1
|
Cressey R, Han MTT, Khaodee W, Xiyuan G, Qing Y. Navigating PRKCSH's impact on cancer: from N-linked glycosylation to death pathway and anti-tumor immunity. Front Oncol 2024; 14:1378694. [PMID: 38571496 PMCID: PMC10987803 DOI: 10.3389/fonc.2024.1378694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
PRKCSH, also known as Glucosidase II beta subunit (GluIIβ), is a crucial component of the endoplasmic reticulum (ER) quality control system for N-linked glycosylation, essential for identifying and eliminating misfolded proteins. Glucosidase II consists of the catalytic alpha subunit (GluIIα) and the regulatory beta subunit (GluIIβ), ensuring proper protein folding and release from the ER. The induction of PRKCSH in cancer and its interaction with various cellular components suggest broader roles beyond its previously known functions. Mutations in the PRKCSH gene are linked to autosomal dominant polycystic liver disease (ADPLD). Alternative splicing generates distinct PRKCSH isoforms, which can influence processes like epithelial-mesenchymal transition (EMT) and the proliferation of lung cancer cells. PRKCSH's involvement in cancer is multifaceted, impacting cell growth, metastasis, and response to growth factors. Additionally, PRKCSH orchestrates cell death programs, affecting both autophagy and apoptosis. Its role in facilitating N-linked glycoprotein release from the ER is hypothesized to assist cancer cells in managing increased demand and ER stress. Moreover, PRKCSH modulates anti-tumor immunity, with its suppression augmenting NK cell and T cell activity, promising enhanced cancer therapy. PRKCSH's diverse functions, including regulation of IGF1R and IRE1α, implicate it as a therapeutic target and biomarker in cancer immunotherapy. However, targeting its glucosidase II activity alone may not fully counteract its effects, suggesting broader mechanisms in cancer development. Further investigations are needed to elucidate PRKCSH's precise role and validate its therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Ratchada Cressey
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Moe Thi Thi Han
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Worapong Khaodee
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Guo Xiyuan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Public Experimental Technology Center School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yuan Qing
- Public Experimental Technology Center School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Khaodee W, Xiyuan G, Han MTT, Tayapiwatana C, Chiampanichayakul S, Anuchapreeda S, Cressey R. Transcriptomic analysis of glucosidase II beta subunit (GluIIß) knockout A549 cells reveals its roles in regulation of cell adhesion molecules (CAMs) and anti-tumor immunity. BMC Genomics 2024; 25:82. [PMID: 38245670 PMCID: PMC10799456 DOI: 10.1186/s12864-023-09888-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/09/2023] [Indexed: 01/22/2024] Open
Abstract
Glucosidase II beta subunit (GluIIß), encoded from PRKCSH, is a subunit of the glucosidase II enzyme responsible for quality control of N-linked glycoprotein folding and suppression of GluIIß led to inhibitory effect of the receptor tyrosine kinase (RTKs) activities known to be critical for survival and development of cancer. In this study, we investigated the effect of GluIIß knockout on the global gene expression of cancer cells and its impact on functions of immune cells. GluIIß knockout lung adenocarcinoma A549 cell line was generated using CRISPR/Cas9-based genome editing system and subjected to transcriptomic analysis. Among 23,502 expressed transcripts, 1068 genes were significantly up-regulated and 807 genes greatly down-regulated. The KEGG enrichment analysis showed significant down-regulation of genes related extracellular matrix (ECM), ECM-receptor interaction, cytokine-cytokine receptor interaction and cell adhesion molecules (CAMs) in GluIIß knockout cells. Of 9 CAMs encoded DEG identified by KEGG enrichment analysis, real time RT-PCR confirmed 8 genes to be significantly down-regulated in all 3 different GluIIß knockout clones, which includes cadherin 4 (CDH4), cadherin 2 (CDH2), versican (VCAN), integrin subunit alpha 4 (ITGA4), endothelial cell-selective adhesion molecule (ESAM), CD274 (program death ligand-1 (PD-L1)), Cell Adhesion Molecule 1 (CADM1), and Nectin Cell Adhesion Molecule 3 (NECTIN3). Whereas PTPRF (Protein Tyrosine Phosphatase Receptor Type F) was significantly decreased only in 1 out of 3 knockout clones. Microscopic analysis revealed distinctively different cell morphology of GluIIβ knockout cells with lesser cytoplasmic and cell surface area compared to parental A549 cells and non-targeted transfected cells.Further investigations revealed that Jurkat E6.1 T cells or human peripheral blood mononuclear cells (PBMCs) co-cultured with GluIIß knockout A549 exhibited significantly increased viability and tumor cell killing activity compared to those co-cultured with non-target transfected cells. Analysis of cytokine released from Jurkat E6.1 T cells co-cultured with GluIIß knockout A549 cells showed significant increased level of angiogenin and significant decreased level of ENA-78. In conclusion, knockout of GluIIß from cancer cells induced altered gene expression profile that improved anti-tumor activities of co-cultured T lymphocytes and PBMCs thus suppression of GluIIß may represent a novel approach of boosting anti-tumor immunity.
Collapse
Affiliation(s)
- Worapong Khaodee
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Guo Xiyuan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Public Experimental Technology Center School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Moe Thi Thi Han
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchai Tayapiwatana
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Sawitree Chiampanichayakul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Ratchada Cressey
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
- Cancer Research Unit, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
3
|
Maijaroen S, Klaynongsruang S, Roytrakul S, Konkchaiyaphum M, Taemaitree L, Jangpromma N. An Integrated Proteomics and Bioinformatics Analysis of the Anticancer Properties of RT2 Antimicrobial Peptide on Human Colon Cancer (Caco-2) Cells. Molecules 2022; 27:molecules27041426. [PMID: 35209215 PMCID: PMC8880037 DOI: 10.3390/molecules27041426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/05/2022] Open
Abstract
New selective, efficacious chemotherapy agents are in demand as traditional drugs display side effects and face growing resistance upon continued administration. To this end, bioactive molecules such as peptides are attracting interest. RT2 is a cationic peptide that was used as an antimicrobial but is being repurposed for targeting cancer. In this work, we investigate the mechanism by which this peptide targets Caco-2 human colon cancer cells, one of the most prevalent and metastatic cancers. Combining label-free proteomics with bioinformatics data, our data explore over 1000 proteins to identify 133 proteins that are downregulated and 79 proteins that are upregulated upon treatment with RT2. These changes occur in a dose-dependent manner and suggest the former group are related to anticancer cell proliferation; the latter group is closely related to apoptosis levels. The mRNA levels of several genes (FGF8, PAPSS2, CDK12, LDHA, PRKCSH, CSE1L, STARD13, TLE3, and OGDHL) were quantified using RT-qPCR and were found to be in agreement with proteomic results. Collectively, the global change in Caco-2 cell protein abundance suggests that RT2 triggers multiple mechanisms, including cell proliferation reduction, apoptosis activation, and alteration of cancerous cell metabolism.
Collapse
Affiliation(s)
- Surachai Maijaroen
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.K.); (M.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.K.); (M.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Monruedee Konkchaiyaphum
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.K.); (M.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lapatrada Taemaitree
- Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence:
| |
Collapse
|
4
|
Zhou LL, Gao KY, Cheng LS, Wang YL, Cheng YK, Xu QT, Deng XY, Li JW, Mei FZ, Zhou ZQ. Short-term waterlogging-induced autophagy in root cells of wheat can inhibit programmed cell death. PROTOPLASMA 2021; 258:891-904. [PMID: 33486619 DOI: 10.1007/s00709-021-01610-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Autophagy is a pathway for the degradation of cytoplasmic components in eukaryotes. In wheat, the mechanism by which autophagy regulates programmed cell death (PCD) is unknown. Here, we demonstrated that short-term waterlogging-induced autophagy inhibited PCD in root cells of wheat. The waterlogging-tolerant wheat cultivar Huamai 8 and the waterlogging-sensitive wheat cultivar Huamai 9 were used as experimental materials, and their roots were waterlogged for 0-48 h. Waterlogging stress increased the number of autophagic structures, the expression levels of autophagy-related genes (TaATG), and the occurrence of PCD in root cells. PCD manifested as morphological changes in the cell nucleus, significant enhancement of DNA laddering bands, and increases in caspase-like protease activity and the expression levels of metacaspase genes. The autophagy promoter rapamycin (RAPA) reduced PCD levels, whereas the autophagy inhibitor 3-methyladenine (3-MA) enhanced them. The expression levels of TaATG genes and the number of autophagic structures were lower in cortex cells than in stele cells, but the levels of PCD were higher in cortex cells. The number of autophagic structures was greater in Huamai 8 than in Huamai 9, but the levels of PCD were lower. In summary, our results showed that short-term waterlogging induced autophagy which could inhibit PCD. Mechanisms of response to waterlogging stress differed between cortex and stele cells and between two wheat cultivars of contrasting waterlogging tolerance.
Collapse
Affiliation(s)
- Li-Lang Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kai-Yue Gao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li-Sha Cheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yue-Li Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yi-Keng Cheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiu-Tao Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang-Yi Deng
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Ji-Wei Li
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Fang-Zhu Mei
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhu-Qing Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
5
|
Zhang TY, Wang ZQ, Hu HC, Chen ZQ, Liu P, Gao SQ, Zhang F, He L, Jin P, Xu MZ, Chen JP, Yang J. Transcriptome-Wide N 6-Methyladenosine (m 6A) Profiling of Susceptible and Resistant Wheat Varieties Reveals the Involvement of Variety-Specific m 6A Modification Involved in Virus-Host Interaction Pathways. Front Microbiol 2021; 12:656302. [PMID: 34122371 PMCID: PMC8187603 DOI: 10.3389/fmicb.2021.656302] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent internal modification of post-transcriptional modifications in mRNA, tRNA, miRNA, and long non-coding RNA in eukaryotes. m6A methylation has been proven to be involved in plant resistance to pathogens. However, there are no reports on wheat (Triticum aestivum) m6A transcriptome-wide map and its potential biological function in wheat resistance to wheat yellow mosaic virus (WYMV). To the best of our knowledge, this study is the first to determine the transcriptome-wide m6A profile of two wheat varieties with different resistances to WYMV. By analyzing m6A-sequencing (m6A-seq) data, we identified 25,752 common m6A peaks and 30,582 common m6A genes in two groups [WYMV-infected resistant wheat variety (WRV) and WYMV-infected sensitive wheat variety (WSV)], and all these peaks were mainly enriched in 3′ untranslated regions and stop codons of coding sequences. Gene Ontology analysis of m6A-seq and RNA-sequencing data revealed that genes that showed significant changes in both m6A and mRNA levels were associated with plant defense responses. Kyoto Encyclopedia of Genes and Genomes analysis revealed that these selected genes were enriched in the plant–pathogen interaction pathway. We further verified these changes in m6A and mRNA levels through gene-specific m6A real-time quantitative PCR (RT-qPCR) and normal RT-qPCR. This study highlights the role of m6A methylation in wheat resistance to WYMV, providing a solid basis for the potential functional role of m6A RNA methylation in wheat resistance to infection by RNA viruses.
Collapse
Affiliation(s)
- Tian-Ye Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zi-Qiong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hai-Chao Hu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhi-Qing Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shi-Qi Gao
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fan Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Long He
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Jin
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Miao-Ze Xu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian-Ping Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Li JX, Zhang F, Jiang DD, Li J, Wang FL, Zhang Z, Wang W, Zhao XQ. Diversity of Cellulase-Producing Filamentous Fungi From Tibet and Transcriptomic Analysis of a Superior Cellulase Producer Trichoderma harzianum LZ117. Front Microbiol 2020; 11:1617. [PMID: 32760377 PMCID: PMC7372938 DOI: 10.3389/fmicb.2020.01617] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Filamentous fungi are widely used for producing cellulolytic enzymes to degrade lignocellulosic biomass. Microbial resources from Tibet have received great attention due to the unique geographic and climatic conditions in the Qinghai-Tibet Plateau. However, studies on cellulase producing fungal strains originated from Tibet remain very limited, and so far no studies have been focused on regulation of cellulase production of the specific strains thereof. Here, filamentous fungal strains were isolated from soil, plant, and other environments in Tibet, and cellulase-producing strains were further investigated. A total of 88 filamentous fungal strains were identified, and screening of cellulase-producing fungi revealed that 16 strains affiliated with the genera Penicillium, Trichoderma, Aspergillus, and Talaromyces exhibited varying cellulolytic activities. Among these strains, T. harzianum isolate LZ117 is the most potent producer. Comparative transcriptome analysis using T. harzianum LZ117 and the control strain T. harzianum K223452 cultured on cellulose indicated an intensive modulation of gene transcription related to protein synthesis and quality control. Furthermore, transcription of xyr1 which encodes the global transcriptional activator for cellulase expression was significantly up-regulated. Transcription of cre1 and other predicted repressors controlling cellulase gene expression was decreased in T. harzianum LZ117, which may contribute to enhancing formation of primary cellulases. To our knowledge, this is the first report that the transcription landscape at the early enzyme production stage of T. harzianum was comprehensively described, and detailed analysis on modulation of transporters, regulatory proteins as well as protein synthesis and processing was presented. Our study contributes to increasing the catalog of publicly available transcriptome data from T. harzianum, and provides useful clues for unraveling the biotechnological potential of this species for lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Jia-Xiang Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Jun Li
- R&D Center, JALA Group Co., Shanghai, China
| | | | | | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Lamb HM. Double agents of cell death: novel emerging functions of apoptotic regulators. FEBS J 2020; 287:2647-2663. [PMID: 32239637 PMCID: PMC8796856 DOI: 10.1111/febs.15308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/28/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Apoptosis is a highly regulated form of cell death that is required for many homeostatic and pathological processes. Recently, alternative cell death pathways have emerged whose regulation is dependent on proteins with canonical functions in apoptosis. Dysregulation of apoptotic signaling frequently underlies the pathogenesis of many cancers, reinforcing the need to develop therapies that initiate alternative cell death processes. This review outlines the convergence points between apoptosis and other death pathways with the purpose of identifying novel strategies for the treatment of apoptosis-refractory cancers. Apoptosis proteins can play key roles in the initiation, regulation, and execution of nonapoptotic death processes that include necroptosis, autophagy, pyroptosis, mPTP-mediated necrosis, and ferroptosis. Notably, recent evidence illustrates that dying cells can exhibit biochemical and molecular characteristics of more than one different type of regulated cell death. Thus, this review highlights the amazing complexity and interconnectivity of cell death processes and also raises the idea that a top-to-bottom approach to describing cell death mechanisms may be inadequate for fully understanding the means by which cells die.
Collapse
Affiliation(s)
- Heather M. Lamb
- W. Harry Feinstone Department of Molecular Microbiology and
Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore,
MD 21205 USA
| |
Collapse
|
8
|
Upregulation of vitamin D-binding protein is associated with changes in insulin production in pancreatic beta-cells exposed to p,p'-DDT and p,p'-DDE. Sci Rep 2019; 9:18026. [PMID: 31792309 PMCID: PMC6889289 DOI: 10.1038/s41598-019-54579-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022] Open
Abstract
Persistent organochlorine pollutants (POPs) gradually accumulate in the human organism due to their presence in the environment. Some studies have described a correlation between the level of POPs in the human body and the incidence of diabetes, but we know little about the direct effect of POPs on pancreatic beta-cells. We exposed pancreatic beta-cells INS1E to non-lethal concentrations of p,p′-DDT (1,1′-(2,2,2-Trichloroethane-1,1-diyl)bis(4-chlorobenzene)) and p,p′-DDE (1,1′-(2,2-dichloroethene-1,1-diyl)bis(4-chlorobenzene)) for 1 month, and assessed changes in protein expression and the intracellular insulin level. 2-D electrophoresis revealed 6 proteins with changed expression in cells exposed to p,p′-DDT or p,p′-DDE. One of the detected proteins – vitamin D-binding protein (VDBP) – was upregulated in both cells exposed to p,p′-DDT, and cells exposed to p,p′-DDE. Both exposures to pollutants reduced the intracellular level of insulin mRNA, proinsulin, and insulin monomer; p,p′-DDT also slightly reduced the level of hexameric insulin. Overexpression of VDBP caused by the stable transfection of beta-cells with the gene for VDBP decreased both the proinsulin and hexameric insulin level in beta-cells similarly to the reduction detected in cells exposed to p,p′-DDT. Our data suggest that in the cells exposed to p,p′-DDT and p,p′-DDE, the increased VDBP protein level decreased the proinsulin expression in an unknown mechanism.
Collapse
|
9
|
Zhu RX, Cheng ASL, Chan HLY, Yang DY, Seto WK. Growth arrest-specific gene 2 suppresses hepatocarcinogenesis by intervention of cell cycle and p53-dependent apoptosis. World J Gastroenterol 2019; 25:4715-4726. [PMID: 31528096 PMCID: PMC6718038 DOI: 10.3748/wjg.v25.i32.4715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/14/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Growth arrest-specific gene 2 (GAS2) plays a role in modulating in reversible growth arrest cell cycle, apoptosis, and cell survival. GAS2 protein is universally expressed in most normal tissues, particularly in the liver, but is depleted in some tumor tissues. However, the functional mechanisms of GAS2 in hepatocellular carcinoma (HCC) are not fully defined.
AIM To investigate the function and mechanism of GAS2 in HCC.
METHODS GAS2 expression in clinic liver and HCC specimens was analyzed by real-time PCR and western blotting. Cell proliferation was analyzed by counting, MTS, and colony formation assays. Cell cycle analysis was performed by flow cytometry. Cell apoptosis was investigated by Annexin V apoptosis assay and western blotting.
RESULTS GAS2 protein expression was lower in HCC than in normal tissues. Overexpression of GAS2 inhibited the proliferation of HCC cells with wide-type p53, while knockdown of GAS2 promoted the proliferation of hepatocytes (P < 0.05). Furthermore, GAS2 overexpression impeded the G1-to-S cell cycle transition and arrested more G1 cells, particularly the elevation of sub G1 (P < 0.01). Apoptosis induced by GAS2 was dependent on p53, which was increased by etoposide addition. The expression of p53 and apoptosis markers was further enhanced when GAS2 was upregulated, but became diminished upon downregulation of GAS2. In the clinic specimen, GAS2 was downregulated in more than 60% of HCCs. The average fold changes of GAS2 expression in tumor tissues were significantly lower than those in paired non-tumor tissues (P < 0.05).
CONCLUSION GAS2 plays a vital role in HCC cell proliferation and apoptosis, possibly by regulating the cell cycle and p53-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Ran-Xu Zhu
- Department of Gastroenterology and Hepatology, The University of Hong Kong–Shenzhen Hospital, Shenzhen 518053, Guangdong Province, China
| | - Alfred Sze Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Henry Lik Yuen Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Dong-Ye Yang
- Department of Gastroenterology and Hepatology, The University of Hong Kong–Shenzhen Hospital, Shenzhen 518053, Guangdong Province, China
| | - Wai-Kay Seto
- Department of Gastroenterology and Hepatology, The University of Hong Kong–Shenzhen Hospital, Shenzhen 518053, Guangdong Province, China
| |
Collapse
|
10
|
Knockout of glucosidase II beta subunit inhibits growth and metastatic potential of lung cancer cells by inhibiting receptor tyrosine kinase activities. Sci Rep 2019; 9:10394. [PMID: 31316108 PMCID: PMC6637200 DOI: 10.1038/s41598-019-46701-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Glucosidase II (GluII) plays a major role in regulating post-translation modification of N-linked glycoproteins. We have previously reported that the expression of glucosidase II beta subunit (GluIIβ) was significantly increased in lung tumor tissues and its suppression triggers autophagy and/or apoptosis. Here, we investigated the role of GluIIβ in cell growth, metastatic potential, and receptor tyrosine kinases (RTKs) signaling activity in lung carcinoma cell lines. CRISPR-CAS9 technology was used to knockout the GluIIβ encoding gene (PRKSH) in lung carcinoma cells. GluIIβ knockout cells exhibited drastically slower growth rates in comparison to non-target transfected cells, particularly with lower concentrations of fetal bovine serum, indicating impairment of their ability to survive under nutritional deprivation. Cell migration and anchorage-independent growth, the fundamental components of cancer cell metastasis, were significantly decreased in GluIIβ knockout cells. Knockout of GluIIβ increased the sensitivity of lung cancer cells to cisplatin but reduced their sensitivity to gefitinib. Interestingly, knocking out of GluIIβ lowered overall RTK signaling activities to less than half of those in non-target transfected cells, which could represent a novel strategy for blocking multiple RTKs in tumor cells in an effort to improve lung cancer treatment.
Collapse
|
11
|
Tang J, Bassham DC. Autophagy in crop plants: what's new beyond Arabidopsis? Open Biol 2018; 8:180162. [PMID: 30518637 PMCID: PMC6303781 DOI: 10.1098/rsob.180162] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a major degradation and recycling pathway in plants. It functions to maintain cellular homeostasis and is induced by environmental cues and developmental stimuli. Over the past decade, the study of autophagy has expanded from model plants to crop species. Many features of the core machinery and physiological functions of autophagy are conserved among diverse organisms. However, several novel functions and regulators of autophagy have been characterized in individual plant species. In light of its critical role in development and stress responses, a better understanding of autophagy in crop plants may eventually lead to beneficial agricultural applications. Here, we review recent progress on understanding autophagy in crops and discuss potential future research directions.
Collapse
Affiliation(s)
- Jie Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
12
|
Feng B, Zhang C, Chen T, Zhang X, Tao L, Fu G. Salicylic acid reverses pollen abortion of rice caused by heat stress. BMC PLANT BIOLOGY 2018; 18:245. [PMID: 30340520 PMCID: PMC6194599 DOI: 10.1186/s12870-018-1472-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/05/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Extremely high temperatures are becoming an increasingly severe threat to crop yields. It is well documented that salicylic acid (SA) can enhance the stress tolerance of plants; however, its effect on the reproductive organs of rice plants has not been described before. To investigate the mechanism underlying the SA-mediated alleviation of the heat stress damage to rice pollen viability, a susceptible cultivar (Changyou1) was treated with SA at the pollen mother cell (PMC) meiosis stage and then subjected to heat stress of 40 °C for 10 d until 1d before flowering. RESULTS Under control conditions, no significant difference was found in pollen viability and seed-setting rate in SA treatments. However, under heat stress conditions, SA decreased the accumulation of reactive oxygen species (ROS) in anthers to prevent tapetum programmed cell death (PCD) and degradation. The genes related to tapetum development, such as EAT1 (Eternal Tapetum 1), MIL2 (Microsporeless 2), and DTM1 (Defective Tapetum and Meiocytese 1), were found to be involved in this process. When rice plants were exogenously sprayed with SA or paclobutrazol (PAC, a SA inhibitor) + H2O2 under heat stress, a significantly higher pollen viability was found compared to plants sprayed with H2O, PAC, or SA + dimethylthiourea (DMTU, an H2O2 and OH· scavenger). Additionally, a sharp increase in H2O2 was observed in the SA or PAC+ H2O2 treatment groups compared to other treatments. CONCLUSION We suggest that H2O2 may play an important role in mediating SA to prevent pollen abortion caused by heat stress through inhibiting the tapetum PCD.
Collapse
Affiliation(s)
- Baohua Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Caixia Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Tingting Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Xiufu Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Longxing Tao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Guanfu Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| |
Collapse
|
13
|
Wang X, Zhang H, Shao LY, Yan X, Peng H, Ouyang JX, Li SB. Expression and function analysis of a rice OsHSP40 gene under salt stress. Genes Genomics 2018; 41:175-182. [PMID: 30298358 DOI: 10.1007/s13258-018-0749-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Heat shock proteins (HSPs) play essential roles in both plant growth and abiotic stress tolerance. In rice, OsHSP40 was recently reported to regulate programmed cell death (PCD) of suspension cells under high temperature. However, the expression and functions of OsHSP40 under normal growth or other abiotic stress conditions is still unknown. We reported the expression and function of a rice OsHSP40 gene under salt stress. Homologous proteins of OsHSP40 were collected from the NCBI database and constructed the neighbor-joining (NJ) phylogenetic tree. The expression pattern of OsHSP40 was detected by qRT-PCR under NaCl (150 mM) treatment. Then, identified a rice T-DNA insertion mutant oshsp40. At last, we compared and analyzed the phenotypes of oshsp40 and wild type under salt stress. OsHSP40 was a constitutively expressed small HSP (sHSP) gene and was close related to other plant sHSPs. Moreover, the expression of OsHSP40 was regulated by salt, varying across time points and tissues. Furthermore, the growth of T-DNA insertion mutant of OsHSP40 (designated as oshsp40) was suppressed by NaCl (150 mM) compared with that of the WT at seedling stage. Detailed measurement showed root and shoot length of the oshsp40 seedlings were significantly shorter than those of the WT seedlings under NaCl stress. In addition, the pot experiment results revealed that seedlings of oshsp40 withered more seriously compared with those of WT after NaCl treatment and recovery, and that survival rate and fresh weight of oshsp40 seedlings were significantly reduced. Taken together, these data suggested that OsHSP40 had multiple functions in rice normal growth and abiotic stress tolerance.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Huan Zhang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Lu-Yuan Shao
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xin Yan
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Hui Peng
- College of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Hunan Hi-Tech Bio-Agro Co., Ltd, Yueyang, 414400, China
| | - Jie-Xiu Ouyang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China. .,Medical Laboratory Education Center, Nanchang University, Nanchang, 330031, China.
| | - Shao-Bo Li
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
14
|
Darabi S, Noori-Zadeh A, Abbaszadeh HA, Rajaei F. Trehalose Activates Autophagy and Prevents Hydrogen Peroxide-Induced Apoptosis in the Bone Marrow Stromal Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:1141-1149. [PMID: 30127837 PMCID: PMC6094425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bone marrow stromal stem cells (BMSCs) play a significant role in cell therapy. These cells quickly die after transplantation to the affected area due to oxidative stress. The natural disaccharide, trehalose which can be known as autophagy inducer. The present study aimed to investigate the role of trehalose in preventing BMSCs from oxidative stress caused by H2O2. BMSCs were isolated from the adult rats. The cells were divided into three groups: (a) control; (b) 100 µM H2O2; (c) 100 µM H2O2 and trehalose 3%. The morality rate was analyzed by viability test. Immunocytochemistry and Western blot was used in order to evaluate p62 protein and LC3II/LC3I ratio, respectively. In order to evaluate apoptosis, cleaved caspase-3 protein was used. In viability test, the survival rate for BMSCs after 8 h were 82%, 72%, 49%, and 39% (for groups who received 50, 100, 200, and 400 µM H2O2, respectively) compared to the control group. Pre-treatment with the use of trehalose 3% increased cell survivals. The levels of p62 protein, were increased in the cells under H2O2 treatment, while the levels of p62 protein in the cytoplasm, as autophagy inclusions, reduced for the group with trehalose pre-treatment. In addition, trehalose caused to increase LC3II/LC3I ratio and decreased the expression of cleaved caspase-3. Trehalose decreased apoptosis and increased the autophagy and survival levels of the cells against H2O2. Due to the unique properties of trehalose and its low toxicity, it can be used as a pharmaceutical agent in cellular transplantation to reduce oxidative stress.
Collapse
Affiliation(s)
- Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran. ,Corresponding author: E-mail:
| | - Ali Noori-Zadeh
- Department of Clinical Biochemistry, Faculty of Paramedicine, Ilam University of Medical Sciences, Ilam, Iran.
| | - Hojjat Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran.
| |
Collapse
|
15
|
Khaodee W, Inboot N, Udomsom S, Kumsaiyai W, Cressey R. Glucosidase II beta subunit (GluIIβ) plays a role in autophagy and apoptosis regulation in lung carcinoma cells in a p53-dependent manner. Cell Oncol (Dordr) 2017; 40:579-591. [PMID: 28929344 DOI: 10.1007/s13402-017-0349-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Glucosidase II plays a major role in regulating the post-translational modification of N-linked glycoproteins. Previously, we found that the beta subunit of glucosidase II (GluIIβ) levels are significantly increased in lung carcinoma tissues, indicating a potential role in lung tumorigenesis. Here, we investigated the role of GluIIβ in the regulation of autophagy and apoptosis in lung carcinoma- and immortalized human bronchial epithelial-derived cells. METHODS A selective glucosidase II inhibitor, bromoconduritol, was used to inhibit GluII enzyme activity and a siRNA-based technology was used to suppress the expression of the GluIIβ encoding gene PRKCSH in lung carcinoma cells differing in p53 status. Cell viability was assessed using a MTT assay, cell cycle progression was assessed using flow cytometry, autophagy was assessed using Western blotting and apoptosis was assessed using an annexin V-FITC/PI double labeling method. RESULTS We found that GluIIβ inhibition resulted in the induction of autophagy in all cell lines tested, but apoptosis in only wild-type p53 cells. We also found that GluIIβ inhibition dose-dependently decreased activation of the EGFR/RTK and PI3K/AKT signaling pathways. Although the apoptosis inducing effect of GluIIβ inhibition appeared to be p53-dependent, we found that a combined treatment with lysosomal inhibitors to block autophagy enhanced the apoptotic effect of GluIIβ inhibition in both wild-type p53 and p53-null cells. CONCLUSIONS Our data indicate that GluIIβ inhibition results in autophagy and apoptosis in lung carcinoma-derived cells, supporting the hypothesis that this enzyme may play a role in blocking these two tumor suppressive processes. Since blocking autophagy by lysosomal inhibitors enhanced the apoptosis-inducing effect of bromoconduritol, independent of p53 status, their combined use may hold promise for the treatment of cancer, particularly lung cancer.
Collapse
Affiliation(s)
- Worapong Khaodee
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nichanan Inboot
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Suruk Udomsom
- Biomedical Engineering Program, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand.,Biomedical Engineering Center, Chiang Mai University, Chiang Mai, Thailand
| | - Warunee Kumsaiyai
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Ratchada Cressey
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand. .,MT Cancer Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|