, Loverde SM. Unveiling nucleosome dynamics: A comparative study using all-atom and coarse-grained simulations enhanced by principal component analysis. J Chem Phys 2025; 162:065101. [PMID: 39927543 DOI: 10.1063/5.0246977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/17/2025] [Indexed: 02/11/2025] Open
Abstract
The conformational dynamics of the DNA in the nucleosome may play a role in governing gene regulation and accessibility and impact higher-order chromatin structure. This study investigates nucleosome dynamics using both all-atom and coarse-grained (CG) molecular dynamics simulations, focusing on the SIRAH force field. Simulations are performed for two nucleosomal DNA sequences-alpha satellite palindromic and Widom-601-over 6 μs at physiological salt concentrations. A comparative analysis of structural parameters, such as groove widths and base pair geometries, reveals good agreement between atomistic and CG models, although CG simulations exhibit broader conformational sampling and greater breathing motion of DNA ends. Principal component analysis is applied to DNA structural parameters, revealing multiple free energy minima, especially in CG simulations. These findings highlight the potential of the SIRAH CG force field for studying large-scale nucleosome dynamics, offering insights into DNA repositioning and sequence-dependent behavior.
Collapse
Affiliation(s)
- Abhik Ghosh Moulick
- Department of Chemistry, College of Staten Island, City University of New York, 2800 Victory Blvd., 6S-238, Staten Island, New York 10314, USA
| | - Rutika Patel
- Department of Chemistry, College of Staten Island, City University of New York, 2800 Victory Blvd., 6S-238, Staten Island, New York 10314, USA
- Ph.D. Program in Biochemistry, Graduate Center, City University of New York, 365 5th Ave., New York, New York 10016, USA
| | - Augustine Onyema
- Department of Chemistry, College of Staten Island, City University of New York, 2800 Victory Blvd., 6S-238, Staten Island, New York 10314, USA
- Ph.D. Program in Biochemistry, Graduate Center, City University of New York, 365 5th Ave., New York, New York 10016, USA
| | - Sharon M Loverde
- Department of Chemistry, College of Staten Island, City University of New York, 2800 Victory Blvd., 6S-238, Staten Island, New York 10314, USA
- Ph.D. Program in Biochemistry, Graduate Center, City University of New York, 365 5th Ave., New York, New York 10016, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
7
|
Moulick AG, Patel R, Onyema A, Loverde SM. Unveiling Nucleosome Dynamics: A Comparative Study Using All-Atom and Coarse-Grained Simulations Enhanced by Principal Component Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622089. [PMID: 39574694 PMCID: PMC11580959 DOI: 10.1101/2024.11.05.622089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
This study investigates nucleosome dynamics using both all-atom and coarse-grained (CG) molecular dynamics simulations, focusing on the SIRAH force field. Simulations are performed for two nucleosomal DNA sequences-ASP and Widom-601-over six microseconds at physiological salt concentrations. Comparative analysis of structural parameters, such as groove widths and base pair geometries, reveals good agreement between atomistic and CG models, though CG simulations exhibit broader conformational sampling and greater breathing motion of DNA ends. Principal component analysis (PCA) is applied to DNA structural parameters, revealing multiple free energy minima, especially in CG simulations. These findings highlight the potential of the SIRAH CG force field for studying large-scale nucleosome dynamics, offering insights into DNA repositioning and sequence-dependent behavior.
Collapse
Affiliation(s)
- Abhik Ghosh Moulick
- Department of Chemistry, College of Staten Island, City University of New York, 2800 Victory Blvd., 6S-238, Staten Island, NY 10314
| | - Rutika Patel
- Department of Chemistry, College of Staten Island, City University of New York, 2800 Victory Blvd., 6S-238, Staten Island, NY 10314
- Ph.D. Program in Biochemistry, Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, United States
| | - Augustine Onyema
- Department of Chemistry, College of Staten Island, City University of New York, 2800 Victory Blvd., 6S-238, Staten Island, NY 10314
- Ph.D. Program in Biochemistry, Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, United States
| | - Sharon M Loverde
- Department of Chemistry, College of Staten Island, City University of New York, 2800 Victory Blvd., 6S-238, Staten Island, NY 10314
- Ph.D. Program in Biochemistry, Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, United States
| |
Collapse
|
8
|
Patel R, Onyema A, Tang PK, Loverde SM. Conformational Dynamics of the Nucleosomal Histone H2B Tails Revealed by Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:4709-4726. [PMID: 38865599 PMCID: PMC11200259 DOI: 10.1021/acs.jcim.4c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Epigenetic modifications of histone N-terminal tails play a critical role in regulating the chromatin structure and biological processes such as transcription and DNA repair. One of the key post-translational modifications (PTMs) is the acetylation of lysine residues on histone tails. Epigenetic modifications are ubiquitous in the development of diseases, such as cancer and neurological disorders. Histone H2B tails are critical regulators of nucleosome dynamics, biological processes, and certain diseases. Here, we report all-atomistic molecular dynamics (MD) simulations of the nucleosome to demonstrate that acetylation of the histone tails changes their conformational space and interaction with DNA. We perform simulations of H2B tails, critical regulators of gene regulation, in both the lysine-acetylated (ACK) and unacetylated wild type (WT) states. To explore the effects of salt concentration, we use two different NaCl concentrations to perform simulations at microsecond time scales. Salt can modulate the effects of electrostatic interactions between the DNA phosphate backbone and histone tails. Upon acetylation, H2B tails shift their secondary structure helical propensity. The number of contacts between the DNA and the H2B tail decreases. We characterize the conformational dynamics of the H2B tails by principal component analysis (PCA). The ACK tails become more compact at increased salt concentrations, but conformations from the WT tails display the most contacts with DNA at both salt concentrations. Mainly, H2B acetylation may increase the DNA accessibility for regulatory proteins to bind, which can aid in gene regulation and NCP stability.
Collapse
Affiliation(s)
- Rutika Patel
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
| | - Augustine Onyema
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
| | - Phu K. Tang
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
| | - Sharon M. Loverde
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New
York, New York 10314, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Ph.D.
Program in Physics, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
9
|
Khatua P, Tang PK, Moulick AG, Patel R, Manandhar A, Loverde SM. Sequence Dependence in Nucleosome Dynamics. J Phys Chem B 2024; 128:3090-3101. [PMID: 38530903 PMCID: PMC11181342 DOI: 10.1021/acs.jpcb.3c07363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The basic packaging unit of eukaryotic chromatin is the nucleosome that contains 145-147 base pair duplex DNA wrapped around an octameric histone protein. While the DNA sequence plays a crucial role in controlling the positioning of the nucleosome, the molecular details behind the interplay between DNA sequence and nucleosome dynamics remain relatively unexplored. This study analyzes this interplay in detail by performing all-atom molecular dynamics simulations of nucleosomes, comparing the human α-satellite palindromic (ASP) and the strong positioning "Widom-601" DNA sequence at time scales of 12 μs. The simulations are performed at salt concentrations 10-20 times higher than physiological salt concentrations to screen the electrostatic interactions and promote unwrapping. These microsecond-long simulations give insight into the molecular-level sequence-dependent events that dictate the pathway of DNA unwrapping. We find that the "ASP" sequence forms a loop around SHL ± 5 for three sets of simulations. Coincident with loop formation is a cooperative increase in contacts with the neighboring N-terminal H2B tail and C-terminal H2A tail and the release of neighboring counterions. We find that the Widom-601 sequence exhibits a strong breathing motion of the nucleic acid ends. Coincident with the breathing motion is the collapse of the full N-terminal H3 tail and formation of an α-helix that interacts with the H3 histone core. We postulate that the dynamics of these histone tails and their modification with post-translational modifications (PTMs) may play a key role in governing this dynamics.
Collapse
Affiliation(s)
- Prabir Khatua
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York, 10314, United States
- Present Address: Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Bengaluru, 562163, INDIA
| | - Phu K. Tang
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York, 10314, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
- Present Address: Flatiron Institute, New York, NY, 10010, United States
- These authors contributed equally: Phu K. Tang, Abhik Ghosh Moulick, and Rutika Patel
| | - Abhik Ghosh Moulick
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York, 10314, United States
- These authors contributed equally: Phu K. Tang, Abhik Ghosh Moulick, and Rutika Patel
| | - Rutika Patel
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York, 10314, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
- These authors contributed equally: Phu K. Tang, Abhik Ghosh Moulick, and Rutika Patel
| | - Anjela Manandhar
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York, 10314, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
- Present Address: Takeda Pharmaceuticals, Boston, MA, 02139, United States
| | - Sharon M. Loverde
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York, 10314, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, United States
| |
Collapse
|
10
|
Nosella ML, Kim TH, Huang SK, Harkness RW, Goncalves M, Pan A, Tereshchenko M, Vahidi S, Rubinstein JL, Lee HO, Forman-Kay JD, Kay LE. Poly(ADP-ribosyl)ation enhances nucleosome dynamics and organizes DNA damage repair components within biomolecular condensates. Mol Cell 2024; 84:429-446.e17. [PMID: 38215753 DOI: 10.1016/j.molcel.2023.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Nucleosomes, the basic structural units of chromatin, hinder recruitment and activity of various DNA repair proteins, necessitating modifications that enhance DNA accessibility. Poly(ADP-ribosyl)ation (PARylation) of proteins near damage sites is an essential initiation step in several DNA-repair pathways; however, its effects on nucleosome structural dynamics and organization are unclear. Using NMR, cryoelectron microscopy (cryo-EM), and biochemical assays, we show that PARylation enhances motions of the histone H3 tail and DNA, leaving the configuration of the core intact while also stimulating nuclease digestion and ligation of nicked nucleosomal DNA by LIG3. PARylation disrupted interactions between nucleosomes, preventing self-association. Addition of LIG3 and XRCC1 to PARylated nucleosomes generated condensates that selectively partition DNA repair-associated proteins in a PAR- and phosphorylation-dependent manner in vitro. Our results establish that PARylation influences nucleosomes across different length scales, extending from the atom-level motions of histone tails to the mesoscale formation of condensates with selective compositions.
Collapse
Affiliation(s)
- Michael L Nosella
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tae Hun Kim
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuya Kate Huang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert W Harkness
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Monica Goncalves
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alisia Pan
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julie D Forman-Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Lewis E Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
11
|
Zhao H, Wu H, Guseman A, Abeykoon D, Camara CM, Dalal Y, Fushman D, Papoian GA. The role of cryptic ancestral symmetry in histone folding mechanisms across Eukarya and Archaea. PLoS Comput Biol 2024; 20:e1011721. [PMID: 38181064 PMCID: PMC10796010 DOI: 10.1371/journal.pcbi.1011721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/18/2024] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
Histones compact and store DNA in both Eukarya and Archaea, forming heterodimers in Eukarya and homodimers in Archaea. Despite this, the folding mechanism of histones across species remains unclear. Our study addresses this gap by investigating 11 types of histone and histone-like proteins across humans, Drosophila, and Archaea through multiscale molecular dynamics (MD) simulations, complemented by NMR and circular dichroism experiments. We confirm and elaborate on the widely applied "folding upon binding" mechanism of histone dimeric proteins and report a new alternative conformation, namely, the inverted non-native dimer, which may be a thermodynamically metastable configuration. Protein sequence analysis indicated that the inverted conformation arises from the hidden ancestral head-tail sequence symmetry underlying all histone proteins, which is congruent with the previously proposed histone evolution hypotheses. Finally, to explore the potential formations of homodimers in Eukarya, we utilized MD-based AWSEM and AI-based AlphaFold-Multimer models to predict their structures and conducted extensive all-atom MD simulations to examine their respective structural stabilities. Our results suggest that eukaryotic histones may also form stable homodimers, whereas their disordered tails bring significant structural asymmetry and tip the balance towards the formation of commonly observed heterotypic dimers.
Collapse
Affiliation(s)
- Haiqing Zhao
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hao Wu
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
| | - Alex Guseman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Dulith Abeykoon
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Christina M. Camara
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Fushman
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Garegin A. Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
12
|
Lee HS, Bang I, You J, Jeong TK, Kim CR, Hwang M, Kim JS, Baek SH, Song JJ, Choi HJ. Molecular basis for PHF7-mediated ubiquitination of histone H3. Genes Dev 2023; 37:984-997. [PMID: 37993255 PMCID: PMC10760634 DOI: 10.1101/gad.350989.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
The RING-type E3 ligase has been known for over two decades, yet its diverse modes of action are still the subject of active research. Plant homeodomain (PHD) finger protein 7 (PHF7) is a RING-type E3 ubiquitin ligase responsible for histone ubiquitination. PHF7 comprises three zinc finger domains: an extended PHD (ePHD), a RING domain, and a PHD. While the function of the RING domain is largely understood, the roles of the other two domains in E3 ligase activity remain elusive. Here, we present the crystal structure of PHF7 in complex with the E2 ubiquitin-conjugating enzyme (E2). Our structure shows that E2 is effectively captured between the RING domain and the C-terminal PHD, facilitating E2 recruitment through direct contact. In addition, through in vitro binding and functional assays, we demonstrate that the N-terminal ePHD recognizes the nucleosome via DNA binding, whereas the C-terminal PHD is involved in histone H3 recognition. Our results provide a molecular basis for the E3 ligase activity of PHF7 and uncover the specific yet collaborative contributions of each domain to the PHF7 ubiquitination activity.
Collapse
Affiliation(s)
- Hyun Sik Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Injin Bang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York 10016, USA
| | - Junghyun You
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Kyeong Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chang Rok Kim
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Minsang Hwang
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Seo Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| |
Collapse
|
13
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Sawade K, Marx A, Peter C, Kukharenko O. Combining molecular dynamics simulations and scoring method to computationally model ubiquitylated linker histones in chromatosomes. PLoS Comput Biol 2023; 19:e1010531. [PMID: 37527265 PMCID: PMC10442151 DOI: 10.1371/journal.pcbi.1010531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 08/21/2023] [Accepted: 06/15/2023] [Indexed: 08/03/2023] Open
Abstract
The chromatin in eukaryotic cells plays a fundamental role in all processes during a cell's life cycle. This nucleoprotein is normally tightly packed but needs to be unpacked for expression and division. The linker histones are critical for such packaging processes and while most experimental and simulation works recognize their crucial importance, the focus is nearly always set on the nucleosome as the basic chromatin building block. Linker histones can undergo several modifications, but only few studies on their ubiquitylation have been conducted. Mono-ubiquitylated linker histones (HUb), while poorly understood, are expected to influence DNA compaction. The size of ubiquitin and the globular domain of the linker histone are comparable and one would expect an increased disorder upon ubiquitylation of the linker histone. However, the formation of higher order chromatin is not hindered and ubiquitylation of the linker histone may even promote gene expression. Structural data on chromatosomes is rare and HUb has never been modeled in a chromatosome so far. Descriptions of the chromatin complex with HUb would greatly benefit from computational structural data. In this study we generate molecular dynamics simulation data for six differently linked HUb variants with the help of a sampling scheme tailored to drive the exploration of phase space. We identify conformational sub-states of the six HUb variants using the sketch-map algorithm for dimensionality reduction and iterative HDBSCAN for clustering on the excessively sampled, shallow free energy landscapes. We present a highly efficient geometric scoring method to identify sub-states of HUb that fit into the nucleosome. We predict HUb conformations inside a nucleosome using on-dyad and off-dyad chromatosome structures as reference and show that unbiased simulations of HUb produce significantly more fitting than non-fitting HUb conformations. A tetranucleosome array is used to show that ubiquitylation can even occur in chromatin without too much steric clashes.
Collapse
Affiliation(s)
- Kevin Sawade
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Oleksandra Kukharenko
- Department of Chemistry, University of Konstanz, Konstanz, Germany
- Theory Department, Max-Planck Institute for Polymer Research, Mainz, Germany
| |
Collapse
|
15
|
Kirkiz E, Meers O, Grebien F, Buschbeck M. Histone Variants and Their Chaperones in Hematological Malignancies. Hemasphere 2023; 7:e927. [PMID: 37449197 PMCID: PMC10337764 DOI: 10.1097/hs9.0000000000000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Epigenetic regulation occurs on the level of compacting DNA into chromatin. The functional unit of chromatin is the nucleosome, which consists of DNA wrapped around a core of histone proteins. While canonical histone proteins are incorporated into chromatin through a replication-coupled process, structural variants of histones, commonly named histone variants, are deposited into chromatin in a replication-independent manner. Specific chaperones and chromatin remodelers mediate the locus-specific deposition of histone variants. Although histone variants comprise one of the least understood layers of epigenetic regulation, it has been proposed that they play an essential role in directly regulating gene expression in health and disease. Here, we review the emerging evidence suggesting that histone variants have a role at different stages of hematopoiesis, with a particular focus on the histone variants H2A, H3, and H1. Moreover, we discuss the current knowledge on how the dysregulation of histone variants can contribute to hematopoietic malignancies.
Collapse
Affiliation(s)
- Ecem Kirkiz
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Oliver Meers
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- PhD Programme in Biomedicine, University of Barcelona, Spain
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
16
|
Kujirai T, Ehara H, Sekine SI, Kurumizaka H. Structural Transition of the Nucleosome during Transcription Elongation. Cells 2023; 12:1388. [PMID: 37408222 DOI: 10.3390/cells12101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
In eukaryotes, genomic DNA is tightly wrapped in chromatin. The nucleosome is a basic unit of chromatin, but acts as a barrier to transcription. To overcome this impediment, the RNA polymerase II elongation complex disassembles the nucleosome during transcription elongation. After the RNA polymerase II passage, the nucleosome is rebuilt by transcription-coupled nucleosome reassembly. Nucleosome disassembly-reassembly processes play a central role in preserving epigenetic information, thus ensuring transcriptional fidelity. The histone chaperone FACT performs key functions in nucleosome disassembly, maintenance, and reassembly during transcription in chromatin. Recent structural studies of transcribing RNA polymerase II complexed with nucleosomes have provided structural insights into transcription elongation on chromatin. Here, we review the structural transitions of the nucleosome during transcription.
Collapse
Affiliation(s)
- Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
17
|
Jennings CE, Zoss CJ, Morrison EA. Arginine anchor points govern H3 tail dynamics. Front Mol Biosci 2023; 10:1150400. [PMID: 37261328 PMCID: PMC10228543 DOI: 10.3389/fmolb.2023.1150400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 06/02/2023] Open
Abstract
Chromatin is dynamically reorganized spatially and temporally, and the post-translational modification of histones is a key component of this regulation. The basic subunit of chromatin is the nucleosome core particle, consisting of two copies each of the histones H2A, H2B, H3, and H4 around which ∼147 base pairs of DNA wrap. The intrinsically disordered histone termini, or tails, protrude from the core and are heavily post-translationally modified. Previous studies have shown that the histone tails exist in dynamic ensembles of DNA-bound states within the nucleosome. Histone tail interactions with DNA are involved in nucleosome conformation and chromatin organization. Charge-modulating histone post-translational modifications (PTMs) are poised to perturb the dynamic interactions between histone tails and DNA. Arginine side chains form favorable interactions with DNA and are sites of charge-modulating PTMs such as citrullination. Our current focus is on the H3 tail, the longest histone tail. Four arginine residues are relatively evenly spaced along the H3 tail sequence, suggesting multivalent interactions with DNA poised for regulation by PTMs. In this study, we use NMR nuclear spin relaxation experiments to investigate the contribution of arginine residues to H3 tail dynamics within the nucleosome core particle. By neutralizing arginine via mutation to glutamine, we begin to work towards a comprehensive understanding of the contribution of individual residues to H3 tail dynamics. We find that neutralization of arginine residues results in increased regional mobility of the H3 tails, with implications for understanding the direct effects of arginine citrullination. Altogether, these studies support a role for dynamics within the histone language and emphasize the importance of charge-modulating histone PTMs in regulating chromatin dynamics, starting at the level of the basic subunit of chromatin.
Collapse
Affiliation(s)
- Christine E. Jennings
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Casey J. Zoss
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Emma A. Morrison
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
18
|
H2A Ubiquitination Alters H3-tail Dynamics on Linker-DNA to Enhance H3K27 Methylation. J Mol Biol 2023; 435:167936. [PMID: 36610636 DOI: 10.1016/j.jmb.2022.167936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Polycomb repressive complex 1 (PRC1) and PRC2 are responsible for epigenetic gene regulation. PRC1 ubiquitinates histone H2A (H2Aub), which subsequently promotes PRC2 to introduce the H3 lysine 27 tri-methyl (H3K27me3) repressive chromatin mark. Although this mechanism provides a link between the two key transcriptional repressors, PRC1 and PRC2, it is unknown how histone-tail dynamics contribute to this process. Here, we have examined the effect of H2A ubiquitination and linker-DNA on H3-tail dynamics and H3K27 methylation by PRC2. In naïve nucleosomes, the H3-tail dynamically contacts linker DNA in addition to core DNA, and the linker-DNA is as important for H3K27 methylation as H2A ubiquitination. H2A ubiquitination alters contacts between the H3-tail and DNA to improve the methyltransferase activity of the PRC2-AEBP2-JARID2 complex. Collectively, our data support a model in which H2A ubiquitination by PRC1 synergizes with linker-DNA to hold H3 histone tails poised for their methylation by PRC2-AEBP2-JARID2.
Collapse
|
19
|
Lorch Y, Kornberg RD, Maier-Davis B. Role of the histone tails in histone octamer transfer. Nucleic Acids Res 2023; 51:3671-3678. [PMID: 36772826 PMCID: PMC10164550 DOI: 10.1093/nar/gkad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
The exceptionally high positive charge of the histones, concentrated in the N- and C-terminal tails, is believed to contribute to the stability of the nucleosome by neutralizing the negative charge of the nucleosomal DNA. We find, on the contrary, that the high positive charge contributes to instability, performing an essential function in chromatin remodeling. We show that the tails are required for removal of the histone octamer by the RSC chromatin remodeling complex, and this function is not due to direct RSC-tail interaction. We also show that the tails are required for histone octamer transfer from nucleosomes to DNA, and this activity of the tails is a consequence of their positive charge. Thus, the histone tails, intrinsically disordered protein regions, perform a critical role in chromatin structure and transcription, unrelated to their well-known role in regulation through posttranscriptional modification.
Collapse
Affiliation(s)
- Yahli Lorch
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Barbara Maier-Davis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Li S, Wei T, Panchenko AR. Histone variant H2A.Z modulates nucleosome dynamics to promote DNA accessibility. Nat Commun 2023; 14:769. [PMID: 36765119 PMCID: PMC9918499 DOI: 10.1038/s41467-023-36465-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Nucleosomes, containing histone variants H2A.Z, are important for gene transcription initiation and termination, chromosome segregation and DNA double-strand break repair, among other functions. However, the underlying mechanisms of how H2A.Z influences nucleosome stability, dynamics and DNA accessibility are not well understood, as experimental and computational evidence remains inconclusive. Our modeling efforts of human nucleosome stability and dynamics, along with comparisons with experimental data show that the incorporation of H2A.Z results in a substantial decrease of the energy barrier for DNA unwrapping. This leads to the spontaneous DNA unwrapping of about forty base pairs from both ends, nucleosome gapping and increased histone plasticity, which otherwise is not observed for canonical nucleosomes. We demonstrate that both N- and C-terminal tails of H2A.Z play major roles in these events, whereas the H3.3 variant exerts a negligible impact in modulating the DNA end unwrapping. In summary, our results indicate that H2A.Z deposition makes nucleosomes more mobile and DNA more accessible to transcriptional machinery and other chromatin components.
Collapse
Affiliation(s)
- Shuxiang Li
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Tiejun Wei
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada. .,Department of Biology and Molecular Sciences, Queen's University, Kingston, ON, Canada. .,School of Computing, Queen's University, Kingston, ON, Canada. .,Ontario Institute of Cancer Research, Toronto, Canada.
| |
Collapse
|
21
|
The Role of PARP1 and PAR in ATP-Independent Nucleosome Reorganisation during the DNA Damage Response. Genes (Basel) 2022; 14:genes14010112. [PMID: 36672853 PMCID: PMC9859207 DOI: 10.3390/genes14010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The functioning of the eukaryotic cell genome is mediated by sophisticated protein-nucleic-acid complexes, whose minimal structural unit is the nucleosome. After the damage to genomic DNA, repair proteins need to gain access directly to the lesion; therefore, the initiation of the DNA damage response inevitably leads to local chromatin reorganisation. This review focuses on the possible involvement of PARP1, as well as proteins acting nucleosome compaction, linker histone H1 and non-histone chromatin protein HMGB1. The polymer of ADP-ribose is considered the main regulator during the development of the DNA damage response and in the course of assembly of the correct repair complex.
Collapse
|
22
|
Wen T, Yang K, Greenberg MM. Local Alteration of Ionic Strength in a Nucleosome Core Particle and Its Effect on N7-Methyl-2'-deoxyguanosine Depurination. Biochemistry 2022; 61:2221-2228. [PMID: 36136907 PMCID: PMC9670023 DOI: 10.1021/acs.biochem.2c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Positively charged N-terminal histone tails play important roles in maintaining the nucleosome (and chromatin) structure and function. Charge alteration, including those imposed by post-translational modifications, impacts chromatin dynamics, protein binding, and the fate of DNA damage. There is evidence that N-terminal histone tails affect the local ionic environment within a nucleosome core particle (NCP), but this phenomenon is not well understood. Determining the modulation of the local ionic environment within an NCP by histone tails could help uncover the underlying mechanisms of their functions and effects. Utilizing bottom-up syntheses of NCPs containing wild-type or mutated histones and a fluorescent probe that is sensitive to the local ionic environment, we show that interaction with positively charged N-terminal tails increases the local ionic strength near nucleosomal DNA. The effect is diminished by replacing positively charged residues with neutral ones or deleting a tail in its entirety. Replacing the fluorescent probe with the major DNA methylation product, N7-methyl-2'-deoxyguanosine (MdG), revealed changes in the depurination rate constant varying inversely with local ionic strength. These data indicate that the MdG hydrolysis rates depend on and also inform on local ionic strength in an NCP. Overall, histone tail charge contributes to the complexity of the NCP structure and function by modulating the local ionic strength.
Collapse
Affiliation(s)
- Tingyu Wen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Kun Yang
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
23
|
MacCarthy CM, Huertas J, Ortmeier C, Vom Bruch H, Tan DS, Reinke D, Sander A, Bergbrede T, Jauch R, Schöler HR, Cojocaru V. OCT4 interprets and enhances nucleosome flexibility. Nucleic Acids Res 2022; 50:10311-10327. [PMID: 36130732 PMCID: PMC9561370 DOI: 10.1093/nar/gkac755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 01/06/2023] Open
Abstract
Pioneer transcription factors are proteins that induce cellular identity transitions by binding to inaccessible regions of DNA in nuclear chromatin. They contribute to chromatin opening and recruit other factors to regulatory DNA elements. The structural features and dynamics modulating their interaction with nucleosomes are still unresolved. From a combination of experiments and molecular simulations, we reveal here how the pioneer factor and master regulator of pluripotency, Oct4, interprets and enhances nucleosome structural flexibility. The magnitude of Oct4’s impact on nucleosome dynamics depends on the binding site position and the mobility of the unstructured tails of nucleosomal histone proteins. Oct4 uses both its DNA binding domains to propagate and stabilize open nucleosome conformations, one for specific sequence recognition and the other for nonspecific interactions with nearby regions of DNA. Our findings provide a structural basis for the versatility of transcription factors in engaging with nucleosomes and have implications for understanding how pioneer factors induce chromatin dynamics.
Collapse
Affiliation(s)
- Caitlin M MacCarthy
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jan Huertas
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Claudia Ortmeier
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hermann Vom Bruch
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Daisylyn Senna Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Deike Reinke
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Astrid Sander
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Hans R Schöler
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Medical Faculty, University of Münster, Germany
| | - Vlad Cojocaru
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Computational Structural Biology Group, University of Utrecht, The Netherlands.,STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
24
|
Tsunaka Y, Furukawa A, Nishimura Y. Histone tail network and modulation in a nucleosome. Curr Opin Struct Biol 2022; 75:102436. [PMID: 35863166 DOI: 10.1016/j.sbi.2022.102436] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
The structural unit of eukaryotic chromatin is a nucleosome, comprising two histone H2A/H2B heterodimers and one histone (H3/H4)2 tetramer, wrapped around by ∼146-bp core DNA and linker DNA. Flexible histone tails sticking out from the core undergo posttranslational modifications that are responsible for various epigenetic functions. Recently, the functional dynamics of histone tails and their modulation within the nucleosome and nucleosomal complexes have been investigated by integrating NMR, molecular dynamics simulations, and cryo-electron microscopy approaches. In particular, recent NMR studies have revealed correlations in the structures of histone N-terminal tails between H2A and H2B, as well as between H3 and H4 depending on linker DNA, suggesting that histone tail networks exist even within the nucleosome.
Collapse
Affiliation(s)
- Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ayako Furukawa
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
25
|
Ishida H, Kono H. Free Energy Landscape of H2A-H2B Displacement From Nucleosome. J Mol Biol 2022; 434:167707. [PMID: 35777463 DOI: 10.1016/j.jmb.2022.167707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
Nucleosome reconstitution plays an important role in many cellular functions. As an initial step, H2A-H2B dimer displacement, which is accompanied by disruption of many of the interactions within the nucleosome, should occur. To understand how H2A-H2B dimer displacement occurs, an adaptively biased molecular dynamics (ABMD) simulation was carried out to generate a variety of displacements of the H2A-H2B dimer from the fully wrapped to partially unwrapped nucleosome structures. With regards to these structures, the free energy landscape of the dimer displacement was investigated using umbrella sampling simulations. We found that the main contributors to the free energy were the docking domain of H2A and the C-terminal of H4. There were various paths for the dimer displacement which were dependent on the extent of nucleosomal DNA wrapping, suggesting that modulation of the intra-nucleosomal interaction by external factors such as histone chaperons could control the path for the H2A-H2B dimer displacement. Key residues which contributed to the free energy have also been reported to be involved in the mutations and posttranslational modifications (PTMs) which are important for assembling and/or reassembling the nucleosome at the molecular level and are found in cancer cells at the phenotypic level. Our results give insight into how the H2A-H2B dimer displacement proceeds along various paths according to different interactions within the nucleosome.
Collapse
Affiliation(s)
- Hisashi Ishida
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 619-0215 Kizugawa, Kyoto, Japan.
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 619-0215 Kizugawa, Kyoto, Japan
| |
Collapse
|
26
|
Zhao YC, Li Z, Ju LA. The soluble N-terminal autoinhibitory module of the A1 domain in von Willebrand factor partially suppresses its catch bond with glycoprotein Ibα in a sandwich complex. Phys Chem Chem Phys 2022; 24:14857-14865. [PMID: 35698887 DOI: 10.1039/d2cp01581a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
von Willebrand factor (VWF) senses and responds to the hemodynamic forces to interact with the circulatory system and platelets in hemostasis and thrombosis. The dark side of this mechanobiology is implicated in atherothrombosis, stroke, and, more recently, the COVID-19 thrombotic symptoms. The force-responsive element controlling VWF activation predominantly resides in the N terminal auto-inhibitory module (N-AIM) flanking its A1 domain. Nevertheless, the detailed mechano-chemistry of soluble VWF N-AIM is poorly understood at the sub-molecular level as it is assumed to be unstructured loops. Using the free molecular dynamics (MD) simulations, we first predicted a hairpin-like structure of the soluble A1 N-AIM derived polypeptide (Lp; sequences Q1238-E1260). Then we combined molecular docking and steered molecular dynamics (SMD) simulations to examine how Lp regulates the A1-GPIbα interaction under tensile forces. Our simulation results indicate that Lp suppresses the catch bond in a sandwich complex of A1-Lp-GPIbα yet contributes an additional catch-bond residue D1249. To experimentally benchmark the binding kinetics for A1-GPIbα in the absence or presence of Lp, we conducted the force spectroscopy-biomembrane force probe (BFP) assays. We found similar suppression on the A1-GPIbα catch bond with soluble Lp in presence. Clinically, as more and more therapeutic candidates targeting the A1-GPIbα axis have entered clinical trials to treat patients with TTP and acute coronary syndrome, our work represents an endeavor further towards an effective anti-thrombotic approach without severe bleeding side effects as most existing drugs suffer.
Collapse
Affiliation(s)
- Yunduo Charles Zhao
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia. .,Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Zhenhai Li
- School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia. .,Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.,Heart Research Institute, Newtown, NSW 2042, Australia.,The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2006, Australia.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
27
|
Osakabe A, Molaro A. Histone renegades: Unusual H2A histone variants in plants and animals. Semin Cell Dev Biol 2022; 135:35-42. [PMID: 35570098 DOI: 10.1016/j.semcdb.2022.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/27/2022]
Abstract
H2A variants are histones that carry out specialized nucleosome function during the eukaryote genome packaging. Most genes encoding H2A histone variants arose in the distant past, and have highly conserved domains and structures. Yet, novel H2A variants have continued to arise throughout the radiation of eukaryotes and disturbed the apparent tranquility of nucleosomes. These species-specific H2A variants contributed to the functional diversification of nucleosomes through changes in both their structure and expression patterns. In this short review, we discuss the evolutionary trajectories of these histone renegades in plants and animal genomes.
Collapse
Affiliation(s)
- Akihisa Osakabe
- Laboratory of Genetics, Department of Biological Sciences, The University of Tokyo, Tokyo, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.
| | - Antoine Molaro
- Genetics, Reproduction & Development Institute (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
28
|
Bröhm A, Schoch T, Dukatz M, Graf N, Dorscht F, Mantai E, Adam S, Bashtrykov P, Jeltsch A. Methylation of recombinant mononucleosomes by DNMT3A demonstrates efficient linker DNA methylation and a role of H3K36me3. Commun Biol 2022; 5:192. [PMID: 35236925 PMCID: PMC8891314 DOI: 10.1038/s42003-022-03119-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, the structure of the DNMT3A2/3B3 heterotetramer complex bound to a mononucleosome was reported. Here, we investigate DNA methylation of recombinant unmodified, H3KC4me3 and H3KC36me3 containing mononucleosomes by DNMT3A2, DNMT3A catalytic domain (DNMT3AC) and the DNMT3AC/3B3C complex. We show strong protection of the nucleosomal bound DNA against methylation, but efficient linker-DNA methylation next to the nucleosome core. High and low methylation levels of two specific CpG sites next to the nucleosome core agree well with details of the DNMT3A2/3B3-nucleosome structure. Linker DNA methylation next to the nucleosome is increased in the absence of H3K4me3, likely caused by binding of the H3-tail to the ADD domain leading to relief of autoinhibition. Our data demonstrate a strong stimulatory effect of H3K36me3 on linker DNA methylation, which is independent of the DNMT3A-PWWP domain. This observation reveals a direct functional role of H3K36me3 on the stimulation of DNA methylation, which could be explained by hindering the interaction of the H3-tail and the linker DNA. We propose an evolutionary model in which the direct stimulatory effect of H3K36me3 on DNA methylation preceded its signaling function, which could explain the evolutionary origin of the widely distributed "active gene body-H3K36me3-DNA methylation" connection.
Collapse
Affiliation(s)
- Alexander Bröhm
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Tabea Schoch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Michael Dukatz
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Nora Graf
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Franziska Dorscht
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Evelin Mantai
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Sabrina Adam
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany.
| |
Collapse
|
29
|
Li S, Peng Y, Landsman D, Panchenko AR. DNA methylation cues in nucleosome geometry, stability and unwrapping. Nucleic Acids Res 2022; 50:1864-1874. [PMID: 35166834 DOI: 10.1093/nar/gkac097] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 01/04/2023] Open
Abstract
Cytosine methylation at the 5-carbon position is an essential DNA epigenetic mark in many eukaryotic organisms. Although countless structural and functional studies of cytosine methylation have been reported, our understanding of how it influences the nucleosome assembly, structure, and dynamics remains obscure. Here, we investigate the effects of cytosine methylation at CpG sites on nucleosome dynamics and stability. By applying long molecular dynamics simulations on several microsecond time scale, we generate extensive atomistic conformational ensembles of full nucleosomes. Our results reveal that methylation induces pronounced changes in geometry for both linker and nucleosomal DNA, leading to a more curved, under-twisted DNA, narrowing the adjacent minor grooves, and shifting the population equilibrium of sugar-phosphate backbone geometry. These DNA conformational changes are associated with a considerable enhancement of interactions between methylated DNA and the histone octamer, doubling the number of contacts at some key arginines. H2A and H3 tails play important roles in these interactions, especially for DNA methylated nucleosomes. This, in turn, prevents a spontaneous DNA unwrapping of 3-4 helical turns for the methylated nucleosome with truncated histone tails, otherwise observed in the unmethylated system on several microseconds time scale.
Collapse
Affiliation(s)
- Shuxiang Li
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada
| | - Yunhui Peng
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - David Landsman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada
| |
Collapse
|
30
|
Kameda T, Awazu A, Togashi Y. Molecular dynamics analysis of biomolecular systems including nucleic acids. Biophys Physicobiol 2022; 19:e190027. [DOI: 10.2142/biophysico.bppb-v19.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/18/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
| | - Akinori Awazu
- Graduate School of Integrated Sciences for Life, Hiroshima University
| | | |
Collapse
|
31
|
Mir AR, Habib S, Uddin M. Recent advances in histone glycation: emerging role in diabetes and cancer. Glycobiology 2021; 31:1072-1079. [PMID: 33554241 DOI: 10.1093/glycob/cwab011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Ever increasing information on genome and proteome has offered fascinating details and new opportunities to understand the molecular biology. It is now known that histone proteins surrounding the DNA play a crucial role in the chromatin structure and function. Histones undergo a plethora of posttranslational enzymatic modifications that influence nucleosome dynamics and affect DNA activity. Earlier research offered insights into the enzymatic modifications of histones; however, attention has been diverted to histone modifications induced by by-products of metabolism without enzymatic engagement in the last decade. Nonenzymatic modifications of histones are believed to be crucial for epigenetic landscape, cellular fate and for role in human diseases. Glycation of histone proteins constitutes the major nonenzymatic modifications of nuclear proteins that have implications in diabetes and cancer. It has emerged that glycation damages nuclear proteins, modifies amino acids of histones at crucial locations, generates adducts affecting histone chromatin interaction, develops neo-epitopes inducing specific immune response and impacts cell function. Presence of circulating antibodies against glycated histone proteins in diabetes and cancer has shown immunological implications with diagnostic relevance. These crucial details make histone glycation an attractive focus for investigators. This review article, therefore, makes an attempt to exclusively summarize the recent research in histone glycation, its impact on structural integrity of chromatin and elaborates on its role in diabetes and cancer. The work offers insights for future scientists who investigate the link between metabolism, biomolecular structures, glycobiology, histone-DNA interactions in relation to diseases in humans.
Collapse
Affiliation(s)
- Abdul Rouf Mir
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002 India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002 India
| | - Moin Uddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002 India
| |
Collapse
|
32
|
Peng Y, Li S, Onufriev A, Landsman D, Panchenko AR. Binding of regulatory proteins to nucleosomes is modulated by dynamic histone tails. Nat Commun 2021; 12:5280. [PMID: 34489435 PMCID: PMC8421395 DOI: 10.1038/s41467-021-25568-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Little is known about the roles of histone tails in modulating nucleosomal DNA accessibility and its recognition by other macromolecules. Here we generate extensive atomic level conformational ensembles of histone tails in the context of the full nucleosome, totaling 65 microseconds of molecular dynamics simulations. We observe rapid conformational transitions between tail bound and unbound states, and characterize kinetic and thermodynamic properties of histone tail-DNA interactions. Different histone types exhibit distinct binding modes to specific DNA regions. Using a comprehensive set of experimental nucleosome complexes, we find that the majority of them target mutually exclusive regions with histone tails on nucleosomal/linker DNA around the super-helical locations ± 1, ± 2, and ± 7, and histone tails H3 and H4 contribute most to this process. These findings are explained within competitive binding and tail displacement models. Finally, we demonstrate the crosstalk between different histone tail post-translational modifications and mutations; those which change charge, suppress tail-DNA interactions and enhance histone tail dynamics and DNA accessibility. The intrinsic disorder of histone tails poses challenges in their characterization. Here the authors apply extensive molecular dynamics simulations of the full nucleosome to show reversible binding to DNA with specific binding modes of different types of histone tails, where charge-altering modifications suppress tail-DNA interactions and may boost interactions between nucleosomes and nucleosome-binding proteins.
Collapse
Affiliation(s)
- Yunhui Peng
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Shuxiang Li
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Alexey Onufriev
- Physics Department, Virginia Tech, VA, USA.,Computer Science Department, Virginia Tech, VA, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, VA, USA
| | - David Landsman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
33
|
Zhao W, Ahmed S, Liu J, Ahmed S, Quansah E, Solangi TH, Wu Y, Yangliu Y, Wang H, Zhu J, Cai X. Comparative iTRAQ proteomics identified proteins associated with sperm maturation between yak and cattleyak epididymis. BMC Vet Res 2021; 17:255. [PMID: 34311720 PMCID: PMC8314601 DOI: 10.1186/s12917-021-02907-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background During maturation, spermatozoa acquire motility and fertilizing capacity as they transit through the epididymis. In recent years, two-dimensional gel electrophoresis has been employed in proteomics studies conducted in rat, boar and human. However, there has not been a complete information regarding the proteins associated with sperm maturation in the epididymis. In this study, we employed iTRAQ proteomics to investigate proteins associated with sperm maturation between yak and cattleyak epididymis. Results After a successful sampling and protein extraction, the iTRAQ coupled with LC-MS/MS mass spectrometry and bioinformatics analysis were performed. We identified 288 differentially abundant proteins (DAPs) between yak and cattleyak epididymis; 151 were up-regulated while 137 were down-regulated in cattleyak relative to yak. Gene Ontology analysis identified that down-regulated DAPs in cattleyak were mostly enriched in the acetylation of protein component, along with negative and positive regulatory activities. iTRAQ proteomics data showed that the top up-regulated DAPs were mainly enriched in cell communication, cell adhesion, cytoskeleton organization, stress response, post-translational modifications and metabolic functions while the down-regulated DAPs were predominantly associated with sperm maturation, long-term sperm storage, sperm forward motility, sperm-oocyte fusion and regulatory functions. Conclusion These results provide insight into the molecular mechanisms underlying male cattleyak sterility.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Siraj Ahmed
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Junxia Liu
- Qingdao Bright Moon Seaweed Group Co., ltd, Qingdao, 266400, Shandong, China
| | - Saeed Ahmed
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Eugene Quansah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Tajmal Hussain Solangi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Yitao Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Yueling Yangliu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Hongmei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, Sichuan, China. .,Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China.
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, Sichuan, China. .,Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
34
|
Torsional stress can regulate the unwrapping of two outer half superhelical turns of nucleosomal DNA. Proc Natl Acad Sci U S A 2021; 118:2020452118. [PMID: 33558240 DOI: 10.1073/pnas.2020452118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Torsional stress has a significant impact on the structure and stability of the nucleosome. RNA polymerase imposes torsional stress on the DNA in chromatin and unwraps the DNA from the nucleosome to access the genetic information encoded in the DNA. To understand how the torsional stress affects the stability of the nucleosome, we examined the unwrapping of two half superhelical turns of nucleosomal DNA from either end of the DNA under torsional stress with all-atom molecular dynamics simulations. The free energies for unwrapping the DNA indicate that positive stress that overtwists DNA facilitates a large-scale asymmetric unwrapping of the DNA without a large extension of the DNA. During the unwrapping, one end of the DNA was dissociated from H3 and H2A-H2B, while the other end of the DNA stably remained wrapped. The detailed analysis indicates that this asymmetric dissociation is facilitated by the geometry and bendability of the DNA under positive stress. The geometry stabilized the interaction between the major groove of the twisted DNA and the H3 αN-helix, and the straightened DNA destabilized the interaction with H2A-H2B. Under negative stress, the DNA became more bendable and flexible, which facilitated the binding of the unwrapped DNA to the octamer in a stable state. Consequently, we conclude that the torsional stress has a significant impact on the affinity of the DNA and the octamer through the inherent nature of the DNA and can change the accessibility of regulatory proteins.
Collapse
|
35
|
DNA sequence-dependent positioning of the linker histone in a nucleosome: A single-pair FRET study. Biophys J 2021; 120:3747-3763. [PMID: 34293303 DOI: 10.1016/j.bpj.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
Linker histones (LHs) bind to nucleosomes with their globular domain (gH) positioned in either an on- or an off-dyad binding mode. Here, we study the effect of the linker DNA (L-DNA) sequence on the binding of a full-length LH, Xenopus laevis H1.0b, to a Widom 601 nucleosome core particle (NCP) flanked by two 40 bp long L-DNA arms, by single-pair FRET spectroscopy. We varied the sequence of the 11 bp of L-DNA adjoining the NCP on either side, making the sequence either A-tract, purely GC, or mixed with 64% AT. The labeled gH consistently exhibited higher FRET efficiency with the labeled L-DNA containing the A-tract than that with the pure-GC stretch, even when the stretches were swapped. However, it did not exhibit higher FRET efficiency with the L-DNA containing 64% AT-rich mixed DNA when compared to the pure-GC stretch. We explain our observations with a model that shows that the gH binds on dyad and that two arginines mediate recognition of the A-tract via its characteristically narrow minor groove. To investigate whether this on-dyad minor groove-based recognition was distinct from previously identified off-dyad major groove-based recognition, a nucleosome was designed with A-tracts on both the L-DNA arms. One A-tract was complementary to thymine and the other to deoxyuridine. The major groove of the thymine-tract was lined with methyl groups that were absent from the major groove of the deoxyuridine tract. The gH exhibited similar FRET for both these A-tracts, suggesting that it does not interact with the thymine methyl groups exposed on the major groove. Our observations thus complement previous studies that suggest that different LH isoforms may employ different ways of recognizing AT-rich DNA and A-tracts. This adaptability may enable the LH to universally compact scaffold-associated regions and constitutive heterochromatin, which are rich in such sequences.
Collapse
|
36
|
Gamarra N, Narlikar GJ. Collaboration through chromatin: motors of transcription and chromatin structure. J Mol Biol 2021; 433:166876. [PMID: 33556407 PMCID: PMC8989640 DOI: 10.1016/j.jmb.2021.166876] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/09/2023]
Abstract
Packaging of the eukaryotic genome into chromatin places fundamental physical constraints on transcription. Clarifying how transcription operates within these constraints is essential to understand how eukaryotic gene expression programs are established and maintained. Here we review what is known about the mechanisms of transcription on chromatin templates. Current models indicate that transcription through chromatin is accomplished by the combination of an inherent nucleosome disrupting activity of RNA polymerase and the action of ATP-dependent chromatin remodeling motors. Collaboration between these two types of molecular motors is proposed to occur at all stages of transcription through diverse mechanisms. Further investigation of how these two motors combine their basic activities is essential to clarify the interdependent relationship between genome structure and transcription.
Collapse
Affiliation(s)
- Nathan Gamarra
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States; TETRAD Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.
| |
Collapse
|
37
|
Lin X, Qi Y, Latham AP, Zhang B. Multiscale modeling of genome organization with maximum entropy optimization. J Chem Phys 2021; 155:010901. [PMID: 34241389 PMCID: PMC8253599 DOI: 10.1063/5.0044150] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) organization of the human genome plays an essential role in all DNA-templated processes, including gene transcription, gene regulation, and DNA replication. Computational modeling can be an effective way of building high-resolution genome structures and improving our understanding of these molecular processes. However, it faces significant challenges as the human genome consists of over 6 × 109 base pairs, a system size that exceeds the capacity of traditional modeling approaches. In this perspective, we review the progress that has been made in modeling the human genome. Coarse-grained models parameterized to reproduce experimental data via the maximum entropy optimization algorithm serve as effective means to study genome organization at various length scales. They have provided insight into the principles of whole-genome organization and enabled de novo predictions of chromosome structures from epigenetic modifications. Applications of these models at a near-atomistic resolution further revealed physicochemical interactions that drive the phase separation of disordered proteins and dictate chromatin stability in situ. We conclude with an outlook on the opportunities and challenges in studying chromosome dynamics.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew P. Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
38
|
Bignon E, Gillet N, Jiang T, Morell C, Dumont E. A Dynamic View of the Interaction of Histone Tails with Clustered Abasic Sites in a Nucleosome Core Particle. J Phys Chem Lett 2021; 12:6014-6019. [PMID: 34165307 DOI: 10.1021/acs.jpclett.1c01058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Apurinic/apyrimidinic sites are the most common forms of DNA damage under physiological conditions, yet their structural and dynamical behavior within nucleosome core particles has just begun to be investigated and is dramatically different from that of abasic sites in B-DNA. Clusters of two or more abasic sites are repaired even less efficiently and hence constitute hot spots of high mutagenicity notably due to enhanced double-strand break formation. On the basis of an X-ray structure of a 146 bp DNA wrapped onto a histone core, we investigate the structural behavior of two bistranded abasic sites positioned at mutational hot spots during microsecond-range molecular dynamics simulations. Our simulations allow us to probe interactions of histone tails at clustered abasic site locations, with a definitive assignment of the key residues involved in the NCP-catalyzed formation of DNA-protein cross-linking in line with recent experimental findings, and pave the way for a systematic assessment of the response of histone tails to DNA lesions.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F69342 Lyon, France
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Natacha Gillet
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F69342 Lyon, France
| | - Tao Jiang
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F69342 Lyon, France
| | - Christophe Morell
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Elise Dumont
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F69342 Lyon, France
- Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| |
Collapse
|
39
|
Ohtomo H, Kurita JI, Sakuraba S, Li Z, Arimura Y, Wakamori M, Tsunaka Y, Umehara T, Kurumizaka H, Kono H, Nishimura Y. The N-terminal Tails of Histones H2A and H2B Adopt Two Distinct Conformations in the Nucleosome with Contact and Reduced Contact to DNA. J Mol Biol 2021; 433:167110. [PMID: 34153285 DOI: 10.1016/j.jmb.2021.167110] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
The nucleosome comprises two histone dimers of H2A-H2B and one histone tetramer of (H3-H4)2, wrapped around by ~145 bp of DNA. Detailed core structures of nucleosomes have been established by X-ray and cryo-EM, however, histone tails have not been visualized. Here, we have examined the dynamic structures of the H2A and H2B tails in 145-bp and 193-bp nucleosomes using NMR, and have compared them with those of the H2A and H2B tail peptides unbound and bound to DNA. Whereas the H2A C-tail adopts a single but different conformation in both nucleosomes, the N-tails of H2A and H2B adopt two distinct conformations in each nucleosome. To clarify these conformations, we conducted molecular dynamics (MD) simulations, which suggest that the H2A N-tail can locate stably in either the major or minor grooves of nucleosomal DNA. While the H2B N-tail, which sticks out between two DNA gyres in the nucleosome, was considered to adopt two different orientations, one toward the entry/exit side and one on the opposite side. Then, the H2A N-tail minor groove conformation was obtained in the H2B opposite side and the H2B N-tail interacts with DNA similarly in both sides, though more varied conformations are obtained in the entry/exit side. Collectively, the NMR findings and MD simulations suggest that the minor groove conformer of the H2A N-tail is likely to contact DNA more strongly than the major groove conformer, and the H2A N-tail reduces contact with DNA in the major groove when the H2B N-tail is located in the entry/exit side.
Collapse
Affiliation(s)
- Hideaki Ohtomo
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Jun-Ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun Sakuraba
- Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Zhenhai Li
- Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masatoshi Wakamori
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hidetoshi Kono
- Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8258, Japan.
| |
Collapse
|
40
|
Huertas J, Schöler HR, Cojocaru V. Histone tails cooperate to control the breathing of genomic nucleosomes. PLoS Comput Biol 2021; 17:e1009013. [PMID: 34081696 PMCID: PMC8174689 DOI: 10.1371/journal.pcbi.1009013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
Genomic DNA is packaged in chromatin, a dynamic fiber variable in size and compaction. In chromatin, repeating nucleosome units wrap 145–147 DNA basepairs around histone proteins. Genetic and epigenetic regulation of genes relies on structural transitions in chromatin which are driven by intra- and inter-nucleosome dynamics and modulated by chemical modifications of the unstructured terminal tails of histones. Here we demonstrate how the interplay between histone H3 and H2A tails control ample nucleosome breathing motions. We monitored large openings of two genomic nucleosomes, and only moderate breathing of an engineered nucleosome in atomistic molecular simulations amounting to 24 μs. Transitions between open and closed nucleosome conformations were mediated by the displacement and changes in compaction of the two histone tails. These motions involved changes in the DNA interaction profiles of clusters of epigenetic regulatory aminoacids in the tails. Removing the histone tails resulted in a large increase of the amplitude of nucleosome breathing but did not change the sequence dependent pattern of the motions. Histone tail modulated nucleosome breathing is a key mechanism of chromatin dynamics with important implications for epigenetic regulation. In the cell, the DNA is packed in chromatin. Chromatin is a highly dynamic fiber structure made of arrays of nucleosomes with different degrees of compaction. Each nucleosome has 145–147 basepairs of DNA wrapped around a protein octamer made of four unique histone proteins. Each histone is present twice and has a structured part and one or two disordered terminal tails. The regulation of gene expression in the cell and during cellular transitions depends on dynamic changes in chromatin structure. Chromatin dynamics are modulated by intra and inter nucleosome motions and by posttranslational chemical modifications of the histone tails. Here we reveal how histone tails control the intra nucleosome dynamics at atomic resolution. From extensive sampling of nucleosome dynamics in atomistic molecular simulations, we show that genomic nucleosomes breath more extensively than engineered ones and we describe how two histone tails cooperate to control nucleosome breathing through interactions between clusters of positively charged residues and the DNA. Nucleosome conformations with different degrees of opening are associated with different conformations, positions, and DNA interaction patterns of the tails. With this mechanism, we contribute to the understanding of chromatin dynamics at atomic resolution.
Collapse
Affiliation(s)
- Jan Huertas
- In Silico Biomolecular Structure and Dynamics Group, Hubrecht Institute, Utrecht, The Netherlands
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms University, Münster, Germany
| | - Hans Robert Schöler
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
| | - Vlad Cojocaru
- In Silico Biomolecular Structure and Dynamics Group, Hubrecht Institute, Utrecht, The Netherlands
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms University, Münster, Germany
- * E-mail: ,
| |
Collapse
|
41
|
Schmücker A, Lei B, Lorković ZJ, Capella M, Braun S, Bourguet P, Mathieu O, Mechtler K, Berger F. Crosstalk between H2A variant-specific modifications impacts vital cell functions. PLoS Genet 2021; 17:e1009601. [PMID: 34086674 PMCID: PMC8208582 DOI: 10.1371/journal.pgen.1009601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Selection of C-terminal motifs participated in evolution of distinct histone H2A variants. Hybrid types of variants combining motifs from distinct H2A classes are extremely rare. This suggests that the proximity between the motif cases interferes with their function. We studied this question in flowering plants that evolved sporadically a hybrid H2A variant combining the SQ motif of H2A.X that participates in the DNA damage response with the KSPK motif of H2A.W that stabilizes heterochromatin. Our inventory of PTMs of H2A.W variants showed that in vivo the cell cycle-dependent kinase CDKA phosphorylates the KSPK motif of H2A.W but only in absence of an SQ motif. Phosphomimicry of KSPK prevented DNA damage response by the SQ motif of the hybrid H2A.W/X variant. In a synthetic yeast expressing the hybrid H2A.W/X variant, phosphorylation of KSPK prevented binding of the BRCT-domain protein Mdb1 to phosphorylated SQ and impaired response to DNA damage. Our findings illustrate that PTMs mediate interference between the function of H2A variant specific C-terminal motifs. Such interference could explain the mutual exclusion of motifs that led to evolution of H2A variants.
Collapse
Affiliation(s)
- Anna Schmücker
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Bingkun Lei
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Zdravko J. Lorković
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Matías Capella
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Sigurd Braun
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Pierre Bourguet
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- CNRS, Université Clermont Auvergne, Inserm, Génétique Reproduction et Développement, Clermont-Ferrand, France
| | - Olivier Mathieu
- CNRS, Université Clermont Auvergne, Inserm, Génétique Reproduction et Développement, Clermont-Ferrand, France
| | - Karl Mechtler
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
42
|
Morrison EA, Baweja L, Poirier MG, Wereszczynski J, Musselman CA. Nucleosome composition regulates the histone H3 tail conformational ensemble and accessibility. Nucleic Acids Res 2021; 49:4750-4767. [PMID: 33856458 PMCID: PMC8096233 DOI: 10.1093/nar/gkab246] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/07/2021] [Accepted: 03/28/2021] [Indexed: 01/30/2023] Open
Abstract
Hexasomes and tetrasomes are intermediates in nucleosome assembly and disassembly. Their formation is promoted by histone chaperones, ATP-dependent remodelers, and RNA polymerase II. In addition, hexasomes are maintained in transcribed genes and could be an important regulatory factor. While nucleosome composition has been shown to affect the structure and accessibility of DNA, its influence on histone tails is largely unknown. Here, we investigate the conformational dynamics of the H3 tail in the hexasome and tetrasome. Using a combination of NMR spectroscopy, MD simulations, and trypsin proteolysis, we find that the conformational ensemble of the H3 tail is regulated by nucleosome composition. As has been found for the nucleosome, the H3 tails bind robustly to DNA within the hexasome and tetrasome, but upon loss of the H2A/H2B dimer, we determined that the adjacent H3 tail has an altered conformational ensemble, increase in dynamics, and increase in accessibility. Similar to observations of DNA dynamics, this is seen to be asymmetric in the hexasome. Our results indicate that nucleosome composition has the potential to regulate chromatin signaling and ultimately help shape the chromatin landscape.
Collapse
Affiliation(s)
- Emma A Morrison
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lokesh Baweja
- Department of Physics, Illinois Institute of Technology, Chicago, IL, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, USA
| | - Michael G Poirier
- Department of Physics, Biophysics Graduate Program, Ohio State Biochemistry Graduate Program, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Jeff Wereszczynski
- Department of Physics, Illinois Institute of Technology, Chicago, IL, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, USA
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
43
|
Nishide G, Lim K, Mohamed MS, Kobayashi A, Hazawa M, Watanabe-Nakayama T, Kodera N, Ando T, Wong RW. High-Speed Atomic Force Microscopy Reveals Spatiotemporal Dynamics of Histone Protein H2A Involution by DNA Inchworming. J Phys Chem Lett 2021; 12:3837-3846. [PMID: 33852305 DOI: 10.1021/acs.jpclett.1c00697] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA-histone interaction is always perturbed by epigenetic regulators to regulate gene expression. Direct visualization of this interaction is yet to be achieved. By using high-speed atomic force microscopy (HS-AFM), we have observed the dynamic DNA-histone H2A interaction. HS-AFM movies demonstrate the globular core and disordered tail of H2A. DNA-H2A formed the classic "beads-on-string" conformation on poly-l-lysine (PLL) and lipid substrates. Notably, a short-linearized double-stranded DNA (dsDNA), resembling an inchworm, wrapped around a single H2A protein only observed on the lipid substrate. Such a phenomenon does not occur for plasmid DNA or linearized long dsDNA on the same substrate. Strong adsorption of PLL substrate resulted in poor dynamic DNA-H2A interaction. Nonetheless, short-linearized dsDNA-H2A formed stable wrapping with a "diamond ring" topology on the PLL substrate. Reversible liquid-liquid phase separation (LLPS) of the DNA-H2A aggregate was visualized by manipulating salt concentrations. Collectively, our study suggest that HS-AFM is feasible for investigating epigenetically modified DNA-histone interactions.
Collapse
Affiliation(s)
- Goro Nishide
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, WISE Program for Nano-Precision Medicine, Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Mahmoud Shaaban Mohamed
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Akiko Kobayashi
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Masaharu Hazawa
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | | | - Noriyuki Kodera
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Toshio Ando
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Richard W Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, WISE Program for Nano-Precision Medicine, Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
44
|
Peng Y, Li S, Landsman D, Panchenko AR. Histone tails as signaling antennas of chromatin. Curr Opin Struct Biol 2021; 67:153-160. [PMID: 33279866 PMCID: PMC8096652 DOI: 10.1016/j.sbi.2020.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 12/19/2022]
Abstract
Histone tails, representing the N-terminal or C-terminal regions flanking the histone core, play essential roles in chromatin signaling networks. Intrinsic disorder of histone tails and their propensity for post-translational modifications allow them to serve as hubs in coordination of epigenetic processes within the nucleosomal context. Deposition of histone variants with distinct histone tail properties further enriches histone tails' repertoire in epigenetic signaling. Given the advances in experimental techniques and in silico modelling, we review the most recent data on histone tails' effects on nucleosome stability and dynamics, their function in regulating chromatin accessibility and folding. Finally, we discuss different molecular mechanisms to understand how histone tails are involved in nucleosome recognition by binding partners and formation of higher-order chromatin structures.
Collapse
Affiliation(s)
- Yunhui Peng
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Shuxiang Li
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada
| | - David Landsman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada.
| |
Collapse
|
45
|
Brouwer T, Pham C, Kaczmarczyk A, de Voogd WJ, Botto M, Vizjak P, Mueller-Planitz F, van Noort J. A critical role for linker DNA in higher-order folding of chromatin fibers. Nucleic Acids Res 2021; 49:2537-2551. [PMID: 33589918 PMCID: PMC7969035 DOI: 10.1093/nar/gkab058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleosome-nucleosome interactions drive the folding of nucleosomal arrays into dense chromatin fibers. A better physical account of the folding of chromatin fibers is necessary to understand the role of chromatin in regulating DNA transactions. Here, we studied the unfolding pathway of regular chromatin fibers as a function of single base pair increments in linker length, using both rigid base-pair Monte Carlo simulations and single-molecule force spectroscopy. Both computational and experimental results reveal a periodic variation of the folding energies due to the limited flexibility of the linker DNA. We show that twist is more restrictive for nucleosome stacking than bend, and find the most stable stacking interactions for linker lengths of multiples of 10 bp. We analyzed nucleosomes stacking in both 1- and 2-start topologies and show that stacking preferences are determined by the length of the linker DNA. Moreover, we present evidence that the sequence of the linker DNA also modulates nucleosome stacking and that the effect of the deletion of the H4 tail depends on the linker length. Importantly, these results imply that nucleosome positioning in vivo not only affects the phasing of nucleosomes relative to DNA but also directs the higher-order structure of chromatin.
Collapse
Affiliation(s)
- Thomas Brouwer
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Chi Pham
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Artur Kaczmarczyk
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Willem-Jan de Voogd
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Margherita Botto
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Petra Vizjak
- Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Felix Mueller-Planitz
- Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.,Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| |
Collapse
|
46
|
Rabdano SO, Shannon MD, Izmailov SA, Gonzalez Salguero N, Zandian M, Purusottam RN, Poirier MG, Skrynnikov NR, Jaroniec CP. Histone H4 Tails in Nucleosomes: a Fuzzy Interaction with DNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sevastyan O. Rabdano
- Laboratory of Biomolecular NMR St. Petersburg State University St. Petersburg 199034 Russian Federation
| | - Matthew D. Shannon
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | - Sergei A. Izmailov
- Laboratory of Biomolecular NMR St. Petersburg State University St. Petersburg 199034 Russian Federation
| | | | - Mohamad Zandian
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | - Rudra N. Purusottam
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | | | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR St. Petersburg State University St. Petersburg 199034 Russian Federation
- Department of Chemistry Purdue University West Lafayette IN 47906 USA
| | | |
Collapse
|
47
|
Rabdano SO, Shannon MD, Izmailov SA, Gonzalez Salguero N, Zandian M, Purusottam RN, Poirier MG, Skrynnikov NR, Jaroniec CP. Histone H4 Tails in Nucleosomes: a Fuzzy Interaction with DNA. Angew Chem Int Ed Engl 2021; 60:6480-6487. [PMID: 33522067 DOI: 10.1002/anie.202012046] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/15/2020] [Indexed: 12/21/2022]
Abstract
The interaction of positively charged N-terminal histone tails with nucleosomal DNA plays an important role in chromatin assembly and regulation, modulating their susceptibility to post-translational modifications and recognition by chromatin-binding proteins. Here, we report residue-specific 15 N NMR relaxation rates for histone H4 tails in reconstituted nucleosomes. These data indicate that H4 tails are strongly dynamically disordered, albeit with reduced conformational flexibility compared to a free peptide with the same sequence. Remarkably, the NMR observables were successfully reproduced in a 2-μs MD trajectory of the nucleosome. This is an important step toward resolving an apparent inconsistency where prior simulations were generally at odds with experimental evidence on conformational dynamics of histone tails. Our findings indicate that histone H4 tails engage in a fuzzy interaction with nucleosomal DNA, underpinned by a variable pattern of short-lived salt bridges and hydrogen bonds, which persists at low ionic strength (0-100 mM NaCl).
Collapse
Affiliation(s)
- Sevastyan O Rabdano
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russian Federation
| | - Matthew D Shannon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Sergei A Izmailov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russian Federation
| | | | - Mohamad Zandian
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Rudra N Purusottam
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael G Poirier
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russian Federation.,Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
48
|
Ghoneim M, Fuchs HA, Musselman CA. Histone Tail Conformations: A Fuzzy Affair with DNA. Trends Biochem Sci 2021; 46:564-578. [PMID: 33551235 DOI: 10.1016/j.tibs.2020.12.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
The core histone tails are critical in chromatin structure and signaling. Studies over the past several decades have provided a wealth of information on the histone tails and their interaction with chromatin factors. However, the conformation of the histone tails in a chromatin relevant context has remained elusive. Only recently has enough evidence emerged to start to build a structural model of the tails in the context of nucleosomes and nucleosome arrays. Here, we review these studies and propose that the histone tails adopt a high-affinity fuzzy complex with DNA, characterized by robust but dynamic association. Furthermore, we discuss how these DNA-bound conformational ensembles promote distinct chromatin structure and signaling, and that their fuzzy nature is important in transitioning between functional states.
Collapse
Affiliation(s)
- Mohamed Ghoneim
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Harrison A Fuchs
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Catherine A Musselman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
49
|
Musselman CA, Kutateladze TG. Characterization of functional disordered regions within chromatin-associated proteins. iScience 2021; 24:102070. [PMID: 33604523 PMCID: PMC7873657 DOI: 10.1016/j.isci.2021.102070] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Intrinsically disordered regions (IDRs) are abundant and play important roles in the function of chromatin-associated proteins (CAPs). These regions are often found at the N- and C-termini of CAPs and between structured domains, where they can act as more than just linkers, directly contributing to function. IDRs have been shown to contribute to substrate binding, act as auto-regulatory regions, and drive liquid-liquid droplet formation. Their disordered nature provides increased functional diversity and allows them to be easily regulated through post-translational modification. However, these regions can be especially challenging to characterize on a structural level. Here, we review the prevalence of IDRs in CAPs, highlighting several studies that address their importance in CAP function and show progress in structural characterization of these regions. A focus is placed on the unique opportunity to apply nuclear magnetic resonance (NMR) spectroscopy alongside cryo-electron microscopy to characterize IDRs in CAPs.
Collapse
Affiliation(s)
- Catherine A Musselman
- Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
50
|
Abstract
Histone acetylation is a ubiquitous hallmark of transcription, but whether the link between histone acetylation and transcription is causal or consequential has not been addressed. Using immunoblot and chromatin immunoprecipitation-sequencing in S. cerevisiae, here we show that the majority of histone acetylation is dependent on transcription. This dependency is partially explained by the requirement of RNA polymerase II (RNAPII) for the interaction of H4 histone acetyltransferases (HATs) with gene bodies. Our data also confirms the targeting of HATs by transcription activators, but interestingly, promoter-bound HATs are unable to acetylate histones in the absence of transcription. Indeed, HAT occupancy alone poorly predicts histone acetylation genome-wide, suggesting that HAT activity is regulated post-recruitment. Consistent with this, we show that histone acetylation increases at nucleosomes predicted to stall RNAPII, supporting the hypothesis that this modification is dependent on nucleosome disruption during transcription. Collectively, these data show that histone acetylation is a consequence of RNAPII promoting both the recruitment and activity of histone acetyltransferases.
Collapse
|