1
|
Stange K, Röntgen M. Myotube Formation and Cellular Fusion Are Diminished Due to Low Birth Weight in Piglets. Int J Mol Sci 2025; 26:2847. [PMID: 40243453 PMCID: PMC11989183 DOI: 10.3390/ijms26072847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Low birth weight (LBW) in various species leads to a pronounced skeletal muscle phenotype and can serve as a model to study muscle formation and draw conclusions for normal and pathological development. We aimed to elucidate in detail how the differentiation of muscular stem cells and their progeny are disturbed in piglets born with LBW. We isolated primary muscle cells from LBW piglets and their normal siblings with two different approaches: (1) single cells from two functionally divergent subpopulations (previously named "fast" and "slow") and (2) cells derived from isolated, intact myofibers. Subsequently, we analyzed their proliferative and differentiative capacity by determining proliferation rate, migration behavior, myotube formation, and myogenic gene and protein expression. LBW led to a decreased proliferation rate and migration potential in cells from the subpopulation fast group. Cells from LBW piglets were generally able to differentiate, but they formed smaller myotubes with less incorporated nuclei, leading to a diminished fusion rate. Myogenic gene expression was also significantly altered due to pig birth weight. Overall, early postnatal muscle development in LBW was disturbed at several crucial steps involving the establishment of a reserve stem cell pool, movement of cells towards existing myofibers, and the ability to form nascent myofibers.
Collapse
Affiliation(s)
| | - Monika Röntgen
- Working Group Cell Biology of Muscle Growth, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| |
Collapse
|
2
|
Gopaul VL, Winstone L, Gatien BG, Nault BD, Maiti S, Opperman RM, Majumder M. A Prospective Tumour Marker for Breast Cancer: YWHAB and Its Role in Promoting Oncogenic Phenotypes. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:935-956. [PMID: 39703345 PMCID: PMC11656333 DOI: 10.2147/bctt.s479384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Background YWHAB (14-3-3 Beta) was found in the secretome of miR-526b and miR-655 overexpressed breast cancer (BRCA) cell lines. The potential of YWHAB as a therapeutic target or biomarker for BRCA is investigated here. Methods After YWHAB was knocked down with siRNA, BRCA cell lines were used for in vitro assays (proliferation, migration, epithelial-to-mesenchymal transition). In silico analysis and in situ validation with BRCA plasma and biopsy tissues were used to test YWHAB's biomarker potential. Results YWHAB RNA and protein expression are elevated in aggressive BRCA cell lines, and the knockdown of YWHAB inhibited cell migration, proliferation, and EMT in all subtypes of tumour cell lines. YWHAB expression is significantly higher in BRCA biopsy tissue and blood plasma compared to control tissues and benign plasmas. YWHAB is expressed in all hormonal subtypes of BRCA tumours and has shown increased expression in advanced tumour stages. Its high expression is linked to poor patient survival. YWHAB is a sensitivity tumour marker (AUC of 0.7340, p = 0.0012) but is not a promising blood biomarker. Nevertheless, combined with pri-miR-526b, YWHAB mRNA expression shows potential as a BRCA blood biomarker (AUC of 0.711, p = 0.032), which must be validated in a larger sample set. Conclusion We elucidate the novel role of YWHAB as a therapeutic target in BRCA, given that its inhibition mitigated aggressive phenotypes across all tumour subtypes, including triple-negative breast cancer. Furthermore, YWHAB emerges as a potential tumour marker, exhibiting high expression in metastatic BRCA and correlating with poor patient survival; however, it is not a sensitive blood biomarker.
Collapse
Affiliation(s)
| | - Lacey Winstone
- Department of Biology, Brandon University, Brandon, MB, Canada
| | | | - Braydon D Nault
- Department of Biology, Brandon University, Brandon, MB, Canada
| | - Sujit Maiti
- Department of Biology, Brandon University, Brandon, MB, Canada
| | - Reid M Opperman
- Department of Biology, Brandon University, Brandon, MB, Canada
| | | |
Collapse
|
3
|
Yu N, Wu Y, Wei Q, Li X, Li M, Wu W. m 6A modification of CDC5L promotes lung adenocarcinoma progression through transcriptionally regulating WNT7B expression. Am J Cancer Res 2024; 14:3565-3583. [PMID: 39113868 PMCID: PMC11301290 DOI: 10.62347/qhfa9669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cell division cycle 5-like (CDC5L) protein is implicated in the development of various cancers. However, its role in the progression of lung adenocarcinoma (LUAD) remains uncertain. Our findings revealed frequent upregulation of CDC5L in LUAD, which correlated with poorer overall survival rates and advanced clinical stages. In vitro experiments demonstrated that CDC5L overexpression stimulated the proliferation, migration, and invasion of LUAD cells, whereas CDC5L knockdown exerted suppressive effects on these cellular processes. Furthermore, silencing CDC5L significantly inhibited tumor growth and metastasis in a xenograft mouse model. Mechanistically, CDC5L activates the Wnt/β-catenin signaling pathway by transcriptionally regulating WNT7B, thereby promoting LUAD progression. Besides, METTL14-mediated m6A modification contributed to CDC5L upregulation in an IGF2BP2-dependent manner. Collectively, our study uncovers a novel molecular mechanism by which the m6A-induced CDC5L functions as an oncogene in LUAD by activating the Wnt/β-catenin pathway through transcriptional regulation of WNT7B, suggesting that CDC5L may serve as a promising prognostic marker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Nanding Yu
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Yingxiao Wu
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Qiongying Wei
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Xiaoping Li
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Mengling Li
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Department of Geriatric Medicine, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
| | - Weidong Wu
- Department of Thoracic Surgery, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical UniversityFuzhou 350122, Fujian, China
| |
Collapse
|
4
|
Gural N, Irimia D. Microfluidic devices for precise measurements of cell directionality reveal a role for glutamine during cell migration. Sci Rep 2023; 13:23032. [PMID: 38155198 PMCID: PMC10754855 DOI: 10.1038/s41598-023-49866-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023] Open
Abstract
Cancer cells that migrate from tumors into surrounding tissues are responsible for cancer dissemination through the body. Microfluidic devices have been instrumental in discovering unexpected features of cancer cell migration, including the migration in self-generated gradients and the contributions of cell-cell contact during collective migration. Here, we design microfluidic channels with five successive bifurcations to characterize the directionality of cancer cell migration with high precision. We uncover an unexpected role for glutamine in epithelial cancer cell orientation, which could be replaced by alfa-keto glutarate but not glucose.
Collapse
Affiliation(s)
- Nil Gural
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel Irimia
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospitals for Children, Boston, MA, USA.
| |
Collapse
|
5
|
Guo GX, Wu KY, Zhang XY, Lai FX, Tsim KWK, Qin QW, Hu WH. The extract of Curcumae Longae Rhizoma suppresses angiogenesis via VEGF-induced PI3K/Akt-eNOS-NO pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116299. [PMID: 36842721 DOI: 10.1016/j.jep.2023.116299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcumae Longae Rhizoma (CLR) is a safe natural herbal medicine, and which has been widely used for centuries as functional food and health products, but its effects on angiogenesis and related underlying mechanism remain unclear. AIM OF THE STUDY The abnormal angiogenesis is closely related with various diseases, and therefore the precise control of angiogenesis is of great importance. The well-known angiogenic factor, vascular endothelial growth factor (VEGF), mediates angiogenesis and induces multiple signalling pathways via binding to VEGF receptor (VEGFR). The attenuation of VEGF-triggered angiogenic-related signalling pathways may relieve various diseases through suppression of angiogenesis. Here, we aimed to elucidate that CLR extract could exert striking anti-angiogenic activities both in vitro and in vivo. MATERIALS AND METHODS The viability of human umbilical vascular endothelial cell (HUVEC) was examined by LDH and MTT assays. Migrative and invasive ability of the endothelial cells were independently evaluated by wound healing and transwell assays. The activities of CLR extract on in vitro angiogenesis was tested by tube formation assay. In vivo vascularization was determined by using zebrafish embryo model in the present of CLR extract. Western blotting was applied to determine the phosphorylated levels of VEGFR2, PI3K, AKT and eNOS. Besides, the levels of nitric oxide (NO) and reactive oxygen species (ROS) were separately evaluated by Griess assay and 2'7'-dichlorofluorescein diacetate reaction. In addition, the cell migrative ability of cancer cell was estimated by using cultured human colon carcinoma cells (HT-29 cell line), and immunofluorescence assay was applied to evaluate the effect of CLR extract on nuclear translocation of NF-κB p65 subunit in the VEGF-treated HT-29 cultures. RESULTS CLR extract significantly suppressed a series of VEGF-mediated angiogenic responses, including endothelial cell proliferation, migration, invasion, and tube formation. Moreover, CLR extract reduced in vivo sub-intestinal vessel formation in zebrafish embryo model. Mechanistically, the extract of CLR attenuated the VEGF-triggered signalling, as demonstrated by decreased level of phosphorylated VEGFR2 and subsequently inactivated its downstream regulators, e.g. phospho-PI3K, phospho-AKT and phospho-eNOS. The production of NO and formation of ROS were markedly inhibited in HUVECs. Furthermore, CLR extract suppressed cell migration and NF-κB translocation in cultured HT-29 cells. CONCLUSIONS These preclinical findings demonstrate that the extract of CLR remarkably attenuates angiogenesis and which has great potential as a natural drug candidate with excellent anti-angiogenic activity.
Collapse
Affiliation(s)
- Guo-Xia Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Ke-Yue Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiao-Yong Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China.
| | - Fu-Xiang Lai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Karl Wah-Keung Tsim
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Qi-Wei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China.
| | - Wei-Hui Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China.
| |
Collapse
|
6
|
Gural N, Irimia D. Microfluidic Devices for Precise Measurements of Cell Directionality Reveal a Role for Glutamine during Cell Migration. RESEARCH SQUARE 2023:rs.3.rs-2799430. [PMID: 37205536 PMCID: PMC10187405 DOI: 10.21203/rs.3.rs-2799430/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cancer cells that migrate from tumors into surrounding tissues are responsible for cancer dissemination through the body. Microfluidic devices have been instrumental in discovering unexpected features of cancer cell migration, including the migration in self-generated gradients and the contributions of cell-cell contact during collective migration. Here, we design microfluidic channels with five successive bifurcations to characterize the directionality of cancer cell migration with high precision. We find that the directional decisions of cancer cells moving through bifurcating channels in response to self-generated epidermal growth factor (EGF) gradients require the presence of glutamine in the culture media. A biophysical model helps quantify the contribution of glucose and glutamine to cancer cell orientation during migration in self-generated gradients. Our study uncovers an unexpected interplay between cancer cell metabolism and cancer cell migration studies and may eventually lead to new ways to delay cancer cell invasion.
Collapse
|
7
|
A novel ribociclib derivative WXJ-103 exerts anti-breast cancer effect through CDK4/6. Anticancer Drugs 2022:00001813-990000000-00144. [PMID: 36729405 PMCID: PMC10344442 DOI: 10.1097/cad.0000000000001475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The triple-negative breast cancer (TNBC) subtype is the most aggressive type of breast cancer with a low survival prognosis and high recurrence rate. There is currently no effective treatment to improve it. In this work, we explored the effect of a synthetic compound named WXJ-103 on several aspects of TNBC biology. The human breast cancer cell lines MDA-MB-231 and MCF-7 were used in the experiments, and the cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method, and the cell migration and invasion abilities were detected by wound healing assay and Transwell invasion assay. Cell cycle and apoptosis experiments were analyzed by flow cytometry, and protein levels related to cyclin-dependent kinase (CDK) 4/6-cyclin D-Rb-E2F pathway were analyzed by western blotting. Then, in-vivo experiments were performed to determine the clinical significance and functional role of WXJ-103. The results show that WXJ-103 can inhibit the adhesion, proliferation, migration, and invasion of TNBC cells, and can arrest the cell cycle in G1 phase. The levels of CDK4/6-cyclin D-Rb-E2F pathway-related proteins such as CDK6 and pRb decreased in a dose-dependent manner. Therefore, the antitumor activity of WXJ-103 may depend on the inhibition of CDK4/6-cyclin D1-Rb-E2F pathway. This research shows that WXJ-103 may be a new promising antitumor drug, which can play an antitumor effect on TNBC and provide new ideas for the treatment of TNBC.
Collapse
|
8
|
Bouchalova P, Bouchal P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int 2022; 22:394. [PMID: 36494720 PMCID: PMC9733110 DOI: 10.1186/s12935-022-02801-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Cell migration and invasiveness significantly contribute to desirable physiological processes, such as wound healing or embryogenesis, as well as to serious pathological processes such as the spread of cancer cells to form tumor metastasis. The availability of appropriate methods for studying these processes is essential for understanding the molecular basis of cancer metastasis and for identifying suitable therapeutic targets for anti-metastatic treatment. This review summarizes the current status of these methods: In vitro methods for studying cell migration involve two-dimensional (2D) assays (wound-healing/scratch assay), and methods based on chemotaxis (the Dunn chamber). The analysis of both cell migration and invasiveness in vitro require more complex systems based on the Boyden chamber principle (Transwell migration/invasive test, xCELLigence system), or microfluidic devices with three-dimensional (3D) microscopy visualization. 3D culture techniques are rapidly becoming routine and involve multicellular spheroid invasion assays or array chip-based, spherical approaches, multi-layer/multi-zone culture, or organoid non-spherical models, including multi-organ microfluidic chips. The in vivo methods are mostly based on mice, allowing genetically engineered mice models and transplant models (syngeneic mice, cell line-derived xenografts and patient-derived xenografts including humanized mice models). These methods currently represent a solid basis for the state-of-the art research that is focused on understanding metastatic fundamentals as well as the development of targeted anti-metastatic therapies, and stratified treatment in oncology.
Collapse
Affiliation(s)
- Pavla Bouchalova
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Pavel Bouchal
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
9
|
Boger KD, Sheridan AE, Ziegler AL, Blikslager AT. Mechanisms and modeling of wound repair in the intestinal epithelium. Tissue Barriers 2022; 11:2087454. [PMID: 35695206 PMCID: PMC10161961 DOI: 10.1080/21688370.2022.2087454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The intestinal epithelial barrier is susceptible to injury from insults, such as ischemia or infectious disease. The epithelium's ability to repair wounded regions is critical to maintaining barrier integrity. Mechanisms of intestinal epithelial repair can be studied with models that recapitulate the in vivo environment. This review focuses on in vitro injury models and intestinal cell lines utilized in such systems. The formation of artificial wounds in a controlled environment allows for the exploration of reparative physiology in cell lines modeling diverse aspects of intestinal physiology. Specifically, the use of intestinal cell lines, IPEC-J2, Caco-2, T-84, HT-29, and IEC-6, to model intestinal epithelium is discussed. Understanding the unique systems available for creating intestinal injury and the differences in monolayers used for in vitro work is essential for designing studies that properly capture relevant physiology for the study of intestinal wound repair.
Collapse
Affiliation(s)
- Kasey D Boger
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Ana E Sheridan
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Amanda L Ziegler
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Anthony T Blikslager
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
10
|
Margono A, Bagio DA, Yulianto I, Dewi SU. Changes in Migratory Speed Rate of Human Dental Pulp Stromal Cells Cultured in Advanced Platelet-Rich Fibrin. Eur J Dent 2022; 17:91-96. [PMID: 35436790 PMCID: PMC9949916 DOI: 10.1055/s-0042-1743146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE Migratory speed rate evaluation of human dental pulp stromal cells (hDP-SCs) is one of the important steps in dental pulp regeneration. Therefore, the aim of the study is to analyze various concentrations of advanced platelet-rich fibrin (A-PRF) culture media toward hDP-SCs' migratory speed rate evaluations. MATERIALS AND METHODS The hDP-SCs were divided into four groups: control: hDP-SCs in Dulbecco's modified Eagle medium + 10% fetal bovine serum group; hDP-SCs in 1% A-PRF group; hDP-SCs in 5% A-PRF group; and hDP-SCs in 10% A-PRF group, which were planted in 24-well (5 × 104 cell/well). The migratory speed rate of all groups was measured by using cell migration assay (scratch wound assay) after 24 hours. Cell characteristics were evaluated under microscope (Inverted microscope, Zeiss, Observer Z1, UK) that can be read through image-J interpretation. This image J represented the measurement of migratory speed rate (nm/h) data. Statistical analysis was conducted using one-way analysis of variance and post hoc Tamhane's test (p < 0.05) (IBM SPSS Statistics Software, version 22.0). RESULTS There was a statistically significant difference in the migratory speed rates of hDP-SCs among various concentration groups of A-PRF (1, 5, and 10%) compared with the control group. CONCLUSION The increase in the migratory speed rate of hDP-SCs was highest in 10% A-PRF group.
Collapse
Affiliation(s)
- Anggraini Margono
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia,Address for correspondence Anggraini Margono, DDS, PhD Department of Conservative Dentistry, Faculty of Dentistry, Universitas IndonesiaJln. Salemba Raya No 4., Jakarta 13410Indonesia
| | - Dini Asrianti Bagio
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Indah Yulianto
- Department of Dermato Venereology, Faculty of Medicine, Universitas Sebelas Maret, Solo Surakarta, Indonesia
| | - Siti Utami Dewi
- Conservative Dentistry Residency Program, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
11
|
Zheng Y, Lin J, Liu D, Wan G, Gu X, Ma J. Nogo-B promotes angiogenesis and improves cardiac repair after myocardial infarction via activating Notch1 signaling. Cell Death Dis 2022; 13:306. [PMID: 35383153 PMCID: PMC8983727 DOI: 10.1038/s41419-022-04754-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/26/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
Abstract
Nogo-B (Reticulon 4B) is reportedly a regulator of angiogenesis during the development and progression of cancer. However, whether Nogo-B regulates angiogenesis and post-myocardial infarction (MI) cardiac repair remains elusive. In the present study, we aimed to explore the role and underlying mechanisms of Nogo-B in cardiac repair during MI. We observed an increased expression level of Nogo-B in the heart of mouse MI models, as well as in isolated cardiac microvascular endothelial cells (CMECs). Moreover, Nogo-B was significantly upregulated in CMECs exposed to oxygen-glucose deprivation (OGD). Nogo-B overexpression in the endothelium via cardiotropic adeno-associated virus serotype 9 (AAV9) with the mouse endothelial-specific promoter Tie2 improved heart function, reduced scar size, and increased angiogenesis. RNA-seq data indicated that Notch signaling is a deregulated pathway in isolated CMECs along the border zone of the infarct with Nogo-B overexpression. Mechanistically, Nogo-B activated Notch1 signaling and upregulated Hes1 in the MI hearts. Inhibition of Notch signaling using a specific siRNA and γ-secretase inhibitor abolished the promotive effects of Nogo-B overexpression on network formation and migration of isolated cardiac microvascular endothelial cells (CMECs). Furthermore, endothelial Notch1 heterozygous deletion inhibited Nogo-B-induced cardioprotection and angiogenesis in the MI model. Collectively, this study demonstrates that Nogo-B is a positive regulator of angiogenesis by activating the Notch signaling pathway, suggesting that Nogo-B is a novel molecular target for ischemic disease.
Collapse
|
12
|
Ghaferi M, Zahra W, Akbarzadeh A, Ebrahimi Shahmabadi H, Alavi SE. Enhancing the efficacy of albendazole for liver cancer treatment using mesoporous silica nanoparticles: an in vitro study. EXCLI JOURNAL 2022; 21:236-249. [PMID: 35221842 PMCID: PMC8859643 DOI: 10.17179/excli2021-4491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022]
Abstract
The present study aimed to synthesize albendazole (ABZ)-loaded Mobil Composition of Matter No. 41 (MCM-41 NPs) to increase the efficacy of the drug against liver cancer. ABZ was loaded into MCM-41 NPs, and after in vitro characterization, such as size, size distribution, zeta potential, morphology, chemical composition, thermal profile, drug release, surface and pore volume, and pore size, their biological effects were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) cell migration assays. The results demonstrated that monodispersed and spherical NPs with a size of 220 ± 11.5 and 293 ± 8.7 nm, for MCM-41 NPs and ABZ-loaded MCM-41 NPs, respectively, and drug loading efficiency of 30 % were synthesized. ABZ was loaded physically into MCM-41 NPs, leading to a decrease in surface volume, pore size, and pore volume. Also, MCM-41 NPs could increase the cytotoxicity effects of ABZ by 2.9-fold (IC50 = 23 and 7.9 µM for ABZ and ABZ-loaded MCM-41 NPs, respectively). In addition, both ABZ and ABZ-loaded MCM-41 NPs could restrain the cell migration by 12 %. Overall, the results of the present study suggest evaluating the potency of MCM-41 NPs, as a potent nanoplatform, for ABZ delivery in vivo environment. See also the Graphical Abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohsen Ghaferi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Warda Zahra
- Nishtar Medical University and Hospital, Multan 60000, Pakistan
| | - Azim Akbarzadeh
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyed Ebrahim Alavi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
13
|
Poon S, Ailles LE. Modeling the Role of Cancer-Associated Fibroblasts in Tumor Cell Invasion. Cancers (Basel) 2022; 14:962. [PMID: 35205707 PMCID: PMC8870277 DOI: 10.3390/cancers14040962] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
The major cause of cancer-related deaths can be attributed to the metastatic spread of tumor cells-a dynamic and complex multi-step process beginning with tumor cells acquiring an invasive phenotype to allow them to travel through the blood and lymphatic vessels to ultimately seed at a secondary site. Over the years, various in vitro models have been used to characterize specific steps in the cascade to collectively begin providing a clearer picture of the puzzle of metastasis. With the discovery of the TME's supporting role in activating tumor cell invasion and metastasis, these models have evolved in parallel to accommodate features of the TME and to observe its interactions with tumor cells. In particular, CAFs that reside in reactive tumor stroma have been shown to play a substantial pro-invasive role through their matrix-modifying functions; accordingly, this warranted further investigation with the development and use of invasion assays that could include these stromal cells. This review explores the growing toolbox of assays used to study tumor cell invasion, from the simple beginnings of a tumor cell and extracellular matrix set-up to the advent of models that aim to more closely recapitulate the interplay between tumor cells, CAFs and the extracellular matrix. These models will prove to be invaluable tools to help tease out the intricacies of tumor cell invasion.
Collapse
Affiliation(s)
- Stephanie Poon
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Laurie E. Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
14
|
Fathi I, Miki T. Human Amniotic Epithelial Cells Secretome: Components, Bioactivity, and Challenges. Front Med (Lausanne) 2022; 8:763141. [PMID: 35083233 PMCID: PMC8784524 DOI: 10.3389/fmed.2021.763141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Human amniotic epithelial cells (hAECs) derived from placental tissue have received significant attention as a promising tool in regenerative medicine. Several studies demonstrated their anti-inflammatory, anti-fibrotic, and tissue repair potentials. These effects were further shown to be retained in the conditioned medium of hAECs, suggesting their paracrine nature. The concept of utilizing the hAEC-secretome has thus evolved as a therapeutic cell-free option. In this article, we review the different components and constituents of hAEC-secretome and their influence as demonstrated through experimental studies in the current literature. Studies examining the effects of conditioned medium, exosomes, and micro-RNA (miRNA) derived from hAECs are included in this review. The challenges facing the application of this cell-free approach will also be discussed based on the current evidence.
Collapse
Affiliation(s)
- Ibrahim Fathi
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Toshio Miki
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Uttarawichien T, Khumsri W, Suwannalert P, Sibmooh N, Payuhakrit W. Onion Peel Extract Inhibits Cancer Cell Growth and Progression through the Roles of L1CAM, NF-κB, and Angiogenesis in HT-29 Colorectal Cancer Cells. Prev Nutr Food Sci 2021; 26:330-337. [PMID: 34737994 PMCID: PMC8531428 DOI: 10.3746/pnf.2021.26.3.330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is an aggressive malignancy. Critical mechanisms that support CRC progression include cell migration, invasion, metastasis, and angiogenesis, which is associated with L1 cell adhesion molecule (L1CAM) and nuclear factor-kappa B (NF-κB) signaling pathways. In this study, viability of HT-29 cells and human umbilical vein endothelial cells (HUVECs) was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, and cell apoptosis was investigated by flow cytometry assays. HT-29 cell migration and invasion were observed by wound healing and Transwell invasion assays, respectively, and tube formation of HUVECs was observed by tubulogenesis assays. L1CAM and NF-κB protein expressions in HT-29 cells treated with onion peel extract were determined by indirect immunofluorescence. Results showed that high dose treatments of onion peel extract inhibited cell viability of both HT-29 cells and HUVECs, induced HT-29 cell apoptosis, and inhibited HT-29 cell migration and invasion. Moreover, onion peel extract decreased total HUVEC tube length and, at a concentration of 10 μg/mL, showed potential to downregulate L1CAM and NF-κB. In conclusion, onion peel extract inhibits HT-29 cell growth, migration, and invasion through suppressing pathways related to angiogenesis downstream of L1CAM-activated NF-κB.
Collapse
Affiliation(s)
- Tamonwan Uttarawichien
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Wilunplus Khumsri
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prasit Suwannalert
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nathawut Sibmooh
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Witchuda Payuhakrit
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
16
|
Ghosh D, Dutta A, Kashyap A, Upmanyu N, Datta S. PLP2 drives collective cell migration via ZO-1-mediated cytoskeletal remodeling at the leading edge in human colorectal cancer cells. J Cell Sci 2021; 134:271878. [PMID: 34409455 DOI: 10.1242/jcs.253468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 08/11/2021] [Indexed: 01/06/2023] Open
Abstract
Collective cell migration (CCM), in which cell-cell integrity remains preserved during movement, plays an important role in the progression of cancer. However, studies describing CCM in cancer progression are majorly focused on the effects of extracellular tissue components on moving cell plasticity. The molecular and cellular mechanisms of CCM during cancer progression remain poorly explored. Here, we report that proteolipid protein 2 (PLP2), a colonic epithelium-enriched transmembrane protein, plays a vital role in the CCM of invasive human colorectal cancer (CRC) epithelium by modulating leading-edge cell dynamics in 2D. The extracellular pool of PLP2, secreted via exosomes, was also found to contribute to the event. During CCM, the protein was found to exist in association with ZO-1 (also known as TJP1) and to be involved in the positioning of the latter at the migrating edge. PLP2-mediated positioning of ZO-1 at the leading edge further alters actin cytoskeletal organization that involves Rac1 activation. Taken together, our findings demonstrate that PLP2, via its association with ZO-1, drives CCM in CRC epithelium by modulating the leading-edge actin cytoskeleton, thereby opening up new avenues of cancer research. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Dipanjana Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.,School of Pharmacy and Research, People's University, Bhopal 462037, India
| | - Ankita Dutta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Anjali Kashyap
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Neeraj Upmanyu
- School of Pharmacy and Research, People's University, Bhopal 462037, India
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
17
|
Antmen E, Demirci U, Hasirci V. Micropatterned Surfaces Expose the Coupling between Actin Cytoskeleton-Lamin/Nesprin and Nuclear Deformability of Breast Cancer Cells with Different Malignancies. Adv Biol (Weinh) 2021; 5:e2000048. [PMID: 33724728 PMCID: PMC9049775 DOI: 10.1002/adbi.202000048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Mechanotransduction proteins transfer mechanical stimuli through nucleo-cytoskeletal coupling and affect the nuclear morphology of cancer cells. However, the contribution of actin filament integrity has never been studied directly. It is hypothesized that differences in nuclear deformability of cancer cells are influenced by the integrity of actin filaments. In this study, transparent micropatterned surfaces as simple tools to screen cytoskeletal and nuclear distortions are presented. Surfaces decorated with micropillars are used to culture and image breast cancer cells and quantify their deformation using shape descriptors (circularity, area, perimeter). Using two drugs (cytochalasin D and jasplakinolide), actin filaments are disrupted. Deformation of cells on micropillars is decreased upon drug treatment as shown by increased circularity. However, the effect is much smaller on benign MCF10A than on malignant MCF7 and MDAMB231 cells. On micropatterned surfaces, molecular analysis shows that Lamin A/C and Nesprin-2 expressions decreased but, after drug treatment, increased in malignant cells but not in benign cells. These findings suggest that Lamin A/C, Nesprin-2 and actin filaments are critical in mechanotransduction of cancer cells. Consequently, transparent micropatterned surfaces can be used as image analysis platforms to provide robust, high throughput measurements of nuclear deformability of cancer cells, including the effect of cytoskeletal elements.
Collapse
Affiliation(s)
- Ezgi Antmen
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biotechnology, Ankara, Turkey
| | - Utkan Demirci
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biological Sciences, Ankara, Turkey
- Acibadem Mehmet Ali Aydinlar University, Department of Medical Engineering, Atasehir, Istanbul, Turkey
| |
Collapse
|
18
|
Luna-Dulcey L, da Silva JA, Cominetti MR. SSi6 promotes cell death by apoptosis through cell cycle arrest and inhibits migration and invasion of MDA-MB-231 human breast cancer cells. Anticancer Drugs 2020; 31:35-43. [PMID: 31490285 DOI: 10.1097/cad.0000000000000826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer subtype is the most aggressive type of breast cancer due to the lack of specific therapeutic targets, having limited treatment options, low survival prognosis and high recurrence rates. In this work, we describe the effects of a semisynthetic derivative of [6]-gingerol (6G) called SSi6, produced by the addition of a 2,4-dinitrophenylhydrazine reagent on several aspects of triple-negative breast cancer biology. Human breast cancer cell lines MDA-MB-231 and MCF-10A were used in the experiments. MTT assays were used to detect cell viability. Cell cycle and apoptosis assay were analyzed using flow cytometer Accuri C6 and analysis of proteins as retinoblastoma Rb and kinases Cdk4/6 were analyzed by western blotting. SSi6 induced cytotoxic effects on triple-negative breast cancer cells, with higher selectivity when compared to the non-tumor MCF-10A cells. In addition, SSi6 inhibited migration and invasion of triple-negative breast cancer cells and was able to arrest cell cycle at the G1-phase, mainly by decreasing Cdk4/6-Rb axis levels. Therefore, SSi6 provoked the induction of apoptosis in triple-negative breast cancer cells. SSi6 was more efficient in producing these effects, compared to the original 6G natural product. This study may contribute to a better understanding of the effects of natural and semisynthetic products on the in-vitro metastatic processes in the MDA-MB-231 triple-negative breast cancer cell line. Additional, it can be useful to understand the effects of chemical modifications on already effective natural compounds aiming at the improvement of their bioactive properties, such as in the increase of the cytotoxic selectivity against tumor cells, compared to non-tumor ones.
Collapse
Affiliation(s)
- Liany Luna-Dulcey
- Laboratory of Biology of Aging (LABEN), Department of Gerontology, Federal University of São Carlos, São Carlos, SP
| | - James A da Silva
- Department of Pharmacy, Federal University of Sergipe, São José, SE, Brazil
| | - Marcia R Cominetti
- Laboratory of Biology of Aging (LABEN), Department of Gerontology, Federal University of São Carlos, São Carlos, SP
| |
Collapse
|
19
|
Extracellular vesicles from human embryonic stem cell-derived cardiovascular progenitor cells promote cardiac infarct healing through reducing cardiomyocyte death and promoting angiogenesis. Cell Death Dis 2020; 11:354. [PMID: 32393784 PMCID: PMC7214429 DOI: 10.1038/s41419-020-2508-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Human pluripotent stem cells (hPSCs)-derived cardiovascular progenitor cells (CVPCs) are a promising source for myocardial repair, while the mechanisms remain largely unknown. Extracellular vesicles (EVs) are known to mediate cell–cell communication, however, the efficacy and mechanisms of hPSC-CVPC-secreted EVs (hCVPC-EVs) in the infarct healing when given at the acute phase of myocardial infarction (MI) are unknown. Here, we report the cardioprotective effects of the EVs secreted from hESC-CVPCs under normoxic (EV-N) and hypoxic (EV-H) conditions in the infarcted heart and the long noncoding RNA (lncRNA)-related mechanisms. The hCVPC-EVs were confirmed by electron microscopy, nanoparticle tracking, and immunoblotting analysis. Injection of hCVPC-EVs into acutely infracted murine myocardium significantly improved cardiac function and reduced fibrosis at day 28 post MI, accompanied with the improved vascularization and cardiomyocyte survival at border zones. Consistently, hCVPC-EVs enhanced the tube formation and migration of human umbilical vein endothelial cells (HUVECs), improved the cell viability, and attenuated the lactate dehydrogenase release of neonatal rat cardiomyocytes (NRCMs) with oxygen glucose deprivation (OGD) injury. Moreover, the improvement of the EV-H in cardiomyocyte survival and tube formation of HUVECs was significantly better than these in the EV-N. RNA-seq analysis revealed a high abundance of the lncRNA MALAT1 in the EV-H. Its abundance was upregulated in the infarcted myocardium and cardiomyocytes treated with hCVPC-EVs. Overexpression of human MALAT1 improved the cell viability of NRCM with OGD injury, while knockdown of MALAT1 inhibited the hCVPC-EV-promoted tube formation of HUVECs. Furthermore, luciferase activity assay, RNA pull-down, and manipulation of miR-497 levels showed that MALAT1 improved NRCMs survival and HUVEC tube formation through targeting miR-497. These results reveal that hCVPC-EVs promote the infarct healing through improvement of cardiomyocyte survival and angiogenesis. The cardioprotective effects of hCVPC-EVs can be enhanced by hypoxia-conditioning of hCVPCs and are partially contributed by MALAT1 via targeting the miRNA.
Collapse
|
20
|
Dean T, Li NT, Cadavid JL, Ailles L, McGuigan AP. A TRACER culture invasion assay to probe the impact of cancer associated fibroblasts on head and neck squamous cell carcinoma cell invasiveness. Biomater Sci 2020; 8:3078-3094. [PMID: 32347842 DOI: 10.1039/c9bm02017a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer associated fibroblasts (CAFs) are a major cellular component of the tumour stroma and have been shown to promote tumour cell invasion and disease progression. CAF-cancer cell interactions are bi-directional and occur via both soluble factor dependent and extracellular matrix (ECM) remodelling mechanisms, which are incompletely understood. Previously we developed the Tissue Roll for Analysis of Cellular Environment and Response (TRACER), a novel stacked paper tumour model in which cells embedded in a hydrogel are infiltrated into a porous cellulose scaffold that is then rolled around an aluminum core to generate a multi-layered 3D tissue. Here, we use the TRACER platform to explore the impact of CAFs derived from three different patients on the invasion of two head and neck squamous cell carcinoma (HNSCC) cell lines (CAL33 and FaDu). We find that co-culture with CAFs enhances HNSCC tumour cell invasion into an acellular collagen layer in TRACER and this enhanced migration occurs independently of proliferation. We show that CAF-enhanced invasion of CAL33 cells is driven by a soluble factor independent mechanism, likely involving CAF mediated ECM remodelling via matrix metalloprotenases (MMPs). Furthermore, we find that CAF-enhanced tumour cell invasion is dependent on the spatial pattern of collagen density within the culture. Our results highlight the utility of the co-culture TRACER platform to explore soluble factor independent interactions between CAFs and tumour cells that drive increased tumour cell invasion.
Collapse
Affiliation(s)
- Teresa Dean
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada.
| | | | | | | | | |
Collapse
|
21
|
Somchai P, Phongkitkarun K, Kueanjinda P, Jamnongsong S, Vaeteewoottacharn K, Luvira V, Okada S, Jirawatnotai S, Sampattavanich S. Novel Analytical Platform For Robust Identification of Cell Migration Inhibitors. Sci Rep 2020; 10:931. [PMID: 31969633 PMCID: PMC6976598 DOI: 10.1038/s41598-020-57806-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Wound healing assay is a simple and cost-effective in vitro assay for assessing therapeutic impacts on cell migration. Its key limitation is the possible confoundment by other cellular phenotypes, causing misinterpretation of the experimental outcome. In this study, we attempted to address this problem by developing a simple analytical approach for scoring therapeutic influences on both cell migration and cell death, while normalizing the influence of cell growth using Mitomycin C pre-treatment. By carefully mapping the relationship between cell death and wound closure rate, contribution of cell death and cell migration on the observed wound closure delay can be quantitatively separated at all drug dosing. We showed that both intrinsic cell motility difference and extrinsic factors such as cell seeding density can significantly affect final interpretation of therapeutic impacts on cellular phenotypes. Such discrepancy can be rectified by using the actual wound closure time of each treatment condition for the calculation of phenotypic scores. Finally, we demonstrated a screen for strong pharmaceutical inhibitors of cell migration in cholangiocarcinoma cell lines. Our approach enables accurate scoring of both migrastatic and cytotoxic effects, and can be easily implemented for high-throughput drug screening.
Collapse
Affiliation(s)
- Parinyachat Somchai
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kriengkrai Phongkitkarun
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Patipark Kueanjinda
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Supawan Jamnongsong
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Vor Luvira
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Seiji Okada
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Siwanon Jirawatnotai
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Somponnat Sampattavanich
- Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
22
|
Electrochemical live monitoring of tumor cell migration out of micro-tumors on an innovative multiwell high-dense microelectrode array. Sci Rep 2019; 9:13875. [PMID: 31554899 PMCID: PMC6761180 DOI: 10.1038/s41598-019-50326-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 09/10/2019] [Indexed: 02/08/2023] Open
Abstract
Understanding of cell migration and spreading out of tumor tissue is of great interest concerning the mechanism and causes of tumor malignancy and metastases. Although there are methods available for studying cell migration on monolayer cell cultures like transwell assays, novel techniques for monitoring cell spreading out of 3D organoids or tumor tissue samples are highly required. In this context, we developed an innovative high-dense microelectrode array for impedimetric monitoring of cell migration from 3D tumor cultures. For a proof of concept, a strongly migrating breast cancer cell line (MDA-MB-231) and two malignant melanoma cell lines (T30.6.9, T12.8.10ZII) were used for generating viable micro-tumor models. The migration propensity was determined by impedimetric monitoring over 144 hours, correlated by microscopy and validated by transwell assays. The impedimetric analysis of covered electrodes and the relative impedance maximum values revealed extended information regarding the contribution of proliferative effects. More strikingly, using reference populations of mitomycin C treated spheroids where proliferation was suppressed, distinction of proliferation and migration was possible. Therefore, our high-dense microelectrode array based impedimetric migration monitoring has the capability for an automated quantitative analysis system that can be easily scaled up as well as integrated in lab on chip devices.
Collapse
|
23
|
Fenu M, Bettermann T, Vogl C, Darwish-Miranda N, Schramel J, Jenner F, Ribitsch I. A novel magnet-based scratch method for standardisation of wound-healing assays. Sci Rep 2019; 9:12625. [PMID: 31477739 PMCID: PMC6718675 DOI: 10.1038/s41598-019-48930-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
A novel magnetic scratch method achieves repeatability, reproducibility and geometric control greater than pipette scratch assays and closely approximating the precision of cell exclusion assays while inducing the cell injury inherently necessary for wound healing assays. The magnetic scratch is affordable, easily implemented and standardisable and thus may contribute toward better comparability of data generated in different studies and laboratories.
Collapse
Affiliation(s)
- M Fenu
- University of Veterinary Medicine Vienna, Department of Companion Animals and Horses, Equine Surgery Unit, VETERM, Veterinaerplatz 1, 1210, Vienna, Austria
| | - T Bettermann
- University of Veterinary Medicine Vienna, Department of Companion Animals and Horses, Equine Surgery Unit, VETERM, Veterinaerplatz 1, 1210, Vienna, Austria
| | - C Vogl
- University of Veterinary Medicine Vienna, Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, Veterinaerplatz 1, 1210, Vienna, Austria
| | - N Darwish-Miranda
- IST Austria, Bioimaging Facility, AM Campus 1, 3400, Klosterneuburg, Austria
| | - J Schramel
- University of Veterinary Medicine Vienna, Department of Companion Animals and Horses, Equine Surgery Unit, VETERM, Veterinaerplatz 1, 1210, Vienna, Austria
| | - F Jenner
- University of Veterinary Medicine Vienna, Department of Companion Animals and Horses, Equine Surgery Unit, VETERM, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - I Ribitsch
- University of Veterinary Medicine Vienna, Department of Companion Animals and Horses, Equine Surgery Unit, VETERM, Veterinaerplatz 1, 1210, Vienna, Austria
| |
Collapse
|
24
|
Spatarelu CP, Zhang H, Trung Nguyen D, Han X, Liu R, Guo Q, Notbohm J, Fan J, Liu L, Chen Z. Biomechanics of Collective Cell Migration in Cancer Progression: Experimental and Computational Methods. ACS Biomater Sci Eng 2019; 5:3766-3787. [PMID: 32953985 PMCID: PMC7500334 DOI: 10.1021/acsbiomaterials.8b01428] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell migration is essential for regulating many biological processes in physiological or pathological conditions, including embryonic development and cancer invasion. In vitro and in silico studies suggest that collective cell migration is associated with some biomechanical particularities such as restructuring of extracellular matrix (ECM), stress and force distribution profiles, and reorganization of the cytoskeleton. Therefore, the phenomenon could be understood by an in-depth study of cells' behavior determinants, including but not limited to mechanical cues from the environment and from fellow "travelers". This review article aims to cover the recent development of experimental and computational methods for studying the biomechanics of collective cell migration during cancer progression and invasion. We also summarized the tested hypotheses regarding the mechanism underlying collective cell migration enabled by these methods. Together, the paper enables a broad overview on the methods and tools currently available to unravel the biophysical mechanisms pertinent to cell collective migration as well as providing perspectives on future development toward eventually deciphering the key mechanisms behind the most lethal feature of cancer.
Collapse
Affiliation(s)
| | - Hao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Dung Trung Nguyen
- Department of Engineering and Computer Science, Seattle Pacific University, Seattle, Washington 98119,
United States
| | - Xinyue Han
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ruchuan Liu
- College of Physics, Chongqing University, Chongqing 400032, China
| | - Qiaohang Guo
- School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350014,
China
| | - Jacob Notbohm
- Department of Engineering Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706,
United States
| | - Jing Fan
- Department of Mechanical Engineering, City College of City University of New York, New York 10031, United
States
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing 400032, China
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
25
|
Ritch SJ, Brandhagen BN, Goyeneche AA, Telleria CM. Advanced assessment of migration and invasion of cancer cells in response to mifepristone therapy using double fluorescence cytochemical labeling. BMC Cancer 2019; 19:376. [PMID: 31014286 PMCID: PMC6480622 DOI: 10.1186/s12885-019-5587-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/05/2019] [Indexed: 01/30/2023] Open
Abstract
Background Previous work in our laboratory demonstrated that antiprogestin mifepristone impairs the growth and adhesion of highly metastatic cancer cells, and causes changes in their cellular morphology. In this study, we further assess the anti-metastatic properties of mifepristone, by studying whether cytostatic doses of the drug can inhibit the migration and invasion of various cancer cell lines using a double fluorescence cytochemical labeling approach. Methods Cell lines representing cancers of the ovary (SKOV-3), breast (MDA-MB-231), glia (U87MG), or prostate (LNCaP) were treated with cytostatic concentrations of mifepristone. Wound healing and Boyden chamber assays were utilized to study cellular migration. To study cellular invasion, the Boyden chamber assay was prepared by adding a layer of extracellular matrix over the polycarbonate membrane. We enhanced the assays with the addition of double fluorescence cytochemical staining for fibrillar actin (F-actin) and DNA to observe the patterns of cytoskeletal distribution and nuclear positioning while cells migrate and invade. Results When exposed to cytostatic concentrations of mifepristone, all cancer cells lines demonstrated a decrease in both migration and invasion capacities measured using standard approaches. Double fluorescence cytochemical labeling validated that mifepristone-treated cancer cells exhibit reduced migration and invasion, and allowed to unveil a distinct migration pattern among the different cell lines, different arrays of nuclear localization during migration, and apparent redistribution of F-actin to the nucleus. Conclusion This study reports that antiprogestin mifepristone inhibits migration and invasion of highly metastatic cancer cell lines, and that double fluorescence cytochemical labeling increases the value of well-known approaches to study cell movement. Electronic supplementary material The online version of this article (10.1186/s12885-019-5587-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina J Ritch
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Qc, H3A 2B4, Canada
| | - BreeAnn N Brandhagen
- Present address: Research Acceleration Office, 2001 Campus Delivery, University Services Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Alicia A Goyeneche
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Qc, H3A 2B4, Canada
| | - Carlos M Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Qc, H3A 2B4, Canada.
| |
Collapse
|
26
|
Taniguchi M, Saito K, Aida R, Ochiai A, Saitoh E, Tanaka T. Wound healing activity and mechanism of action of antimicrobial and lipopolysaccharide-neutralizing peptides from enzymatic hydrolysates of rice bran proteins. J Biosci Bioeng 2019; 128:142-148. [PMID: 30799089 DOI: 10.1016/j.jbiosc.2019.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 01/18/2023]
Abstract
In our previous study, we identified multifunctional cationic peptides from enzymatic hydrolysates of rice bran proteins (RBPs) that have antimicrobial and lipopolysaccharide-neutralizing activities. In this study, we investigated the potential of the peptides RBP-LRR, RBP-EKL, and RBP-SSF to promote proliferation, angiogenesis (tube formation), and migration in human umbilical vein endothelial cells (HUVECs). To determine mechanisms of wound healing actions, angiogenic and migration-promoting activities of these peptides were evaluated following pretreatments of HUVECs with specific inhibitors. In these experiments, the cationic peptides RBP-LRR, RBP-EKL, and RBP-SSF induced cell proliferation at low concentrations of 0.1 μM or 1 μM. Moreover, the three cationic peptides had angiogenic activities at concentrations more than 1 μM in tube formation assays, and their effects were similar to those of LL-37. Subsequent scratch migration assays exhibited that RBP-LRR, RBP-EKL, and RBP-SSF promote wound closure at optimum concentrations of 10, 10, and 0.1 μM, respectively. In further studies, we performed tube formation assays using HUVECs pretreated with SU5416, which inhibits vascular endothelial growth factor (VEGF) receptors, and suggested the possibility that the three cationic peptides induce angiogenesis by activating VEGF receptors. In corresponding scratch migration assays using HUVECs, pretreatment with the proliferation inhibitor mitomycin C did not alter the effects of RBP-LRR and RBP-EKL, and significant contribution to wound closure were mediated by cell migration regardless of proliferation rates. In contrast, RBP-SSF contributed to wound closure exclusively by promoting cell proliferation. The present data indicate that RBP-LRR, RBP-EKL, and RBP-SSF are candidates for use as wound healing agents.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
| | - Kazuki Saito
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Ryousuke Aida
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Eiichi Saitoh
- Graduate School of Technology, Niigata Institute of Technology, Niigata 945-1195, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
27
|
Rosethorne EM, Charlton SJ. Airway remodeling disease: primary human structural cells and phenotypic and pathway assays to identify targets with potential to prevent or reverse remodeling. J Exp Pharmacol 2018; 10:75-85. [PMID: 30568517 PMCID: PMC6276605 DOI: 10.2147/jep.s159124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Airway remodeling is a characteristic of many chronic respiratory diseases and occurs when there are significant changes to the architecture of the small and large airways leading to progressive loss of lung function. Some common features include airway smooth muscle and goblet cell hyperplasia, basement membrane thickening and subepithelial fibrosis. To explore the mechanisms driving airway remodeling and identify novel targets to treat this aspect of respiratory disease, appropriate models must be used that will accurately predict the pathology of disease. Phenotypic assays can be used in primary human lung cells to measure changes in cell behavior that are associated with particular disease pathology. This is becoming increasingly popular when targeting chronic pathologies such as airway remodeling, where phenotypic assays are likely to model disease in vitro more accurately than traditional second messenger assays. Here we review the use of primary human lung structural cells in a range of disease-relevant chronic phenotypic assays, and how they may be used in target identification/validation and drug discovery.
Collapse
Affiliation(s)
- Elizabeth M Rosethorne
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK, .,Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK, .,Excellerate Bioscience Ltd, MediCity, Nottingham NG7 2UH, UK,
| | - Steven J Charlton
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK, .,Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK, .,Excellerate Bioscience Ltd, MediCity, Nottingham NG7 2UH, UK,
| |
Collapse
|
28
|
Taniguchi M, Ochiai A, Namae T, Saito K, Kato T, Saitoh E, Tanaka T. The antimicrobial and anti-endotoxic peptide AmyI-1-18 from rice α-amylase and its [N3L] analog promote angiogenesis and cell migration. Peptides 2018; 104:78-84. [PMID: 29709624 DOI: 10.1016/j.peptides.2018.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/18/2023]
Abstract
In our previous studies, we showed that AmyI-1-18 and its single amino acid-substituted analogs have antimicrobial, anti-inflammatory, and anti-endotoxic activities and cause little or no hemolysis or cytotoxicity. In this study, we investigated the potential of these peptides to promote proliferation, angiogenesis (tube formation), and migration in human umbilical vein endothelial cells (HUVECs). Among five single amino acid-substituted analogs, [N3L]AmyI-1-18 induced cell proliferation in a concentration-dependent manner with similar efficacy to AmyI-1-18. In tube formation assays, AmyI-1-18 and [N3L]AmyI-1-18 had angiogenic activities at 1 μM and their effects were similar to those of LL-37. Moreover, scratch migration assays showed that AmyI-1-18, [N3L]AmyI-1-18, and LL-37 promote cell migration with optimum concentrations of 10, 1, and 0.1 μM, respectively. Subsequently, we performed tube formation assays using HUVECs pretreated with SU5416, which is an inhibitor of vascular endothelial growth factor (VEGF) receptors, and revealed that AmyI-1-18 and [N3L]AmyI-1-18 induce angiogenesis by activating VEGF receptors. Similarly, after pretreating HUVECs with mitomycin C, which inhibits cell proliferation, [N3L]AmyI-1-18 significantly contributed to wound closure in scratch migration assays. Moreover, enhancements of hydrophobicity following substitution of AmyI-1-18 asparagine with leucine led to greater increases in cell migration. The present data indicate that both peptides, particularly [N3L]AmyI-1-18, are candidates for use as wound healing agents.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Toshiki Namae
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Kazuki Saito
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Tetsuo Kato
- Department of Chemistry, Tokyo Dental College, Tokyo 101-0062, Japan
| | - Eiichi Saitoh
- Graduate School of Technology, Niigata Institute of Technology, Niigata 945-1195, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
29
|
George E, Barai A, Shirke P, Majumder A, Sen S. Engineering interfacial migration by collective tuning of adhesion anisotropy and stiffness. Acta Biomater 2018; 72:82-93. [PMID: 29574184 DOI: 10.1016/j.actbio.2018.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 01/30/2018] [Accepted: 03/07/2018] [Indexed: 02/05/2023]
Abstract
Interfacial migration is central to multiple processes including morphogenesis and wound healing. However, the sensitivity of interfacial migration to properties of the interfacial microenvironment has not been adequately explored. Here, we address this question by tracking motility of 3T3 fibroblasts at the interface of two hydrogels. By sandwiching cells between two adhesive gels (composed of methacrylated gelatin) or between an adhesive and a non-adhesive gel (composed of gellan), we show that cells are more motile in case of the latter. By tuning the bulk stiffness of the gellan gel, we then show that motility is tuned in a stiffness-dependent manner. Fastest motility observed in case of the stiffest gel was associated with increased cell height, suggestive of stiffness-mediated cytoskeletal assembly. Inhibition of cell motility by contractile agonists and actin depolymerizing drugs is indicative of a mode of migration wherein cells combine contractile tractions exerted at their base and actin-based pushing forces on the top surface to propel themselves forward. Together, our results suggest that dorso-ventral adhesion anisotropy and stiffness can be collectively tuned to engineer interfacial migration. STATEMENT OF SIGNIFICANCE It is increasingly understood that cells migrate in vivo through confining spaces which typically occur as pores in the matrix and through naturally occurring interfaces that exist between neighbouring ECM fibers, or between the stroma and the vasculature. Such interfaces are also created when treating wounds on the skin surface by covering the wounds with adhesives. How multiple cues impact interfacial migration has not been adequately addressed. By studying cell migratory behaviour at the interface of two hydrogel substrates, we identify adhesivity and stiffness as two critical factors that can be tuned to maximize cell migration. We foresee a potential use of this knowledge in the design of tissue adhesives for wound healing applications.
Collapse
|
30
|
Discrete and Continuum Approximations for Collective Cell Migration in a Scratch Assay with Cell Size Dynamics. Bull Math Biol 2018; 80:738-757. [DOI: 10.1007/s11538-018-0398-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/19/2018] [Indexed: 10/18/2022]
|
31
|
Abstract
In vitro tests of cancer cell invasion are the "first line" tools of preclinical researchers for screening the multitude of chemical compounds or cell perturbations that may aid in halting or treating cancer malignancy. In order to have predictive value or to contribute to designing personalized treatment regimes, these tests need to take into account the cancer cell environment and measure effects on invasion in sufficient detail. The in vitro invasion assays presented here are a trade-off between feasibility in a multisample format and mimicking the complexity of the tumor microenvironment. They allow testing multiple samples and conditions in parallel using 3D-matrix-embedded cells and deal with the heterogeneous behavior of an invading cell population in time. We describe the steps to take, the technical problems to tackle and useful software tools for the entire workflow: from the experimental setup to the quantification of the invasive capacity of the cells. The protocol is intended to guide researchers to standardize experimental set-ups and to annotate their invasion experiments in sufficient detail. In addition, it provides options for image processing and a solution for storage, visualization, quantitative analysis, and multisample comparison of acquired cell invasion data.
Collapse
|
32
|
Zhao L, Guo T, Wang L, Liu Y, Chen G, Zhou H, Zhang M. Tape-Assisted Photolithographic-Free Microfluidic Chip Cell Patterning for Tumor Metastasis Study. Anal Chem 2017; 90:777-784. [DOI: 10.1021/acs.analchem.7b03225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Liang Zhao
- Research Center for Bioengineering
and Sensing Technology, School of Chemistry and Biological Engineering,
Institute of Precision Medicine and Health, Beijing Key Laboratory
for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Tengfei Guo
- Research Center for Bioengineering
and Sensing Technology, School of Chemistry and Biological Engineering,
Institute of Precision Medicine and Health, Beijing Key Laboratory
for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Lirong Wang
- Research Center for Bioengineering
and Sensing Technology, School of Chemistry and Biological Engineering,
Institute of Precision Medicine and Health, Beijing Key Laboratory
for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Liu
- Research Center for Bioengineering
and Sensing Technology, School of Chemistry and Biological Engineering,
Institute of Precision Medicine and Health, Beijing Key Laboratory
for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Ganyu Chen
- Research Center for Bioengineering
and Sensing Technology, School of Chemistry and Biological Engineering,
Institute of Precision Medicine and Health, Beijing Key Laboratory
for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Hao Zhou
- Research Center for Bioengineering
and Sensing Technology, School of Chemistry and Biological Engineering,
Institute of Precision Medicine and Health, Beijing Key Laboratory
for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Meiqin Zhang
- Research Center for Bioengineering
and Sensing Technology, School of Chemistry and Biological Engineering,
Institute of Precision Medicine and Health, Beijing Key Laboratory
for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
33
|
Hao R, Wei Y, Li C, Chen F, Chen D, Zhao X, Luan S, Fan B, Guo W, Wang J, Chen J. A Microfabricated 96-Well 3D Assay Enabling High-Throughput Quantification of Cellular Invasion Capabilities. Sci Rep 2017; 7:43390. [PMID: 28240272 PMCID: PMC5327465 DOI: 10.1038/srep43390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/23/2017] [Indexed: 01/12/2023] Open
Abstract
This paper presents a 96-well microfabricated assay to study three-dimensional (3D) invasion of tumor cells. A 3D cluster of tumor cells was first generated within each well by seeding cells onto a micro-patterned surface consisting of a central fibronectin-coated area that promotes cellular attachment, surrounded by a poly ethylene glycol (PEG) coated area that is resistant to cellular attachment. Following the formation of the 3D cell clusters, a 3D collagen extracellular matrix was formed in each well by thermal-triggered gelation. Invasion of the tumor cells into the extracellular matrix was subsequently initiated and monitored. Two modes of cellular infiltration were observed: A549 cells invaded into the extracellular matrix following the surfaces previously coated with PEG molecules in a pseudo-2D manner, while H1299 cells invaded into the extracellular matrix in a truly 3D manner including multiple directions. Based on the processing of 2D microscopic images, a key parameter, namely, equivalent invasion distance (the area of invaded cells divided by the circumference of the initial cell cluster) was obtained to quantify migration capabilities of these two cell types. These results validate the feasibility of the proposed platform, which may function as a high-throughput 3D cellular invasion assay.
Collapse
Affiliation(s)
- Rui Hao
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yuanchen Wei
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Chaobo Li
- Microelectronics Equipment Research and Development Center, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P.R. China
| | - Feng Chen
- Department of Vascular Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xiaoting Zhao
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Shaoliang Luan
- Department of Vascular Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Beiyuan Fan
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Wei Guo
- Department of Vascular Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| |
Collapse
|