1
|
Moradi Gardeshi T, Shahandeh E, Tavakolpoor Saleh N, Karami S, Mirzaei Azandaryani Z, Mazaheri F, Mohammadi H. Evaluation of the effect of mitoquinone on functional parameters, DNA structure, and genes expression related to the apoptotic and antioxidants of human sperm after freezing-thawing. Mol Biol Rep 2024; 51:183. [PMID: 38261086 DOI: 10.1007/s11033-023-09020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/26/2023] [Indexed: 01/24/2024]
Abstract
OBJECTIVE Sperm freezing is considered as an effective way in assisted reproductive technology (ART) programs, it has detrimental effects on sperm function, due to the production of reactive oxygen species (ROS). This study aimed to investigate the potential of Mitoquinone (MitoQ) in inhibiting the production of mitochondrial ROS during sperm freezing. METHODS A total of 20 human normozoosperm samples were collected for this study. The samples were divided into four groups, each containing different concentrations of MitoQ (0, 0.2, 2, and 20 nM), and then subjected to the freezing process. After thawing, the sperm suspensions were evaluated for parameters including motility, morphology, acrosome integrity, adenosine triphosphate (ATP) level, intracellular ROS, viability, chromatin packaging, DNA denaturation, DNA fragmentation, as well as the expression of antioxidants (GPX, SOD) and apoptotic (Bax, Bcl2) genes. RESULTS The results showed that total and progressive mobility of sperms significantly increased in the 2 nM group, while significantly decreased in the 20 nM group (p ≤ 0.05). Sperm morphology did not significantly improve across all the tested concentrations (p ≥ 0.05). Intracellular ROS levels showed a significant decrease and increase in the concentrations of 2 and 20 nM, respectively (p ≤ 0.05). Furthermore, a significant increase was observed in viability, ATP, acrosome integrity, chromatin packaging, and non-denatured and non-fragmented DNA after treatment with 2 nM of MitoQ, compared with the control group (p ≤ 0.05). Regarding gene expressions, the relative expressions of oxidative stress genes were increased in the 2 nM group and decreased in the 20 nM group (p ≤ 0.05), while no significant difference was observed in the expressions of apoptotic genes compared with the control group (p ≥ 0.05). All the comparisons were made with respect to the control group. CONCLUSION Adding the optimal concentration of MitoQ (2 nM) to the sperm freezing medium not only improves sperm functional parameters and reduces DNA damages, but also stimulates the expression of antioxidant genes, leading to even greater benefits for sperm cryopreservation.
Collapse
Affiliation(s)
- Tohid Moradi Gardeshi
- Department of Veterinary Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Erfan Shahandeh
- Department of Biology, Islamic Azad University of Hamedan, Hamadan, Iran
| | - Nafiseh Tavakolpoor Saleh
- Department of Biophysics and Biochemistry, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Somayeh Karami
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Mirzaei Azandaryani
- Department of Midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fahime Mazaheri
- Research and Clinical Center of Infertility, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hiwa Mohammadi
- Social Determinants of Health Research CenterBoroujerd School of Nursing, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
2
|
Does Antioxidant Mitoquinone (MitoQ) Ameliorate Oxidative Stress in Frozen-Thawed Rooster Sperm? Animals (Basel) 2022; 12:ani12223181. [PMID: 36428408 PMCID: PMC9686742 DOI: 10.3390/ani12223181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, we aimed to determine the benefit of mitoquinone (MitoQ) in rooster semen extenders on sperm quality, motility parameters, antioxidant capacities, and apoptotic changes in post-thawed rooster semen. A total of 85 ejaculates from 18 roosters were collected and then divided into five equal aliquots and cryopreserved in extenders with 1.0% soy lecithin nanoparticles that contained various concentrations of MitoQ (0 nM (M0), 50 nM (M50), 100 nM (M100), 150 nM (M150), and 200 nM (M200)). By using a computer-assisted semen analyzer, sperm motility parameters were assessed after freeze thawing. The M150 group had significantly higher percentages of total motility, progressive motility, viability, acrosome membrane integrity, and mitochondrial activity than the other groups (p < 0.05). Compared to other groups, M100 and M150 groups produced a higher percentage of plasma membrane integrity and ATP contents (p < 0.05). Additionally, the lowest levels of ROS and MDA in spermatozoa were observed in M150 group (p < 0.05), whereas the highest levels of ROS and MDA were observed in sperm in the controls or the M200 group (p < 0.05). Significantly higher values of SOD, GPx, and Cas-3 were found in the M150 group compared to other groups (p < 0.05). Overall, these results demonstrate that MitoQ at 150 nM not only ameliorates post-thawed sperm quality and motility parameters by restoring ATP levels and preventing membrane damage, but also improves redox balance and antiapoptotic activities.
Collapse
|
3
|
Olszewska M, Kordyl O, Kamieniczna M, Fraczek M, Jędrzejczak P, Kurpisz M. Global 5mC and 5hmC DNA Levels in Human Sperm Subpopulations with Differentially Protaminated Chromatin in Normo- and Oligoasthenozoospermic Males. Int J Mol Sci 2022; 23:ijms23094516. [PMID: 35562907 PMCID: PMC9099774 DOI: 10.3390/ijms23094516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/17/2022] Open
Abstract
Epigenetic modifications play a special role in the male infertility aetiology. Published data indicate the link between sperm quality and sperm chromatin protamination. This study aimed to determine the relationship between methylation (5mC) and hydroxymethylation (5hmC) in sperm DNA, with respect to sperm chromatin protamination in three subpopulations of fertile normozoospermic controls and infertile patients with oligo-/oligoasthenozoospermia. For the first time, a sequential staining protocol was applied, which allowed researchers to analyse 5mC/5hmC levels by immunofluorescence staining, with a previously determined chromatin protamination status (aniline blue staining), using the same spermatozoa. TUNEL assay determined the sperm DNA fragmentation level. The 5mC/5hmC levels were diversified with respect to chromatin protamination status in both studied groups of males, with the highest values observed in protaminated spermatozoa. The linkage between chromatin protamination and 5mC/5hmC levels in control males disappeared in patients with deteriorated semen parameters. A relationship between 5mC/5hmC and sperm motility/morphology was identified in the patient group. Measuring the 5mC/5hmC status of sperm DNA according to sperm chromatin integrity provides evidence of correct spermatogenesis, and its disruption may represent a prognostic marker for reproductive failure.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
- Correspondence: (M.O.); (M.K.)
| | - Oliwia Kordyl
- Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland;
| | - Marzena Kamieniczna
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
| | - Monika Fraczek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
| | - Piotr Jędrzejczak
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
- Correspondence: (M.O.); (M.K.)
| |
Collapse
|
4
|
Turner KJ, Watson EM, Skinner BM, Griffin DK. Telomere Distribution in Human Sperm Heads and Its Relation to Sperm Nuclear Morphology: A New Marker for Male Factor Infertility? Int J Mol Sci 2021; 22:ijms22147599. [PMID: 34299219 PMCID: PMC8306796 DOI: 10.3390/ijms22147599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Infertility is a problem affecting an increasing number of couples worldwide. Currently, marker tests for male factor infertility are complex, highly technical and relatively subjective. Up to 40% of cases of male factor infertility are currently diagnosed as idiopathic therefore, there is a clear need for further research into better ways of diagnosing it. Changes in sperm telomere length have been associated with infertility and closely linked to DNA damage and fragmentation, which are also known to be related to infertility. However, telomere distribution is a parameter thus far underexplored as an infertility marker. Here, we assessed morphological parameters of sperm nuclei in fertile control and male factor infertile cohorts. In addition, we used 2D and 3D fluorescence in situ hybridization (FISH) to compare telomere distribution between these two groups. Our findings indicate that the infertile cohort sperm nuclei were, on average, 2.9% larger in area and showed subtle differences in sperm head height and width. Telomeres were mainly distributed towards the periphery of the nuclei in the control cohort, with diminishing telomere signals towards the center of the nuclei. Sperm nuclei of infertile males, however, had more telomere signals towards the center of the nuclei, a finding supported by 3D imaging. We conclude that, with further development, both morphology and telomere distribution may prove useful investigative tools in the fertility clinic.
Collapse
Affiliation(s)
- Kara J. Turner
- School of Biosciences, University of Kent, Giles Lane, Canterbury CT2 7NH, UK;
| | - Eleanor M. Watson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; (E.M.W.); (B.M.S.)
| | - Benjamin M. Skinner
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; (E.M.W.); (B.M.S.)
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Giles Lane, Canterbury CT2 7NH, UK;
- Correspondence:
| |
Collapse
|
5
|
Tunjić Cvitanić M, Vojvoda Zeljko T, Pasantes JJ, García-Souto D, Gržan T, Despot-Slade E, Plohl M, Šatović E. Sequence Composition Underlying Centromeric and Heterochromatic Genome Compartments of the Pacific Oyster Crassostrea gigas. Genes (Basel) 2020; 11:genes11060695. [PMID: 32599860 PMCID: PMC7348941 DOI: 10.3390/genes11060695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Segments of the genome enriched in repetitive sequences still present a challenge and are omitted in genome assemblies. For that reason, the exact composition of DNA sequences underlying the heterochromatic regions and the active centromeres are still unexplored for many organisms. The centromere is a crucial region of eukaryotic chromosomes responsible for the accurate segregation of genetic material. The typical landmark of centromere chromatin is the rapidly-evolving variant of the histone H3, CenH3, while DNA sequences packed in constitutive heterochromatin are associated with H3K9me3-modified histones. In the Pacific oyster Crassostrea gigas we identified its centromere histone variant, Cg-CenH3, that shows stage-specific distribution in gonadal cells. In order to investigate the DNA composition of genomic regions associated with the two specific chromatin types, we employed chromatin immunoprecipitation followed by high-throughput next-generation sequencing of the Cg-CenH3- and H3K9me3-associated sequences. CenH3-associated sequences were assigned to six groups of repetitive elements, while H3K9me3-associated-ones were assigned only to three. Those associated with CenH3 indicate the lack of uniformity in the chromosomal distribution of sequences building the centromeres, being also in the same time dispersed throughout the genome. The heterochromatin of C. gigas exhibited general paucity and limited chromosomal localization as predicted, with H3K9me3-associated sequences being predominantly constituted of DNA transposons.
Collapse
Affiliation(s)
- Monika Tunjić Cvitanić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
| | - Tanja Vojvoda Zeljko
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
| | - Juan J. Pasantes
- Departamento de Bioquímica, Xenética e Inmunoloxía, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36310 Vigo, Spain; (J.J.P.); (D.G.-S.)
| | - Daniel García-Souto
- Departamento de Bioquímica, Xenética e Inmunoloxía, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36310 Vigo, Spain; (J.J.P.); (D.G.-S.)
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Praza do Obradoiro, 0, 15705 Santiago de Compostela, Spain
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Tena Gržan
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
| | - Evelin Despot-Slade
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
- Correspondence: (M.P.); (E.Š.)
| | - Eva Šatović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (M.T.C.); (T.V.Z.); (T.G.); (E.D.-S.)
- Correspondence: (M.P.); (E.Š.)
| |
Collapse
|
6
|
Ioannou D, Tempest HG. Human Sperm Chromosomes: To Form Hairpin-Loops, Or Not to Form Hairpin-Loops, That Is the Question. Genes (Basel) 2019; 10:genes10070504. [PMID: 31277336 PMCID: PMC6678829 DOI: 10.3390/genes10070504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genomes are non-randomly organized within the interphase nucleus; and spermatozoa are proposed to have a unique hairpin-loop configuration, which has been hypothesized to be critical for the ordered exodus of the paternal genome following fertilization. Recent studies suggest that the hairpin-loop model of sperm chromatin organization is more segmentally organized. The purpose of this study is to examine the 3D organization and hairpin-loop configurations of chromosomes in human spermatozoa. METHODS Three-color sperm-fluorescence in-situ hybridization was utilized against the centromeres, and chromosome p- and q-arms of eight chromosomes from five normozoospermic donors. Wide-field fluorescence microscopy and 3D modelling established the radial organization and hairpin-loop chromosome configurations in spermatozoa. RESULTS All chromosomes possessed reproducible non-random radial organization (p < 0.05) and formed discrete hairpin-loop configurations. However, chromosomes preferentially formed narrow or wide hairpin-loops. We did not find evidence to support the existence of a centralized chromocenter(s) with centromeres being more peripherally localized than one or both of their respective chromosome arms. CONCLUSION This provides further evidence to support a more segmental organization of chromatin in the human sperm nucleus. This may be of significance for fertilization and early embryogenesis as specific genomic regions are likely to be exposed, remodeled, and activated first, following fertilization.
Collapse
Affiliation(s)
- Dimitrios Ioannou
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Helen G Tempest
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
7
|
Fowler KE, Mandawala AA, Griffin DK. The role of chromosome segregation and nuclear organisation in human subfertility. Biochem Soc Trans 2019; 47:425-432. [DOI: 10.1042/bst20180231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Spermatogenesis is central to successful sexual reproduction, producing large numbers of haploid motile male gametes. Throughout this process, a series of equational and reductional chromosome segregation precedes radical repackaging of the haploid genome. Faithful chromosome segregation is thus crucial, as is an ordered spatio-temporal ‘dance’ of packing a large amount of chromatin into a very small space. Ergo, when the process goes wrong, this is associated with an improper chromosome number, nuclear position and/or chromatin damage in the sperm head. Generally, screening for overall DNA damage is relatively commonplace in clinics, but aneuploidy assessment is less so and nuclear organisation studies form the basis of academic research. Several studies have focussed on the role of chromosome segregation, nuclear organisation and analysis of sperm morphometry in human subfertility observing significant alterations in some cases, especially of the sex chromosomes. Importantly, sperm DNA damage has been associated with infertility and both extrinsic (e.g. lifestyle) and intrinsic (e.g. reactive oxygen species levels) factors, and while some DNA-strand breaks are repaired, unexpected breaks can cause differential chromatin packaging and further breakage. A ‘healthy’ sperm nucleus (with the right number of chromosomes, nuclear organisation and minimal DNA damage) is thus an essential part of reproduction. The purpose of this review is to summarise state of the art in the fields of sperm aneuploidy assessment, nuclear organisation and DNA damage studies.
Collapse
Affiliation(s)
- Katie E. Fowler
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, U.K
| | - Anjali A. Mandawala
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, U.K
| | | |
Collapse
|
8
|
Wiland E, Olszewska M, Huleyuk N, Chernykh VB, Kurpisz M. The effect of Robertsonian translocations on the intranuclear positioning of NORs (nucleolar organizing regions) in human sperm cells. Sci Rep 2019; 9:2213. [PMID: 30778082 PMCID: PMC6379386 DOI: 10.1038/s41598-019-38478-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/27/2018] [Indexed: 01/26/2023] Open
Abstract
Only a few studies have described sperm chromosome intranuclear positioning changes in men with reproductive failure and an incorrect somatic karyotype. We studied the influence of Robertsonian translocations on the acrocentric chromosome positioning in human sperm cells. The basis of the analysis was the localization of NORs (nucleolar organizing regions) in sperm nuclei from three Robertsonian translocation carriers, namely, rob(13;22), rob(13;15) and rob(13;14), with a known meiotic segregation pattern. All three carriers presented with a similar percentage of genetically normal sperm cells (i.e., approximately 40%). To visualize NORs, we performed 2D-FISH with directly labelled probes. We used the linear and radial topologies of the nucleus to analyse the NORs distribution. We found an affected positioning of NORs in each case of the Robertsonian translocations. Moreover, the NORs tended to group, most often in two clusters. Both in Robertsonian carriers and control sperm cells, NORs mostly colocalized in the medial areas of the nuclei. In the case of the Roberstonian carriers, NORs were mostly concentrated in the peripheral part of the medial area, in contrast to control sperm cells in which the distribution was more dispersed towards the internal area.
Collapse
Affiliation(s)
- Ewa Wiland
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Nataliya Huleyuk
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lviv, Ukraine
| | - Vyacheslav B Chernykh
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
9
|
Olszewska M, Wiland E, Huleyuk N, Fraczek M, Midro AT, Zastavna D, Kurpisz M. Chromosome (re)positioning in spermatozoa of fathers and sons - carriers of reciprocal chromosome translocation (RCT). BMC Med Genomics 2019; 12:30. [PMID: 30709354 PMCID: PMC6359769 DOI: 10.1186/s12920-018-0470-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/28/2018] [Indexed: 01/05/2023] Open
Abstract
Background Non-random chromosome positioning has been observed in the nuclei of several different tissue types, including human spermatozoa. The nuclear arrangement of chromosomes can be altered in men with decreased semen parameters or increased DNA fragmentation and in males with chromosomal numerical or structural aberrations. An aim of this study was to determine whether and how the positioning of nine chromosome centromeres was (re)arranged in the spermatozoa of fathers and sons – carriers of the same reciprocal chromosome translocation (RCT). Methods Fluorescence in situ hybridization (FISH) was applied to analyse the positioning of sperm chromosomes in a group of 13 carriers of 11 RCTs, including two familial RCT cases: t(4;5) and t(7;10), followed by analysis of eight control individuals. Additionally, sperm chromatin integrity was evaluated using TUNEL and Aniline Blue techniques. Results In the analysed familial RCT cases, repositioning of the chromosomes occurred in a similar way when compared to the data generated in healthy controls, even if some differences between father and son were further observed. These differences might have arisen from various statuses of sperm chromatin disintegration. Conclusions Nuclear topology appears as another aspect of epigenetic genomic regulation that may influence DNA functioning. We have re-documented that chromosomal positioning is defined in control males and that a particular RCT is reflected in the individual pattern of chromosomal topology. The present study examining the collected RCT group, including two familial cases, additionally showed that chromosomal factors (karyotype and hyperhaploidy) have superior effects, strongly influencing the chromosomal topology, when confronted with sperm chromatin integrity components (DNA fragmentation or chromatin deprotamination). Electronic supplementary material The online version of this article (10.1186/s12920-018-0470-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Ewa Wiland
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Nataliya Huleyuk
- National Academy of Medical Sciences of Ukraine, Institute of Hereditary Pathology, Lysenko Str. 31a, Lviv, 79000, Ukraine
| | - Monika Fraczek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Alina T Midro
- Department of Clinical Genetics, Medical University of Bialystok, Waszyngtona 13, PO Box 22, 15-089, Bialystok, Poland
| | - Danuta Zastavna
- National Academy of Medical Sciences of Ukraine, Institute of Hereditary Pathology, Lysenko Str. 31a, Lviv, 79000, Ukraine.,Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959, Rzeszow, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| |
Collapse
|
10
|
Champroux A, Damon-Soubeyrand C, Goubely C, Bravard S, Henry-Berger J, Guiton R, Saez F, Drevet J, Kocer A. Nuclear Integrity but Not Topology of Mouse Sperm Chromosome is Affected by Oxidative DNA Damage. Genes (Basel) 2018; 9:genes9100501. [PMID: 30336622 PMCID: PMC6210505 DOI: 10.3390/genes9100501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/15/2023] Open
Abstract
Recent studies have revealed a well-defined higher order of chromosome architecture, named chromosome territories, in the human sperm nuclei. The purpose of this work was, first, to investigate the topology of a selected number of chromosomes in murine sperm; second, to evaluate whether sperm DNA damage has any consequence on chromosome architecture. Using fluorescence in situ hybridization, confocal microscopy, and 3D-reconstruction approaches we demonstrate that chromosome positioning in the mouse sperm nucleus is not random. Some chromosomes tend to occupy preferentially discrete positions, while others, such as chromosome 2 in the mouse sperm nucleus are less defined. Using a mouse transgenic model (Gpx5−/−) of sperm nuclear oxidation, we show that oxidative DNA damage does not disrupt chromosome organization. However, when looking at specific nuclear 3D-parameters, we observed that they were significantly affected in the transgenic sperm, compared to the wild-type. Mild reductive DNA challenge confirmed the fragility of the organization of the oxidized sperm nucleus, which may have unforeseen consequences during post-fertilization events. These data suggest that in addition to the sperm DNA fragmentation, which is already known to modify sperm nucleus organization, the more frequent and, to date, the less highly-regarded phenomenon of sperm DNA oxidation also affects sperm chromatin packaging.
Collapse
Affiliation(s)
- Alexandre Champroux
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Christelle Damon-Soubeyrand
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Chantal Goubely
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Stephanie Bravard
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Joelle Henry-Berger
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Rachel Guiton
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Fabrice Saez
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Joel Drevet
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Ayhan Kocer
- GReD "Genetics, Reproduction & Development" Laboratory, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
11
|
Chagin V, Zalensky A, Nazarov I, Mudrak O. Preferable location of chromosomes 1, 29, and X in bovine spermatozoa. AIMS GENETICS 2018; 5:113-123. [PMID: 31435516 PMCID: PMC6698578 DOI: 10.3934/genet.2018.2.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/07/2018] [Indexed: 12/13/2022]
Abstract
Chromosome positioning in sperm nucleus may have a functional significance by influencing the sequence of post-fertilization events. In this study we present data on preferential locations of chromosomes 1, 29 and X in Bos taurus spermatozoa. Here we demonstrate that the position of X chromosome in the sperm nucleus is more restricted as compared to the position of chromosome 1, which is about of the same size. Our data support the concept of the functional significance of genome architecture in male germline cells.
Collapse
Affiliation(s)
- Vadim Chagin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Andrei Zalensky
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Virginia, USA
| | - Igor Nazarov
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Virginia, USA
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Olga Mudrak
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Virginia, USA
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| |
Collapse
|
12
|
Panner Selvam MK, Agarwal A. A systematic review on sperm DNA fragmentation in male factor infertility: Laboratory assessment. Arab J Urol 2018; 16:65-76. [PMID: 29713537 PMCID: PMC5922187 DOI: 10.1016/j.aju.2017.12.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/26/2017] [Accepted: 12/02/2017] [Indexed: 02/04/2023] Open
Abstract
Objective To review sperm DNA fragmentation (SDF) testing as an important sperm function test in addition to conventional semen analysis. High SDF is negatively associated with semen quality, the fertilisation process, embryo quality, and pregnancy outcome. Over recent decades, different SDF assays have been developed and reviewed extensively to assess their applicability and accuracy as advanced sperm function tests. Amongst them, the standardisation of the terminal deoxynucleotidyl transferased UTP nick-end labelling (TUNEL) assay with a bench top flow cytometer in clinical practice deserves special mention with a threshold value of 16.8% to differentiate infertile men with DNA damage from fertile men. Materials and methods A systematic literature search was performed through the PubMed, Medline, and ScienceDirect databases using the keywords ‘sperm DNA fragmentation’ and ‘laboratory assessment’. Non-English articles were excluded and studies related to humans were only included. Results Of the 618 identified, 87 studies (original research and reviews) and in addition eight book chapters meeting the selection criteria were included in this review. In all, 366 articles were rejected in the preliminary screening and a further 165 articles related to non-human subjects were excluded. Conclusion There are pros and cons to all the available SDF assays. TUNEL is a reliable technique with greater accuracy and as an additional diagnostic test in Andrology laboratories along with basic semen analysis can predict fertility outcome, and thus direct the choice of an assisted reproductive technology procedure for infertile couples. Also, the TUNEL assay can be used as a prognostic test and results are beneficial in deciding personalised treatment for infertile men.
Collapse
Key Words
- AO, acridine orange
- ART, assisted reproductive technology
- CMA3, chromomysin A3
- DFI, DNA fragmentation index
- DNA damage
- FITC, Fluorescein isothiocyanate
- ICSI, intracytoplasmic sperm injection
- IUI, intrauterine insemination
- IVF, in vitro fertilisation
- PI, propidium iodide
- ROS, reactive oxygen species
- SCD, sperm chromatin dispersion
- SCSA, sperm chromatin structure assay
- SDF, sperm DNA fragmentation
- Sperm DNA fragmentation (SDF)
- Sperm DNA fragmentation (SDF) assay
- TUNEL, terminal deoxynucleotidyl transferased UTP nick-end labelling
- TdT, terminal deoxynucleotidyl transferase
- Terminal deoxynucleotidyl transferased UTP nick-end labelling (TUNEL)
- dUTP, 2′-deoxyuridine 5′-triphosphate
- dsDNA, double-stranded DNA
- ssDNA, single-strand DNA
Collapse
Affiliation(s)
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
13
|
Affiliation(s)
- Rima Dada
- Laboratory for Molecular Reproduction and Genetics, Anatomy Department, AIIMS, New Delhi, India
| |
Collapse
|